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PSEUDOHOLOMORPHIC CURVES IN S6 AND S5

JOST-HINRICH ESCHENBURG AND THEODOROS VLACHOS

Abstract. The octonionic cross product on R7 induces a nearly Kähler struc-
ture on S6, the analogue of the Kähler structure of S2 given by the usual
(quaternionic) cross product on R3. Pseudoholomorphic curves with respect to
this structure are the analogue of meromorphic functions. They are (super-)con-
formal minimal immersions. We reprove a theorem of Hashimoto [Tokyo J.
Math. 23 (2000), 137–159] giving an intrinsic characterization of pseudoholo-
morphic curves in S6 and (beyond Hashimoto’s work) S5. Instead of the
Maurer–Cartan equations we use an embedding theorem into homogeneous
spaces (here: S6 = G2/SU3) involving the canonical connection.

1. Introduction

Minimal surfaces in the round 3-sphere S3 have an intrinsic characterization:
A metric ds2 on a simply connected Riemann surface M is the induced metric of a
full conformal minimal immersion into S3 if and only if its Gaussian curvature K
satisfies K ≤ 1 and

∆ log(1−K) = 4K,
where ∆ is the Laplacian of the metric ds2.1 The formula goes back to Ricci [10,
p. 340] who actually looked at surfaces of constant mean curvature 1 in euclidean
3-space, but these are isometric to minimal surfaces in S3. There are similar (“Ricci-
like”) formulas in other situations. In S4, superminimal surfaces (those with trivial
associated family) are characterized by the equation (cf. [7, p. 191])

∆ log(1−K) = 6K − 2.

In the present paper, we give such characterizations for certain types of minimal
surfaces in S5 and S6:

(12.2) ∆ log(1−K) = 6K
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1This condition makes sense even at the zeros of 1 − K. In fact, for a minimal surface in

S3, the expression 1 − K is a so called absolute value type function [5], the absolute value of a
holomorphic function (which may have zeros) multiplied by a positive function. Then ∆ log(1−K)
is still defined at the zeros of 1−K.
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for so called pseudoholomorphic curves2 in S5 and

(11.6) ∆ log(1−K) = 6K − 1

for superminimal pseudoholomorphic curves in S6 (see below). General pseudoholo-
morphic curves in S6 allow a similar characterization ([8]) which however depends
on an additional structure, a holomorphic 6-form Λ on M (which is zero in the
superminimal case):

(11.2) ∆ log(1−K)− (6K − 1) = |Λ|2/(1−K)2.

A general theory of minimal surfaces in spheres allowing for Ricci-like characteri-
zations was given in [13].

Pseudoholomorphic curves in S6 are the analogues of meromorphic functions
on Riemann surfaces when H is replaced by O. In fact, let S ∈ {S2,S6} be the
unit sphere in the imaginary quaternions H′ or octonions O′, respectively. Left
translation with the position vector p ∈ S induces an almost complex structure
on S (which is integrable for S = S2). For any Riemann surface M , a smooth
mapping f : M → S is pseudoholomorphic if its derivative dfu : TuM → Tf(u)S6

is complex linear with respect to this almost complex structure. For S = S2 these
are the meromorphic functions on M . In the present paper we are dealing with the
other case S = S6. In particular, these maps are conformal and harmonic, hence
(possibly branched) minimal immersions.

The subject was started by Bryant [3] who described pseudoholomorphic curves
in terms of an adapted frame, called Frenet frame in analogy to curves in 3-space,
and he gave examples for pseudoholomorphic curves on compact Riemann surfaces
of any genus. Bolton, Vrancken and Woodword [2] characterized pseudoholomor-
phic curves among the minimal surfaces in S6. The intrinsic characterization (11.2)
was given by Hashimoto [8].

