
CAN WE TELL APART INTONATION FROM PROSODY(IF WE LOOK AT ACCENTS AND BOUNDARIES)?A. Batliner A. Kie�ling� R. Kompe+ H. Niemann E. N�othUniv. Erlangen-N�urnberg, Lehrstuhl f�ur Mustererkennung (Inf. 5), Martensstr. 3, 91058 Erlangen, F.R. of Germany� now with Ericsson Eurolab, N�urnberg+ now with Sony Stuttgart Technology Center, FellbachE{mail: batliner@informatik.uni-erlangen.dewww: http://www5.informatik.uni-erlangen.deABSTRACTStudies on prosody/intonation normally look for impor-tant (distinctive) features denoting linguistic contrasts inproduction or perception experiments. The recent devel-opment in automatic speech processing and the availabil-ity of large speech data bases made it possible to have afresh look at these topics. In our study, we classify au-tomatically accent and boundary positions in a sponta-neous speech corpus with a large feature vector compris-ing as many relevant prosodic features as possible. Theresults obtained for di�erent subsets of prosodic features(F0, duration, energy, etc.) show that each feature classcontributes to the marking of accents and boundaries, andthat the best results can be achieved by simply usingall feature subsets together. Finally, we discuss possibleconclusions for prosodic theory and for the application ofprosody in speech processing.1. INTRODUCTION1.1. Theories and MethodsA time-honored topic in phonology is the distinction be-tween dinstinctive and redundant features, e.g., in into-national research the question, whether tones or move-ments are the appropriate units, and in prosodic research,whether we can do with intonation (i.e. pitch and F0,resp.) alone or whether we should model all prosodic pa-rameters, i.e. duration, energy etc. as well, in a uni�edapproach. In phonetics/phonology, most of the modelson suprasegmentals nowadays are models of intonation,not of prosody: the tone{sequence approach, the IPO ap-proach, the Fujisaki model, the Lund model, etc.; cf., e.g.,[8]. Of course, other prosodic parameters are more or lessimplicitly included as well in intonation models becauseafter all, speech and thus intonation are time phenom-ena, and that means that prominent intonational events(F0 movements, H*/L* tones, etc.) are aligned to certainpoints on the time axis. In the statistical models used inautomatic speech understanding (ASU), the question ofdistinctive vs. redundant is boiled down to the problemof feature evaluation: it is of minor interest what class afeature belongs to; as long as it is a good predictor, it isincluded into the feature vector the classi�er is based on.Empirically minded phonologists and phoneticians some-times design perception experiments as an experimentumcrucis that should help �nding the distinctive features. Inother perception experiments and generally in productionexperiments, the contribution of various features at stakeare investigated using statistical methods as, e.g., regres-sion analysis or linear discriminant analysis. In a way or-thogonal to the concept of distinctiveness is the conceptof trading relations where the smaller value of one param-1This work was funded by the German Federal Ministry ofEducation, Science, Research and Technology (BMBF) in theframework of the Verbmobil Project under Grant 01 IV 701K5. The responsibility for the contents of this study lies withthe authors.

eter can be compensated by a greater value of anotherparameter, cf. [12].2In all these cases, there is, however, a systematic missinglink to real{life, spontaneous speech: in an experiment,one can force subjects to pay more attention to the oneor to the other feature, but one never knows, whethertheir experimental behavior really mirrors their behav-ior in real{life. The normal speaker/hearer does not com-pute, let's say, a F0 analysis, and does certainly not tellapart analytically pitch from duration from energy etc.but he/she uni�es every percept into one single concept -e.g.: this word is accented, that word is phrase{�nal.The results of such in vitro experiments are most of thetime discussed on an as if basis: as if they would be ableto decide between hypotheses or theories. In the long run,it is, however, just a matter of cumulative evidence. Re-cently, advances in ASU and the availability of large spon-taneous speech data bases made it possible to have a newlook at the relationship of intonation with other prosodicparameters. A cumulative evidence can be obtained asa sort of byproduct from ASU if we look closer at sin-gle features, feature groups and their respective relevancefor the classi�cation of speech events as, e.g., accents andboundaries.1.2. The Applied ApproachFor several reasons, the extraction of prosodic featuresand their classi�cation into prosodic classes is not aneasy task: besides the fact that it is not clear at all howmany prosodic classes, e.g., two, three or more boundaries,should be distinguished and have thus to be classi�ed, themost important problems are� the mutual in
