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ABSTRACT

Studies on prosody/intonation normally look for impor-
tant (distinctive) features denoting linguistic contrasts in
production or perception experiments. The recent devel-
opment in automatic speech processing and the availabil-
ity of large speech data bases made it possible to have a
fresh look at these topics. In our study, we classify au-
tomatically accent and boundary positions in a sponta-
neous speech corpus with a large feature vector compris-
ing as many relevant prosodic features as possible. The
results obtained for different subsets of prosodic features
(Fo, duration, energy, etc.) show that each feature class
contributes to the marking of accents and boundaries, and
that the best results can be achieved by simply using
all feature subsets together. Finally, we discuss possible
conclusions for prosodic theory and for the application of
prosody in speech processing.

1. INTRODUCTION

1.1. Theories and Methods

A time-honored topic in phonology is the distinction be-
tween dinstinctive and redundant features, e.g., in into-
national research the question, whether tones or move-
ments are the appropriate units, and in prosodic research,
whether we can do with intonation (i.e. pitch and Fy,
resp.) alone or whether we should model all prosodic pa-
rameters, i.e. duration, energy etc. as well, in a unified
approach. In phonetics/phonology, most of the models
on suprasegmentals nowadays are models of intonation,
not of prosody: the tone-sequence approach, the IPO ap-
proach, the Fujisaki model, the Lund model, etc.; cf., e.g.,
[8]. Of course, other prosodic parameters are more or less
implicitly included as well in intonation models because
after all, speech and thus intonation are time phenom-
ena, and that means that prominent intonational events
(Fo movements, H* /L* tones, etc.) are aligned to certain
points on the time axis. In the statistical models used in
automatic speech understanding (ASU), the question of
distinctive vs. redundant is boiled down to the problem
of feature evaluation: it is of minor interest what class a
feature belongs to; as long as it is a good predictor, it is
included into the feature vector the classifier is based on.
Empirically minded phonologists and phoneticians some-
times design perception experiments as an ezperimentum
crucis that should help finding the distinctive features. In
other perception experiments and generally in production
experiments, the contribution of various features at stake
are investigated using statistical methods as, e.g., regres-
sion analysis or linear discriminant analysis. In a way or-
thogonal to the concept of distinctiveness is the concept
of trading relations where the smaller value of one param-
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eter can be compensated by a greater value of another
parameter, cf. [12].2

In all these cases, there is, however, a systematic missing
link to real-life, spontaneous speech: in an experiment,
one can force subjects to pay more attention to the one
or to the other feature, but one never knows, whether
their experimental behavior really mirrors their behav-
ior in real-life. The normal speaker/hearer does not com-
pute, let’s say, a Fp analysis, and does certainly not tell
apart analytically pitch from duration from energy etc.
but he/she unifies every percept into one single concept -
e.g.: this word is accented, that word is phrase—final.
The results of such in vitro experiments are most of the
time discussed on an as if basis: as if they would be able
to decide between hypotheses or theories. In the long run,
it is, however, just a matter of cumulative evidence. Re-
cently, advances in ASU and the availability of large spon-
taneous speech data bases made it possible to have a new
look at the relationship of intonation with other prosodic
parameters. A cumulative evidence can be obtained as
a sort of byproduct from ASU if we look closer at sin-
gle features, feature groups and their respective relevance
for the classification of speech events as, e.g., accents and
boundaries.

1.2. The Applied Approach

For several reasons, the extraction of prosodic features
and their classification into prosodic classes is not an
easy task: besides the fact that it is not clear at all how
many prosodic classes, e.g., two, three or more boundaries,
should be distinguished and have thus to be classified, the
most important problems are

e the mutual influence of segmental (i.e. word chain)
and suprasegmental (i.e. prosodic) information
the interferences of the different prosodic functions

which are realized to a great extent with the same
prosodic parameters

the trading relation between prosodic parameters

the optionality of prosodic means; a specific function
can be expressed with prosody but it must not, e.g.,
when other grammatical means are already sufficient
(as in Wh-questions)

e speaker and language specific use of prosodic features

For all these problems, we use a statistical approach and
propose a method where as many relevant prosodic fea-
tures as possible are extracted over a prosodic unit, e.g., a
syllable or a word, and composed into a huge feature vec-
tor which represents the prosodic properties of this and
of several surrounding units in a specific context. Based
on reference labelling of prosodic events which has to be
synchronous with the stream of feature vectors, statis-
tical classifiers (here: multi-layer perceptrons, MLP) are
trained using a training database and are evaluated on a
different database.