In order to characterize immersions into a homogeneous space f : M → G/H
one uses a lift, a map F : Mo → G (where Mo ⊂ M is a contractible open subset)
with π ◦ F = f for the canonical projection π : G→ G/H. The lift F in turn can
be described by the g-valued one-form α = F−1dF .3 Vice versa, if an arbitrary
g-valued one-form α on a simply connected manifold M is given, we look for a map
F : M → G with

dF = Fα. (1.1)
This is an overdetermined system, and the local existence of solutions F is equiv-
alent to an integrability condition for the coefficient matrix α, the Maurer–Cartan
equation dα = [α, α]. However, this system is very large. Following [3] and [8], we
replace (1.1) by the equation

∇F = Fβ, (1.2)
where∇ is a canonical G-connection onG/H (holonomy inG and parallel curvature
and torsion). The advantage of (1.2) is that β takes values in the smaller Lie algebra

2The term “curve” means complex curve, parametrized on a Riemann surface.
3To simplify notation, we think of G as a matrix group, G ⊂ Rn×n.
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h rather than in g. The integrability condition for (1.2) is given by an embedding
theorem into homogeneous spaces, cf. [6].

In the present paper, the transition from (1.1) to (1.2) is done more explicitly
than in [8], where the proof of the existence part (cf. [8, p. 150]) is extremely short.
Further, we try to replace computations on G = Aut(O) by computations in O and
O ⊗ C. Lastly, we derive some new consequences; in particular, we characterize
pseudoholomorphic maps with values in S5 ⊂ S6.

After recalling the necessary background on octonionic computations and pseu-
doholomorphic maps in the 6-sphere (sections 2–6), we derive in section 9 the
equations for the Frenet frame in terms of the canonical connection introduced in
sections 7, 8. The main results are stated and proved in sections 11 for S6 and in 12
for S5 (a case which was not treated by Hashimoto [8]). We try to give complete
computations with all details.

2. Octonions

A finite dimensional algebra A over R with unit 1 and euclidean inner product is
called “normed” if |ab| = |a||b| for any a, b ∈ A. We have an orthogonal decomposi-
tion A = R · 1⊕A′, where A′ is called the space of imaginary elements of A. Every
nonzero a ∈ A has an inverse a−1 = ā/|a|2, where ā = ao − a′ for a = ao + a′ with
ao ∈ R and a′ ∈ A′. There are only four normed algebras: R,C,H,O (real and
complex numbers, quaternions, and octonions), and the octonions O ∼= R8 contain
all the others. Octonions are not associative, but still computations are easy if
one observes the following three rules which follow almost immediately from the
equation |ab| = |a||b|:4

(1) Any unit vector a ∈ O′ generates a subalgebra isomorphic to C where a
plays the rôle of i.

(2) Any two orthonormal a, b ∈ O′ generate a subalgebra isomorphic to H
where a, b, ab play the rôles of i, j, k; they are associative and anti-commuta-
tive, ab = −ba.

(3) Any three orthonormal a, b, c ∈ O′ with c ⊥ ab (“normed Cayley triples”)
generate the algebra O; they are anti-associative, a(bc) = −(ab)c.

Let 1, i, j, k, l, il, jl, kl be the standard basis of O = H + Hl. Then (i, j, l) is a
normed Cayley triple, and so is its image (αi, αj, αl) under any automorphism α of
O; note that α is orthogonal.5 Vice versa, given any normed Cayley triple (a, b, c),
there is precisely one automorphism α of O with a = αi, b = αj, c = αl. Thus the
space of normed Cayley triples is a manifold of dimension 6 + 5 + 3 = 14 on which

4If a ∈ O′ and |a| = 1, then |1 ± a| =
√

2, hence |1 + a||1 − a| = 2. On the other hand,
(1 +a) ((1− a)x) = (1−a)x+a(x−ax) = x−a(ax) for all x ∈ O, and |(1 +a) ((1− a)x) | = 2|x|.
Thus |x − a(ax)| = 2|x|. This is impossible unless the two vectors x and −a(ax) (which have
equal length) are equal, a(ax) = −x. This shows rule (1); rules (2), (3) can be proved similarly.

5Any automorphism of O is orthogonal: it preserves real and imaginary octonions since real
octonions are real multiples of 1 and imaginary octonions are those which square to negative real
multiples of 1. Thus an automorphism preserves the conjugation a∗ = <a−=a and also the norm
|a|2 = a∗a for any a ∈ O.
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the exceptional group G2 = Aut(O) ⊂ SO7 acts simply transitively. In particular,
G2 acts transitively on S6.