uence of segmental (i.e. word chain)and suprasegmental (i.e. prosodic) information� the interferences of the di�erent prosodic functionswhich are realized to a great extent with the sameprosodic parameters� the trading relation between prosodic parameters� the optionality of prosodic means; a speci�c functioncan be expressed with prosody but it must not, e.g.,when other grammatical means are already su�cient(as in Wh-questions)� speaker and language speci�c use of prosodic featuresFor all these problems, we use a statistical approach andpropose a method where as many relevant prosodic fea-tures as possible are extracted over a prosodic unit, e.g., asyllable or a word, and composed into a huge feature vec-tor which represents the prosodic properties of this andof several surrounding units in a speci�c context. Basedon reference labelling of prosodic events which has to besynchronous with the stream of feature vectors, statis-tical classi�ers (here: multi-layer perceptrons, MLP) aretrained using a training database and are evaluated on adi�erent database.The material our investigations are based on is to ourknowledge so far the largest spontaneous speech data base2Note that all these concepts we mentioned here are not ex-actly at the heart of the scienti�c debate today, but we believe,that they - implicitly - still form a common ground.To appear in Proc. ESCA Intonation-WS, Athens-97 1 c
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used for such a purpose, and the feature vector is to ourknowledge the largest one as well. Note that `largest' doesnot necessarily mean `best' but in fact, we will argue forexactly this conclusion.2. MATERIALThe research presented in this paper has been conductedunder the Verbmobil project, cf. [10], which aims atautomatic speech{to{speech translation in appointmentscheduling dialogs. The experiments reported in the fol-lowing have been performed on subsets of this sponta-neous speech database. For the training of the stochasticclassi�ers, appropriate reference labels are needed. Theperceptually based prosodic labelling of boundaries andaccents was performed by our Verbmobil partner Uni-versity of Braunschweig, cf. [13]. Four types of word{based boundary labels are distinguished: B3: full boundarywith strong intonational marking, often with lengthening;B2: intermediate phrase boundary with weak intonationalmarking; B0: normal word boundary, not labelled explic-itly; B9: `agrammatical' boundary, e.g., hesitation or re-pair. Four di�erent types of syllable based accent labelsare distinguished as well which can easily be mapped ontoword{based labels denoting if a word is accented or not:PA: primary accent, SA: secondary accent, EC: emphatic orcontrastive accent, and A0: any other syllable, not labelledexplicitly. Here, we are only interested in the two-classproblems `boundary' (B = B3) vs. `no boundary' (:B =fB0;B2;B9g) and `accented word' (A = fPA;SA;ECg)vs. `not accented word' (:A = A0) summing up the re-spective classes. 33 Verbmobil dialogs (approx. 2 h ofspeech) have been labelled along these lines.All recognition results described in the following were ob-tained on the same test set comprising three Verbmobildialogs (64 turns of 3 male and 3 female speakers, 12minutes in total). For the training of the MLPs 30 dis-joint dialogs (797 turns of 53 male and 7 female speakers,100 minutes in total) were used. The recognition ratesfor the accent classi�cation are evaluated for all words ofthe test set; the rates for the boundary classi�cation areonly determined for the turn{internal words without tak-ing into account the turn{�nal words because a detectionof a boundary at the end of a turn is rather trivial.3. EXTRACTION OF PROSODICFEATURESWe distinguish di�erent categories of prosodic feature lev-els. The acoustic prosodic features are signal{based fea-tures that usually span over speech units that are largerthan phonemes (syllables, words, turns, etc.). Normally,they are extracted from the speci�c speech signal intervalthat belongs to the prosodic unit, describing its speci�cprosodic properties, and can be fed directly into a classi-�er. Within this group we can further distinguish:� basic prosodic featuresare extracted from the pure speech signal without anyexplicit segmentation into prosodic units. Examplesare the frame-based extraction of fundamental fre-quency (F0) and energy. Usually the basic prosodicfeatures cannot be directly used for a prosodic clas-si�cation.