The material our investigations are based on is to our
knowledge so far the largest spontaneous speech data base

2Note that all these concepts we mentioned here are not ex-
actly at the heart of the scientific debate today, but we believe,
that they - implicitly - still form a common ground.
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used for such a purpose, and the feature vector is to our
knowledge the largest one as well. Note that ‘largest’ does
not necessarily mean ‘best’ but in fact, we will argue for
exactly this conclusion.

2. MATERIAL

The research presented in this paper has been conducted
under the VERBMOBIL project, cf. [10], which aims at
automatic speech-to—speech translation in appointment
scheduling dialogs. The experiments reported in the fol-
lowing have been performed on subsets of this sponta-
neous speech database. For the training of the stochastic
classifiers, appropriate reference labels are needed. The
perceptually based prosodic labelling of boundaries and
accents was performed by our VERBMOBIL partner Uni-
versity of Braunschweig, cf. [13]. Four types of word-
based boundary labels are distinguished: B3: full boundary
with strong intonational marking, often with lengthening;
B2: intermediate phrase boundary with weak intonational
marking; B0: normal word boundary, not labelled explic-
itly; B9: ‘agrammatical’ boundary, e.g., hesitation or re-
pair. Four different types of syllable based accent labels
are distinguished as well which can easily be mapped onto
word—based labels denoting if a word is accented or not:
PA: primary accent, SA: secondary accent, EC: emphatic or
contrastive accent, and AO: any other syllable, not labelled
explicitly. Here, we are only interested in the two-class
problems ‘boundary’ (B = B3) vs. ‘no boundary’ (=B =
{B0,B2,B9}) and ‘accented word’ (A = {PA,SA,EC})
vs. ‘not accented word’ (—=A = A0) summing up the re-
spective classes. 33 VERBMOBIL dialogs (approx. 2h of
speech) have been labelled along these lines.

All recognition results described in the following were ob-
tained on the same test set comprising three VERBMOBIL
dialogs (64 turns of 3 male and 3 female speakers, 12
minutes in total). For the training of the MLPs 30 dis-
joint dialogs (797 turns of 53 male and 7 female speakers,
100 minutes in total) were used. The recognition rates
for the accent classification are evaluated for all words of
the test set; the rates for the boundary classification are
only determined for the turn—internal words without tak-
ing into account the turn-final words because a detection
of a boundary at the end of a turn is rather trivial.

3. EXTRACTION OF PROSODIC
FEATURES

We distinguish different categories of prosodic feature lev-
els. The acoustic prosodic features are signal-based fea-
tures that usually span over speech units that are larger
than phonemes (syllables, words, turns, etc.). Normally,
they are extracted from the specific speech signal interval
that belongs to the prosodic unit, describing its specific
prosodic properties, and can be fed directly into a classi-
fier. Within this group we can further distinguish:

e basic prosodic features
are extracted from the pure speech signal without any
explicit segmentation into prosodic units. Examples
are the frame-based extraction of fundamental fre-
quency (Fo) and energy. Usually the basic prosodic
features cannot be directly used for a prosodic clas-
sification.

e structured prosodic features

are computed over a larger speech unit (syllable,
syllable nucleus, word, turn, etc.) partly from the
prosodic basic features, e.g., features describing the
shape of Fy or energy contour, partly based on seg-
mental information that can be taken from the out-
put of a word recognizer, e.g., features describing du-
rational properties of phonemes, syllable nuclei, syl-
lables, pauses.

On the other hand, prosodic information is highly inter-
related with ‘higher’ linguistic information, i.e. the un-
derlying linguistic information strongly influences the ac-
tual realization and relevance of the measured acoustic
prosodic features. In this sense, we speak of linguistic

prosodic features that can be introduced from other knowl-
edge sources, as lexicon, syntax, or semantics; usually
they have either an intensifying or an inhibitory effect
on the acoustic prosodic features. The linguistic prosodic
features can be further divided into two categories:

e lexical prosodic features

are categorical features that can be extracted from a
lexicon that contains syllable boundaries in the pho-
netic transcription of the words. Examples for these
features are flags marking if a syllable is word—final
or not or denoting which syllable carries the lexical
word accent. Other possibilities not considered here
might be special flags marking content and function
words.

e syntactic/semantic prosodic features
encode the syntactic and/or semantic structure of an
utterance. They can be obtained from syntax, e.g.,
from the syntactic tree, or they can be based on pre-
dictions of possibly important — and thus accented —
words from the semantic or the dialog module.