We will also need the complexified octonions Oc = O⊗C = O⊕iO (we distinguish
i =
√
−1 from i ∈ O). This is no longer a division algebra: there are zero divisors,

e.g., 1+ ia for any a ∈ S6 ⊂ O′. However, analytic formulas which hold in O extend
to Oc; e.g., for a ∈ O′ and b ∈ O we have (using rule (2))

a(ab) = a2b = −〈a, a〉b,

and this remains true for a ∈ O′c, b ∈ Oc, where 〈 , 〉 is the complexified inner
product. In particular a(ab) = 0 when 〈a, a〉 = 0. Other useful formulas which
extend for all a, b, c ∈ Oc are

〈ab, ac〉 = 〈a, a〉〈b, c〉

and the antisymmetry of 〈ab, c〉 in all three variables.
As O is decomposed into planes that are invariant under left multiplication with

C ⊂ O, we may decompose Oc into free Cc-modules, where Cc = C ⊗R C is the
complexification of C. A complex Cayley triple is a triple (a, b, c) in O′c where a lies
in Cc (or in an isomorphic subalgebra) and where b, c belong to two perpendicular
Cc-modules. Like its real analogue, a complex Cayley triple is anti-associative,
(ab)c = −a(bc).

3. The nearly Kähler structure on S6

The 6-sphere S6 plays a similar rôle for the octonions O as the 2-sphere S2 for the
quaternions H: they are unit spheres S ⊂ A′, where A′ denotes the imaginary part of
the division algebra A = O,H, respectively. Each p ∈ S satisfies (Lp)2 = −I, where
Lp : x 7→ px denotes the left multiplication with p. Hence Lp is a complex structure
preserving the plane Span {1, p} and its orthogonal complement, the tangent space
TpS. Thus Jp := Lp|TpS is a complex structure on TpS and defines an almost
complex structure J on S. It is convenient to use the cross product a× b which is
the imaginary (A′-) part of the product ab for any a, b ∈ A′:

a× b = (ab)′ =
{
ab when a ⊥ b,
0 when a, b are linearly dependent.

Then each Jp extends to a linear map on A′,

Jp(v) = p× v, (3.1)

and the derivative of the matrix-valued linear map J : A′ → End(A′) : p 7→ Jp is
(∂vJ)w = v × w. Denoting by D = ∂T the Levi-Civita derivative on S, we have

(DvJ)w = (v × w)p⊥ = v × w − 〈v × w, p〉 p, (3.2)

where p ∈ S is the position vector and v, w ∈ TpS = p⊥. In particular (∂vJ)v =
v × v = 0 and therefore

(DvJ)v = 0. (3.3)
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A Riemannian manifold with an almost complex structure J with this property is
called nearly Kähler.6

An orthogonal linear map g on O′ which preserves the almost complex structure
J satisfies gJp(v) = Jgp(gv) for any p, v ∈ O′ with v ⊥ p. By (3.1) this is equiv-
alent to g(pv) = (gp)(gv), which holds if and only if g ∈ G2 = Aut(O) ⊂ SO7.
Thus G2 is precisely the group of isometries g on S6 which are pseudoholomorphic,
that is their differentials dgp : TpS6 → TgpS6 are complex linear with respect to
the complex structures given by J on the tangent spaces of S6. The stabilizer
subgroup H = (G2)p of any p ∈ S6 (say: p = l) preserves the tangent space TpS6

and its complex structure Jp, making TpS6 a 3-dimensional complex vector space.
Identifying (TpS6, Jp) with C3 we obtain H ⊂ U3. But H preserves also the an-
tisymmetric 3-form 〈uv,w〉 on TpS6, which can be viewed as the real part of a
complex determinant, thus H ⊂ SU3, and by dimension reasons we have equality
H = SU3.