� structured prosodic featuresare computed over a larger speech unit (syllable,syllable nucleus, word, turn, etc.) partly from theprosodic basic features, e.g., features describing theshape of F0 or energy contour, partly based on seg-mental information that can be taken from the out-put of a word recognizer, e.g., features describing du-rational properties of phonemes, syllable nuclei, syl-lables, pauses.On the other hand, prosodic information is highly inter-related with `higher' linguistic information, i.e. the un-derlying linguistic information strongly in
uences the ac-tual realization and relevance of the measured acousticprosodic features. In this sense, we speak of linguistic

prosodic features that can be introduced from other knowl-edge sources, as lexicon, syntax, or semantics; usuallythey have either an intensifying or an inhibitory e�ecton the acoustic prosodic features. The linguistic prosodicfeatures can be further divided into two categories:� lexical prosodic featuresare categorical features that can be extracted from alexicon that contains syllable boundaries in the pho-netic transcription of the words. Examples for thesefeatures are 
ags marking if a syllable is word{�nalor not or denoting which syllable carries the lexicalword accent. Other possibilities not considered heremight be special 
ags marking content and functionwords.� syntactic/semantic prosodic featuresencode the syntactic and/or semantic structure of anutterance. They can be obtained from syntax, e.g.,from the syntactic tree, or they can be based on pre-dictions of possibly important { and thus accented {words from the semantic or the dialog module.All these categories are dealt with in more detail in [5].Here, we do not consider syntactic/semantic prosodic fea-tures; in the following, the cover term prosodic featuresmeans mostly structured prosodic features and some lex-ical prosodic features.3 We only use the aligned spokenwords thus simulating 100% word recognition { and bythat, simulating the capability of a human listener. Thetime alignment is done by a standard hidden Markovmodel word recognizer.Due to the problems discussed so far, it is still an openquestion, which prosodic features are the most relevant forthe di�erent classi�cation problems and how the di�erentfeatures are interrelated. Generally, we therefore try tobe as exhaustive as possible, and leave it to the statisticalclassi�er to �nd out the relevant features and the optimalweighting of them. As many relevant prosodic featuresas possible are therefore extracted over a prosodic unit(here: the word �nal syllable) and composed into a hugefeature vector which represents the prosodic properties ofthis and of several surrounding units in a speci�c context.In prior studies, we investigated di�erent contexts of upto � 6 syllables (� 3 words, resp.) to the left and to theright of the actual word{�nal syllable. For every classi�ca-tion problem investigated many di�erent subsets of thesefeatures were analyzed. The best results so far for theBj:B and the Aj:A problem were achieved by using 276features computed for each word considering a context of� 2 syllables (� 2 words, resp.).4 Note, that in contrastto the accent classi�cation experiments in [6], here wechose a di�erent strategy: in [6] we computed one featurevector for each syllable performing a syllable-based Aj:Aclassi�cation. As it is more important for semantic analy-sis to know which words are accented and of less interestwhich syllables are accented, the syllable-based classi�ca-tion results had to be mapped onto a judgement for theword. Here, we compute one feature vector per word, per-forming a word-based Aj:A classi�cation. Experiments onthe same data bases as in [6] showed a reduction of theerror rate of about 20% compared to the syllable-basedapproach. In more detail the features used here are:� for each syllable and word in this context minimumand maximum of fundamental frequency (F0) andtheir positions on the time axis relative to the po-sition of the actual syllable as well as the F0-mean� F0-o�set + position for actual and preceding word� F0-onset + position for actual and succeeding word� linear regression coe�cients of F0{contour and en-ergy contour over 11 di�erent windows to the leftand to the right of the actual syllable3In [1], we use polygram language models (i.e. N-grams ofvariable length) for modelling the higher level information andcombine the output of these classi�ers with the MLP outputwhich uses more or less only acoustic prosodic features.4A full list of these features can be found in [5], pp. 257-258.2