All these categories are dealt with in more detail in [5].
Here, we do not consider syntactic/semantic prosodic fea-
tures; in the following, the cover term prosodic features
means mostly structured prosodic features and some lex-
ical prosodic features.® We only use the aligned spoken
words thus simulating 100% word recognition — and by
that, simulating the capability of a human listener. The
time alignment is done by a standard hidden Markov
model word recognizer.

Due to the problems discussed so far, it is still an open
question, which prosodic features are the most relevant for
the different classification problems and how the different
features are interrelated. Generally, we therefore try to
be as exhaustive as possible, and leave it to the statistical
classifier to find out the relevant features and the optimal
weighting of them. As many relevant prosodic features
as possible are therefore extracted over a prosodic unit
(here: the word final syllable) and composed into a huge
feature vector which represents the prosodic properties of
this and of several surrounding units in a specific context.
In prior studies, we investigated different contexts of up
to 6 syllables (+3 words, resp.) to the left and to the
right of the actual word—final syllable. For every classifica-
tion problem investigated many different subsets of these
features were analyzed. The best results so far for the
B|-B and the A|-A problem were achieved by using 276
features computed for each word considering a context of
+ 2 syllables (&2 words, resp.).* Note, that in contrast
to the accent classification experiments in [6], here we
chose a different strategy: in [6] we computed one feature
vector for each syllable performing a syllable-based A|—-A
classification. As it is more important for semantic analy-
sis to know which words are accented and of less interest
which syllables are accented, the syllable-based classifica-
tion results had to be mapped onto a judgement for the
word. Here, we compute one feature vector per word, per-
forming a word-based A|—A classification. Experiments on
the same data bases as in [6] showed a reduction of the
error rate of about 20 % compared to the syllable-based
approach. In more detail the features used here are:

e for each syllable and word in this context minimum
and maximum of fundamental frequency (Fp) and
their positions on the time axis relative to the po-
sition of the actual syllable as well as the Fy-mean

e Fy-offset + position for actual and preceding word

e Fj-onset + position for actual and succeeding word

e linear regression coefficients of Fy—contour and en-
ergy contour over 11 different windows to the left
and to the right of the actual syllable

3Tn [1], we use polygram language models (i.e. N-grams of
variable length) for modelling the higher level information and
combine the output of these classifiers with the MLP output
which uses more or less only acoustic prosodic features.

4 A full list of these features can be found in [5], pp. 257-258.



number SET alone ALL \ SET
feature set of Al-A B|-B A|-A B|-B
(SET) features ER 57?,? ER SRE ER SRE ER SRE
| ALL | 276 || 82.6 82.2 | 88.3 86.8 || — | — |

Fy, with pos 80 79.5 79.2 81.4 82.1 81.7 815 [ 8.0 84.9
Fy, without POS 56 76.2 75.3 78.7 75.9 824 82.0 | 86.3 85.9
Fy—MAX/MIN/ON/OFF, only POS 24 794 792 | 77.7 79.8 || 82.5 822 | 854 86.2
Fy—MAX/MIN/ON/OFF, without POS 24 73.9 73.1 78.6 73.1 81.9 81.6 | 86.0 85.0
Fy—REGRESSION 22 74.9 74.0 78.8 75.4 82.7 823 | 88.0 864
ENERGY, with POS 112 77.3 77.0 82.9 81.9 824 819 | 8.6 85.6
ENERGY, without POS 102 77.5 77.3 80.7 80.9 82.0 81.7 | 85.0 85.4
ENERGY, only POS 10 70.5 70.5 77.9 79.4 82.2 81.8 | 86.1 86.1
DURATION 60 75.4 75.2 78.7 77.7 81.7 81.4 | 8.8 854
PAUSE 6 574 55 88.7 T72.1 82.3 82.0 | 8.6 85.1
SPEAKING RATE 3 50.5 51.4 48.6 54.9 82.0 81.6 | 87.7 86.2
FLAGS 15 78.6 78.8 74.3 74.9 81.7 81.3 | 86.6 85.6
mazimum—minimum (without ALL) 9.0 8.7 8.6 9.0 1.0 1.0 3.0 1.5
ALL-mazimum 3.1 3.0 5.4 4.7 -0.1 -0.1 0.3 0.4
reduction of error rate w.r.t. mazimum—-minimum || 30.5 29.5 334 33.5 5.5 5.3 20.0 9.9
reduction of error rate w.r.t. ALL-mazimum 15.1 14.4 31.6 26.3 -0.6 -0.6 2.5 2.9