4. Pseudoholomorphic curves

Let M be a Riemann surface. A smooth map f : M → S6 is called pseu-
doholomorphic if it is holomorphic with respect to this almost complex structure
Jpv = p × v. In other words, if z = x + iy is a conformal coordinate on M , the
corresponding partial derivatives fx, fy satisfy

f × fx = fy, f × fy = −fx. (4.1)
Clearly, such map is conformal since |fx| = |fy| and fx ⊥ fy. Further f is harmonic,
that is fxx + fyy is a normal vector, a multiple of f . In fact, differentiating (4.1)
we obtain

fyy = (f × fx)y = fy × fx + f × fxy,
fxx = −(f × fy)x = −fx × fy − f × fyx,

and hence
fyy + fxx = 2fy × fx, (4.2)
fyy − fxx = 2f × fxy. (4.3)

Equation (4.2) shows that f is harmonic: fy × fx is proportional to f since by
(4.1), f, fx, fy span a quaternion subalgebra wherever df 6= 0, but see Remark 4.2
below. Moreover,

fyx = (f × fx)x = f × fxx = Jfxx. (4.4)
It is convenient to use the complex derivatives fz = 1

2 (fx − ify) and

fzz = 1
4 ((fx−ify)x − i(fx−ify)y)= 1

4 (fxx−fyy − 2ifxy) (4.3)= −1
2(J + i)fxy.

Hence
fz = −(J + i)fy/2,
fzz = −(J + i)fxy/2.

(4.5)

6In the case of S2 we even obtain DJ = 0 (Kähler property) since v × w is normal when v, w
are tangent vectors, hence (DvJ)w = (v × w)T = 0.
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Since (J−i)(J+i) = 0, these vectors belong to the i-eigenspace E+ of Jf : v 7→ f×v
on TfS6. This is an isotropic subspace, i.e., 〈v, v〉 = 0 for all v ∈ E+: If v = (J+i)a,
then 〈v, v〉 = 〈Ja, Ja〉 − 〈a, a〉+ 2i〈Ja, a〉 = 0.

Lemma 4.1. Putting λ = 〈fz, fz̄〉 = |fz|2 and l = log λ, we have
fzz = f⊥zz + lzfz,

(fz)z̄ = −λf,
(f⊥zz)z̄ = −(λ+ lzz̄)fz.

(4.6)

Proof. To prove the first equation we note that 〈fzz, fz〉 = 1
2 〈fz, fz〉z = 0 and

〈fzz, fz̄〉 = λz − 〈fz, fzz̄〉 = λz, since 〈fz, fzz̄〉 = 1
2 〈fz, fz〉z̄ = 0. Hence fzz − f⊥zz =

fTzz = 1
λ 〈fzz, fz̄〉fz = (λz/λ)fz = lzfz.

The second equation follows since 4fzz̄ = (fx − ify)x + i(fx − ify)y = fxx + fyy,
and this is a multiple of f . To determine the multiple we we compute the inner
product 〈fzz̄, f〉 = 〈fz, f〉z̄ − 〈fz, fz̄〉 = −λ, since 〈fz, f〉 = 1

2 〈f, f〉z = 0. This
shows the second equality.

The third equality follows from the two previous ones: From f⊥zz = fzz − lzfz
we have (f⊥zz)z̄ = fzzz̄ − (lzfz)z̄ = −(λf)z − lzz̄fz + lzλf = −(λ + lzz̄)fz, using
λz = lzλ. �

Remark 4.2. As a consequence, fz and f⊥zz are holomorphic sections of the com-
plexified tangent and normal bundles T c and N c of f : M → S6, since (fz)z̄ and
(f⊥zz)z̄ have zero projection to T c and N c, respectively. Thus the zeros of fz are
isolated and the isotropic subbundles T ′ = Cfz and N ′1 = Cf⊥zz are well defined
even at possible zeros of these sections, and by isotropy the same holds for the real
bundles T and N1, the tangent bundle and the first normal bundle of f . Hence
along f , the tangent bundle of S6 splits into three J-invariant orthogonal plane
bundles, f∗(TS6) = T ⊕N1 ⊕N2.