number set alone all n setfeature set of A j :A B j :B A j :A B j :B(set) features ER ERK ER ERK ER ERK ER ERKall 276 82.6 82.2 88.3 86.8 | |F0, with pos 80 79.5 79.2 81.4 82.1 81.7 81.5 85.0 84.9F0, without pos 56 76.2 75.3 78.7 75.9 82.4 82.0 86.3 85.9F0{max/min/on/off, only pos 24 79.4 79.2 77.7 79.8 82.5 82.2 85.4 86.2F0{max/min/on/off, without pos 24 73.9 73.1 78.6 73.1 81.9 81.6 86.0 85.0F0{regression 22 74.9 74.0 78.8 75.4 82.7 82.3 88.0 86.4energy, with pos 112 77.3 77.0 82.9 81.9 82.4 81.9 86.6 85.6energy, without pos 102 77.5 77.3 80.7 80.9 82.0 81.7 85.0 85.4energy, only pos 10 70.5 70.5 77.9 79.4 82.2 81.8 86.1 86.1duration 60 75.4 75.2 78.7 77.7 81.7 81.4 85.8 85.4pause 6 57.4 55.4 88.4 72.1 82.3 82.0 86.6 85.1speaking rate 3 50.5 51.4 48.6 54.9 82.0 81.6 87.7 86.2flags 15 78.6 78.8 74.3 74.9 81.7 81.3 86.6 85.6maximum{minimum (without all) 9.0 8.7 8.6 9.0 1.0 1.0 3.0 1.5all{maximum 3.1 3.0 5.4 4.7 -0.1 -0.1 0.3 0.4reduction of error rate w.r.t. maximum{minimum 30.5 29.5 33.4 33.5 5.5 5.3 20.0 9.9reduction of error rate w.r.t. all{maximum 15.1 14.4 31.6 26.3 -0.6 -0.6 2.5 2.9Table 1. Recognition rates for the classi�cation of accents (A j :A) and prosodic boundaries (B j :B) for di�erent feature sets.All values are given in percent. Further explanations are given in the text.� for each syllable and word in this context maximumenergy (normalized as in [14]) + positions and meanenergy (also normalized)� duration (absolute and normalized) for each sylla-ble/syllable nucleus/word� length of the pause preceding/succeeding actual word� for an implicit normalization of the other features,measures for the speaking rate are computed overthe whole utterance based on the absolute and thenormalized syllable durations (as in [14])� for each syllable: 
ags indicating whether the syllablecarries the lexical word accent or whether it is in aword �nal position.4. EXPERIMENTS AND RESULTSIn this paper, we will only report results obtained withMLPs that turned out to be superior compared withGaussian distribution or polynomial classi�ers in similarinvestigations [4]. Di�erent MLP topologies were analyzedfor the two classi�cation problems. As training procedurethe Quick{propagation algorithm [2] with the sigmoid ac-tivation function was used. Experiments were performedwith di�erent feature sets. In any case the MLPs had asmany input nodes as the dimension of the speci�c featurevector and one output node for each of the classes to berecognized. During training the desired output for each ofthe feature vectors is set to one for the node correspond-ing to the reference label; the other one is set to zero.With this method in theory the MLP estimates a poste-riori probabilities for the classes under consideration. Inorder to balance for the a priori probabilities of the dif-ferent classes, during training the MLP was fed with anequal number of feature vectors from each class.In Table 1 the results for experiments with di�erentfeature subsets of the best feature set (276 features,cf. above) is shown for the recognition of prosodic bound-aries (column Bj:B) as well as for the classi�cation of ac-cents (column Aj:A). It is distinguished between the clas-si�cation with di�erent feature sets (column set alone)and the classi�cation with all features but the ones cor-responding to the actual row (column all n set). Besidesthe overall recognition rate (ER), the averages of the class-dependent recognition rates (ERK) are given as well. Ac-tually, ERK is more relevant than ER because the classi-�er was trained with an equally distributed a priori prob-ability. Values in italics and those for all are not takeninto account for the computation of the maximum and theminimum of the columns. All values are given in percent.We distinguish three `classic' main groups of features: F0,energy, and duration. Three further groups are pause,speaking rate, and flags. For F0 and energy, thereare further subgroups: with/without/only position (pos).