Table 1. Recognition rates for the classification of accents (A|—A) and prosodic boundaries (B|—B) for different feature sets.
All values are given in percent. Further explanations are given in the text.

e for each syllable and word in this context maximum
energy (normalized as in [14]) + positions and mean
energy (also normalized)

e duration (absolute and normalized) for each sylla-
ble/syllable nucleus/word

e length of the pause preceding/succeeding actual word

e for an implicit normalization of the other features,
measures for the speaking rate are computed over
the whole utterance based on the absolute and the
normalized syllable durations (as in [14])

e for each syllable: flags indicating whether the syllable
carries the lexical word accent or whether it is in a
word final position.

4. EXPERIMENTS AND RESULTS

In this paper, we will only report results obtained with
MLPs that turned out to be superior compared with
Gaussian distribution or polynomial classifiers in similar
investigations [4]. Different MLP topologies were analyzed
for the two classification problems. As training procedure
the Quick—propagation algorithm [2] with the sigmoid ac-
tivation function was used. Experiments were performed
with different feature sets. In any case the MLPs had as
many input nodes as the dimension of the specific feature
vector and one output node for each of the classes to be
recognized. During training the desired output for each of
the feature vectors is set to one for the node correspond-
ing to the reference label; the other one is set to zero.
With this method in theory the MLP estimates a poste-
riori probabilities for the classes under consideration. In
order to balance for the a priori probabilities of the dif-
ferent classes, during training the MLP was fed with an
equal number of feature vectors from each class.

In Table 1 the results for experiments with different
feature subsets of the best feature set (276 features,
cf. above) is shown for the recognition of prosodic bound-
aries (column B|-B) as well as for the classification of ac-
cents (column A|-A). It is distinguished between the clas-
sification with different feature sets (column SET alone)
and the classification with all features but the ones cor-
responding to the actual row (column ALL \ SET). Besides
the overall recognition rate (ER), the averages of the class-
dependent recognition rates (6R4) are given as well. Ac-
tually, ER+ is more relevant than £R because the classi-
fier was trained with an equally distributed a priori prob-
ability. Values in italics and those for ALL are not taken
into account for the computation of the mazimum and the
minimum of the columns. All values are given in percent.
We distinguish three ‘classic’ main groups of features: Fp,
ENERGY, and DURATION. Three further groups are PAUSE,
SPEAKING RATE, and FLAGS. For Fy and ENERGY, there
are further subgroups: with/without/only position (POs).

For Fo—MAX/MIN/ON/OFF, results are given for with/only
POS. In order to make the results easier to interpret, we
display the range (mazimum-minimum) of each column
without ALL as well as the range for ALL-mazimum. The
values of PAUSE and of SPEAKING RATE are not taken into
account for the computation of mazimum and minimum
because this would make no sense: it is trivial that SPEAK-
ING RATE alone is randomly distributed for accents and
for boundaries, and that PAUSE is irrelevant for accents.
For boundaries, PAUSE yields the best result for £R, but
the worst for £R4. Note that the a priori distribution is
not taken into account. This feature can thus ‘model’ the
‘normal’ word boundary, i.e., =B that occurs much more
often than B, but not the distinction between —B and B.
The decisive figures are the reductions of error rate for
these two constellations mazimum-minimum and ALL-
mazimum. We see that each single feature set yields re-
sults better than chance; there is, however, a marked dif-
ference between single feature sets: for the ‘best’ feature
set, a reduction of the error rate between 29.5% and 33.5%
can be achieved in comparison with the ‘worst’ feature set.
The best single feature set is still markedly worse than ALL
feature sets taken together (between 14.4% and 31.6% re-
duction of error rate for ALL in comparison with the best
single feature sets). Each single feature set contributes to
the overall recognition rate; this can be seen on the right
side of the table (ALL \ SET). The only exception might be
Fy—REGRESSION: if we exclude only this feature set, we get
slightly better results for A|-A (0.6%, i.e., practically no
difference). This feature set is highly correlated with other
Fy features; this and the fact that only a limited amount
of training data was available might be responsible for
this exception of the overall trend.