The full (+i)-eigenspace E+ = T ′fS6 is spanned by
F1 = fz,

F2 = f⊥zz,

F3 = F1F2 = fz̄ × fz̄z̄.
(4.7)

The third line follows since (f, F1, F2) is a complex Cayley triple, hence f(F1F2) =
−(fF1)F2 = −iF1F2 and therefore F1F2 ∈ E+. In analogy to the theory of curves
in euclidean space R3, we will call F = (F1, F2, F3) the Frenet frame of f , as was
suggested in [3].

The three vectors F1, F2, F3 together with their complex conjugates F̄1, F̄2, F̄3
form bases of the complexified bundles T c, N c

1 , N
c
2 , respectively, and the only

nonzero inner products are
〈F1, F̄1〉 =: λ , 〈F2, F̄2〉 =: µ, 〈F3, F̄3〉 = 2λµ. (4.8)

The last equality is seen as follows: If F1 = (f + i)a and F2 = (f + i)b, then
F1F2 = (fa + ia)(fb + ib) = (fa)(fb) − ab + i ((fa)b+ a(fb)). If (f, a, b) is an
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(unnormed) Cayley triple, then so is (f, fa, b), and (fa)(fb) = −((fa)f)b = −ab
(using |f | = 1) while a(fb) = −(af)b = (fa)b. Thus F1F2 = −2ab + 2i(fa)b, and
|F1F2|2 = 8|a|2|b|2 while |F1|2|F2|2 = 4|a|2|b|2.

Remark 4.3. Later we will also use the normalized Frenet frame
F o1 = F1/

√
λ, F o2 = F2/

√
µ, F o3 = F3/

√
2λµ. (4.9)

Corollary 4.4. Let f : M → S6 be a pseudoholomorphic map and z a conformal
coordinate on M . Then µ = |f⊥zz|2 depends on λ = |fz|2:

µ = λ2(1−K) = λ(λ+ lzz̄), where l = log λ. (4.10)

Proof. From 〈f⊥zz, fz̄〉 = 0 we obtain, using the third equation of (4.6):
0 = 〈f⊥zz, fz̄〉z̄ = −(λ+ lzz̄)〈fz, fz̄〉+ 〈f⊥zz, fz̄z̄〉 = −(λ+ lzz̄)λ+ µ.

The first equality in (4.10) follows since the Gaussian curvature K of the induced
metric ds2 = 2λ · dz dz̄ on M satisfies

λK = −(log λ)zz̄ = −lzz̄,
thus λ(1−K) = λ+ lzz̄. �

Remark 4.5. Equation (4.10) is just the Gauss equation (G) for the conformal
minimal immersion f : M → S6:

4λ2(K − 1) = |fx|2|fy|2(K − 1) (G)= 〈f⊥xx, f⊥yy〉 − |f⊥xy|2
∗= −2|f⊥xx|2 = −4µ.

For “ ∗=” recall that f⊥yy = −f⊥xx (harmonicity) and fxy = Jfxx, see (4.4). Further
we have used (4.5) to see

2λ = 2|fz|2 = |fx|2 = |fy|2,
2µ = 2|f⊥zz|2 = |f⊥xx|2 = |f⊥xy|2.

5. The generalized Hopf differentials

For any conformal harmonic map f : M → Sn on a Riemann surface M one
considers the higher fundamental forms

Ak(v1, . . . , vk) = (∂v1 . . . ∂vk
f)Nk−1

for arbitrary tangent vectors v1, . . . , vk, where N0 = T is the tangent space and
Nk−1 for k ≥ 2 the (k − 1)-th normal space7 of the surface f , and ( )Nk−1 denotes
the orthogonal projection into this space. Using a conformal coordinate z on M ,
the harmonicity of f yields the vanishing of all mixed components of Ak (those
involving both dz and dz̄). Thus

Ak = Bk +Bk, with Bk =
((

∂

∂z

)k
f

)Nk−1

dzk;

7Putting Ek the span of all derivatives of f with degree up to k where k ≥ 2, we define Nk−1
recursively as the orthogonal complement of Nk−2 in Ek, where N0 is the tangent space, the span
of the first derivatives.
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see [11] for details. The generalized Hopf differential is the symmetric 2k-form on
M defined by

Λk = 〈Bk, Bk〉.