For F0{max/min/on/off, results are given for with/onlypos. In order to make the results easier to interpret, wedisplay the range (maximum{minimum) of each columnwithout all as well as the range for all{maximum. Thevalues of pause and of speaking rate are not taken intoaccount for the computation of maximum and minimumbecause this would make no sense: it is trivial that speak-ing rate alone is randomly distributed for accents andfor boundaries, and that pause is irrelevant for accents.For boundaries, pause yields the best result for ER, butthe worst for ERK . Note that the a priori distribution isnot taken into account. This feature can thus `model' the`normal' word boundary, i.e., :B that occurs much moreoften than B, but not the distinction between :B and B.The decisive �gures are the reductions of error rate forthese two constellations maximum{minimum and all{maximum. We see that each single feature set yields re-sults better than chance; there is, however, a marked dif-ference between single feature sets: for the `best' featureset, a reduction of the error rate between 29.5% and 33.5%can be achieved in comparison with the `worst' feature set.The best single feature set is still markedly worse than allfeature sets taken together (between 14.4% and 31.6% re-duction of error rate for all in comparison with the bestsingle feature sets). Each single feature set contributes tothe overall recognition rate; this can be seen on the rightside of the table (all n set). The only exception might beF0{regression: if we exclude only this feature set, we getslightly better results for Aj:A (0.6%, i.e., practically nodi�erence). This feature set is highly correlated with otherF0 features; this and the fact that only a limited amountof training data was available might be responsible forthis exception of the overall trend.To speak about Aj:A and Bj:B makes only sense in asyntagmatic context because all features have to be re-lated to this context (higher/lower, longer/shorter, etc.,than the context?). We therefore modelled not only therespective words, but the words and syllables before andafter as well. This means, however, that the successionof words with their respective feature values on the timeaxis is encoded automatically in one single feature vec-tor. This fact is most certainly the reason why all singlefeature sets are markedly better than chance (70.5% andhigher). It might as well be the reason why the positionsof the prominent F0 values alone `F0{max/min/on/offonly pos' are for Aj:A practically as good as all F0 fea-tures with pos (79.4% vs. 79.5%).For the Bj:B problem the most important features areF0, energy (and pause, but cf. above). Concerning theAj:A classi�cation, F0 is also the most relevant impor-tant group and in contrast to the Bj:B problem morerelevant than energy. An explanation for the superior-3



ity of F0 and energy compared with duration mightbe the fact that durational information is already mod-elled in the position features of F0 and energy, cf. thediscussion in the last paragraph. This shows also the dis-tinct drop of the recognition rate if only the `pure' F0features without their positions (rows `F0 without pos' or`F0{max/min/on/off, without pos') are used. The lexi-cal prosodic features (row flags) seem to be much morerelevant for the Aj:A classi�cation than for the Bj:B clas-si�cation.5. CONCLUDING REMARKSIf the distinction between distinctive and redundant fea-tures should make sense at all (at least for an applicationin ASU), distinctive features should be `good predictors',and redundant features `bad' ones. Is thus energy dis-tinctive for Bj:B, and F0 not, and is it the other wayround for Aj:A? In our opinion, such a conclusion doesnot make sense because we have seen that all features con-tribute to the distinction. Our results rather favor a sortof prototype model where no feature is distinctive in thetraditional meaning and where all features being memberof the relevant feature bundle can take over the role ofeach other up to a very great extent.5Coming back to the title of this paper `Can we tell apartintonation from prosody?', this question could be put inat least three di�erent ways: (1) Which feature subset isa good (or the best) predictor for our classi�cation? (2)Can we tell apart the contribution of intonational fea-tures from that of the other prosodic features? (3) Shouldwe try at all to tell apart the one from the other? Ques-tion (1) cannot be answered unequivocally because wecannot really tell apart the contribution of single featuresets because of the intrinsic nature of speech (answer toquestion (2): no). Of course, question (3) can still be an-swered di�erently, depending on theoretical assumptions.As a matter of fact, in an application, we are not forced totell apart intonation from prosody; in linguistic/phonetictheory, it is in our opinion an attractive alternative to thestruggle for `the best' model if we do not have to debatedi�erent ontologies but only di�erent notational devices,e.g. labelling systems, that are more or less appropriateto ful�ll di�erent tasks. This means that we do not nec-essarily have to have the same approaches and units forproduction, generation and synthesis on the one side andfor perception, (automatic) recognition and understand-ing on the other side. (In fact, this mirrors the state ofa�airs in prosodic research nowadays quite well.) It does,however, of course not mean that both approaches cannotpro�t from each other, cf. [9], [11].Of course, some caveats have to be made: First, we onlyhad a look at German prosody; things might be di�erentfor other languages where intonation plays a greater role,and especially for tone languages. Second, for the compu-tation of our feature vector, we cannot take the prosodicphrase as a domain but `only' a context that is supposedto be large enough, simply because we cannot use a unitas input that we want to detect. In practice, this dis-advantage can be neglected. Third, even if we includedmany prosodic features into our feature vector we can ofcourse not be sure whether we did not exclude the one orthe other that could contribute to the prosodic markingand by that, to recognition as well. Note, however, thatour recognition rates are in the range of the interlabellerconsistency for similar tasks, cf., e.g., [3] and [13]. As suchmanual labels serve as reference labels for our experimentsit is rather not likely that automatic recognition could bemuch better than human labellers. Fourth, the level of de-scription/analysis could be challenged. In our experience,however, it is in any case the best strategy really to use`raw' feature values and not features obtained from anintermediate level, as, e.g., from the phonological level.5A rather pleasant consequence out of that is that we mostcertainly can take feature subsets for special applications with-out loosing too much information, if, e.g., in an incrementalcomputation and classi�cation, some of the other features can-not be computed.
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