To speak about A|—A and B|-B makes only sense in a
syntagmatic context because all features have to be re-
lated to this context (higher/lower, longer/shorter, etc.,
than the context?). We therefore modelled not only the
respective words, but the words and syllables before and
after as well. This means, however, that the succession
of words with their respective feature values on the time
axis is encoded automatically in one single feature vec-
tor. This fact is most certainly the reason why all single
feature sets are markedly better than chance (70.5% and
higher). It might as well be the reason why the positions
of the prominent Fp values alone ‘Fy—MAX/MIN/ON/OFF
only pos’ are for A|—-A practically as good as all Fy fea-
tures with pos (79.4% vs. 79.5%).

For the B|-B problem the most important features are
Fy, ENERGY (and PAUSE, but cf. above). Concerning the
A|-A classification, Fy is also the most relevant impor-
tant group and in contrast to the B|—B problem more
relevant than ENERGY. An explanation for the superior-



ity of Fp and ENERGY compared with DURATION might
be the fact that durational information is already mod-
elled in the position features of Fy and ENERGY, cf. the
discussion in the last paragraph. This shows also the dis-
tinct drop of the recognition rate if only the ‘pure’ Fp
features without their positions (rows ‘Fy without Pos’ or
‘Fy—MAX/MIN/ON/OFF, without POS’) are used. The lexi-
cal prosodic features (row FLAGS) seem to be much more
relevant for the A|—A classification than for the B|-B clas-
sification.

5. CONCLUDING REMARKS

If the distinction between distinctive and redundant fea-
tures should make sense at all (at least for an application
in ASU), distinctive features should be ‘good predictors’,
and redundant features ‘bad’ ones. Is thus ENERGY dis-
tinctive for B|-B, and Fy not, and is it the other way
round for A|=A? In our opinion, such a conclusion does
not make sense because we have seen that allfeatures con-
tribute to the distinction. Our results rather favor a sort
of prototype model where no feature is distinctive in the
traditional meaning and where all features being member
of the relevant feature bundle can take over the role of
each other up to a very great extent.’

Coming back to the title of this paper ‘Can we tell apart
intonation from prosody?’, this question could be put in
at least three different ways: (1) Which feature subset is
a good (or the best) predictor for our classification? (2)
Can we tell apart the contribution of intonational fea-
tures from that of the other prosodic features? (3) Should
we try at all to tell apart the one from the other? Ques-
tion (1) cannot be answered unequivocally because we
cannot really tell apart the contribution of single feature
sets because of the intrinsic nature of speech (answer to
question (2): no). Of course, question (3) can still be an-
swered differently, depending on theoretical assumptions.
As a matter of fact, in an application, we are not forced to
tell apart intonation from prosody; in linguistic/phonetic
theory, it is in our opinion an attractive alternative to the
struggle for ‘the best’ model if we do not have to debate
different ontologies but only different notational devices,
e.g. labelling systems, that are more or less appropriate
to fulfill different tasks. This means that we do not nec-
essarily have to have the same approaches and units for
production, generation and synthesis on the one side and
for perception, (automatic) recognition and understand-
ing on the other side. (In fact, this mirrors the state of
affairs in prosodic research nowadays quite well.) It does,
however, of course not mean that both approaches cannot
profit from each other, cf. [9], [11].

Of course, some caveats have to be made: First, we only
had a look at German prosody; things might be different
for other languages where intonation plays a greater role,
and especially for tone languages. Second, for the compu-
tation of our feature vector, we cannot take the prosodic
phrase as a domain but ‘only’ a context that is supposed
to be large enough, simply because we cannot use a unit
as input that we want to detect. In practice, this dis-
advantage can be neglected. Third, even if we included
many prosodic features into our feature vector we can of
course not be sure whether we did not exclude the one or
the other that could contribute to the prosodic marking
and by that, to recognition as well. Note, however, that
our recognition rates are in the range of the interlabeller
consistency for similar tasks, cf., e.g., [3] and [13]. As such
manual labels serve as reference labels for our experiments
it is rather not likely that automatic recognition could be
much better than human labellers. Fourth, the level of de-
scription/analysis could be challenged. In our experience,
however, it is in any case the best strategy really to use
‘raw’ feature values and not features obtained from an
intermediate level, as, e.g., from the phonological level.

5A rather pleasant consequence out of that is that we most
certainly can take feature subsets for special applications with-
out loosing too much information, if, e.g., in an incremental
computation and classification, some of the other features can-
not be computed.

A sort of ‘external’ validation of our approach is the fact
that parsing in VERBMOBIL improved drastically with the
use of prosodic boundary information, cf. [10, 7].
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