The first Hopf differential Λ1 = 〈fz, fz〉 dz2 vanishes by conformality of f , and
the second one Λ2 = 〈f⊥zz, f⊥zz〉 dz4 is the classical Hopf differential which is holo-
morphic for every conformal harmonic map. More generally, Λk is holomorphic
if Λ1, . . . ,Λk−1 vanish everywhere, cf. [11]. If M is compact of genus 0, all holo-
morphic differentials vanish, hence all Λk are zero. This is the superminimal case
investigated first by Calabi [4].

In our case of pseudoholomorphic maps f : M → S6, we have always Λ2 = 0 since
f⊥zz lies in the isotropic space E+. Therefore Λ3 = 〈fN2

zzz, f
N2
zzz〉 dz6 is holomorphic.8

For completeness and to introduce notation we give a direct proof.

Lemma 5.1. Let f : M → S6 be a pseudoholomorphic curve and z a conformal
coordinate on M . Then the function h := 〈fzzz, fzzz〉 is holomorphic with

h = 〈fN2
zzz, f

N2
zzz〉 = 〈(F2)z, (F2)z〉 =

〈
(F2)N2

z , (F2)N2
z

〉
, (5.1)

and Λ3 = h(z)dz6.

Proof. 〈fzzz, fzzz〉z̄ = 2〈fzzzz̄, fzzz〉 = −2〈(λf)zz, fzzz〉 = 0 since fzzz is perpen-
dicular to f, fz, fzz. In fact, 〈f, fzzz〉 = 〈f, fzz〉z = 0 since 〈f, fzz〉 = −〈fz, fz〉 = 0;
further 〈fz, fzzz〉 = −〈fzz, fzz〉 = 0 and 〈fzz, fzzz〉 = 1

2 〈fzz, fzz〉z = 0. Thus h is
holomorphic and h(z)dz6 defines a holomorphic 6-form on M .

From (4.6) we have fzz = F2 + lzfz, and thus (fzz − F2)z = (lzfz)z belongs
to the span of fz and fzz, which is part of the isotropic subspace E+. Further,
since fzzz ⊥ fz, fzz, we have fzzz − fN2

zzz ∈ Span (fz, fzz). (The components of fzzz
proportional to fz̄, fz̄z̄ involve the inner products with fz, fzz, which are zero.)
Thus h = 〈fzzz, fzzz〉 = 〈(F2)z, (F2)z〉 = 〈fN2

zzz, f
N2
zzz〉, and h(z)dz6 = Λ3. Moreover,

(F2)z ⊥ f, F1, F2, hence (F2)z − (F2)N2
z ∈ Span {F1, F2}, and this component does

not contribute to the inner product 〈(F2)z, (F2)z〉. This proves the last equality in
(5.1). �

6. The derivatives of the Frenet frame

Proposition 6.1. Let f : M → S6 be a pseudoholomorphic curve with Frenet
frame F1, F2, F3 as in (4.7), corresponding to a conformal coordinate z on M . Let
λ = |F1|2, µ = |F2|2 and l = log λ, m = logµ. Then:

8A conformal harmonic map f : M → S2m with all Λk = 0 but the highest one Λm−1 (which
then must be holomorphic) is called superconformal.

Rev. Un. Mat. Argentina, Vol. 60, No. 2 (2019)



PSEUDOHOLOMORPHIC CURVES IN S6 AND S5 525

(F1)z = lzF1 +F2,

(F2)z = mzF2 + (ih/2λµ)F3 − (i/2)F̄3,

(F3)z = iλF̄2,

(F1)z̄ = −λf,

(F2)z̄ = −µλ F1,

(F3)z̄ = (ih̄/µ)F2 + (lz̄ +mz̄)F3.

Proof. The equations for (F1)z, (F1)z̄, and (F2)z̄ follow directly from (4.6) using
λ+ lzz̄ = µ/λ, see (4.10). The equation for (F3)z = (fz × f⊥zz)z̄ is proved as follows:

(fz × f⊥zz)z̄ = fzz̄ × f⊥zz + fz × (f⊥zz)z̄
(4.6)= −λf × f⊥zz −

µ

λ
fz × fz

= −iλf⊥zz.
The equations for (F2)z and (F3)z̄ are proved in the subsequent two lemmas. �

Lemma 6.2.
(f⊥zz)z = mzf

⊥
zz + ih/(2λµ)fz̄ × fz̄z̄ − (i/2)fz × fzz, (6.1)

where l = log λ and m = logµ.

Proof.
〈(f⊥zz)z, fz〉 = −〈f⊥zz, fzz〉 = 0, (a)
〈(f⊥zz)z, fz̄〉 = −〈f⊥zz, fz̄z〉 = 〈f⊥zz, λf〉 = 0, (b)
〈(f⊥zz)z, f⊥zz〉 = (1/2)〈f⊥zz, f⊥zz〉z = 0, (c)
〈(f⊥zz)z, f⊥z̄z̄〉 = 〈f⊥zz, f⊥z̄z̄〉z + 〈f⊥zz, (λf)z̄〉 = µz, (d)

〈(f⊥zz)z, fz̄ × f⊥z̄z̄〉 = 〈f⊥zz, λf × f⊥z̄z̄ + fz̄ × (λf)z̄〉 = −iλµ. (e)
Equation (e) tells us

〈(F2)z, F3〉 = −iλµ. (e′)
It remains to compute 〈(F2)z, F̄3〉, using

h = 〈(F2)N2
z , (F2)N2

z 〉.
We have

2λµ(F2)N2
z = 〈(F2)z, F̄3〉F3 + 〈(F2)z, F3〉F̄3

and hence
(2λµ)2h = 2 〈(F2)z, F̄3〉 · 〈(F2)z, F3〉 · 〈F3, F̄3〉

= 2 〈(F2)z, F̄3〉 · (−iλµ) · 2λµ,
from which we find the missing equation:

〈(F2)z, F̄3〉 = ih. (f)
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From (a), (b), (c) we see9 that (F2)z = aF2 + bF3 + cF̄3, and further

a 〈F2, F̄2〉 = 〈(F2)z, F̄2〉
(d)= µz,

b 〈F3, F̄3〉 = 〈(F2)z, F̄3〉
(f)= ih,

c 〈F̄3, F3〉 = 〈(F2)z, F3〉
(e’)= −iλµ.

Thus
a = µz/µ = mz,

b = ih/(2λµ),
c = −iλµ/(2λµ) = −i/2.

�

Lemma 6.3.

(fz × fzz)z = −(ih/µ)f⊥z̄z̄ + (lz +mz)fz × fzz, (6.2)
(F3)z̄ = (ih̄/µ)F2 + (lz̄ +mz̄)F3. (6.3)

Proof. We compute the components of (fz×fzz)z. Using fz×fzz ∈ N c
2 ⊥ T c⊕N c

1 ,
we obtain:

〈(fz × fzz)z, fz〉 = −〈fz × fzz, fzz〉 = 0,
〈(fz × fzz)z, fz̄〉 = 〈fz × fzz, λf〉 = 0,

〈(fz × fzz)z, f⊥zz〉 = −〈fz × fzz, (f⊥zz)z〉
(6.1)= −ih,

〈(fz × fzz)z, fz̄z̄〉 = 〈fz × fzz, (λf)z̄〉 = 0,
〈(fz × fzz)z, fz × fzz〉 = 〈fz × fzz, fz × fzz〉z/2 = 0,

〈(fz × fzz)z, fz̄ × fz̄z̄〉
∗= 〈fz × fzz, fz̄ × fz̄z̄〉z = 2(λµ)z,

where “ ∗=” follows since (fz̄ × f⊥z̄z̄)z = iλf⊥z̄z̄ ⊥ N2. Thus we obtain (fz × fzz)z =
af⊥z̄z̄ + bfz × fzz with

a · µ = 〈(fz × fzz)z, f⊥zz〉 = −ih,
b · 2λµ = 〈(fz × fzz)z, fz̄ × fz̄z̄〉 = 2(λµ)z,

which shows that a = −ih/µ and b = log(λµ)z = lz + mz. Equation (6.3) follows
applying complex conjugation and using (4.7). �

9Recall that by (4.8) any v ∈ TfS6 = f⊥ has the representation v = w + w̄ with

w = 〈v, F̄1〉F1/λ+ 〈v, F̄2〉F2/µ+ 〈v, F̄3〉F3/(2λµ).
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7. The canonical G2 connection

The three vectors F1 = fz, F2 = f⊥zz, F3 = fz̄ × fz̄z̄ defined in (4.7) (spanning
the isotropic subspace E+ = {v ∈ O′c : f × v = iv}) are positive real multiples of
i − ili, j − ilj, k − ilk, up to transformation with some element of G2 = Aut(O).
Thus, up to positive factors, F = (F1, F2, F3) can be considered as a moving G2-
frame, a section of the SU3-principal bundle G2 → G2/SU3 = S6, pulled back to M
via f . But as we see from Proposition 6.1, the derivative DF cannot be expressed
in terms of F alone; one also needs F̄ . The reason is that the covariant derivative
on S6 relies on the Levi-Civita parallel displacements which unfortunately do not
preserve J , they do not belong to G2. Therefore we will use another connection ∇
on S6, whose parallel displacements belong to G2: a G2-connection or hermitian
connection. Thus we will derive formulas of the type ∇′F = FB′ and ∇′′F = FB′′

for some complex (3 × 3)-matrices B′, B′′. It turns out that B′, B′′ depend only
on the metric coefficients of the surface f and some given holomorphic 6-form Λ3;
this will prove existence and uniqueness of pseudoholomorphic maps.

A G2-connection ∇ = D +A needs to make J parallel,

0 = ∇vJ = DvJ + [Av, J ],

where (DvJ)w = (v × w)p⊥ for v, w ∈ TpS6 = p⊥. Thus [Av, J ] = −DvJ . We may
split Av = A+

v + A−v , where A+
v commutes with J and A−v anticommutes with J .

Then −DvJ = [Av, J ] = [A−v , J ] = 2A−v J , hence A−v = 1
2 (DvJ)J while A+

v is
unrestricted.

Among the G2-connections there is the canonical connection (see also [1]),
which has the additional property that G2 acts on S6 by affine transformations:
∇gV (gW ) = g(∇VW ) for any g ∈ G2 and any two tangent vector fields V,W on
S6. Clearly G2 ⊂ SO7 is affine also for the Levi-Civita connection D, hence it
keeps A = ∇ − D invariant. In particular, fixing a base point p ∈ S6, say p = l,
the tensor A at p is invariant under the isotropy group SU3 at l. Thus the map

v 7→ A+
v : TpS6 = C3 → C3×3

is SU3-equivariant. The group SU3 acts on the matrix space C3×3 by conjugation,
splitting it into two equivalent subrepresentations (hermitian and antihermitian
matrices), both of which are irreducible up to a one-dimensional fixed space. Thus
there is no nonzero equivariant linear map C3 → C3×3. Therefore the canonical
connection satisfies A+

v = 0, hence Av = A−v = 1
2 (DvJ)J and therefore

∇v = Dv +Av, 2Av = (DvJ)J.

Now ∇vJ = [∇v, J ] = [Dv, J ] + [Av, J ] = 0.

8. Canonical torsion and curvature on S6

It is well known that a canonical connection has parallel torsion and curvature
tensors, which we are going to compute now. Let us put

Sv = DvJ.
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Since Jpv = p × v for any p ∈ S6 and v ∈ TpS6 = p⊥, we have Svw = (DvJ)w =
(v × w)p⊥ = v × w − 〈p, v × w〉p, and since 〈p, v × w〉 = 〈p × v, w〉 = 〈Jv,w〉, we
obtain

Svw = v × w − 〈Jv,w〉p = (vw)TpS6
, (8.1)

where p is the position vector, v, w ∈ TpS6 and ( )TpS6 denotes the projection
onto TpS6. Using the fact that the parallel displacements of ∇ belong to the
group G2, which preserves the cross product and the inner product, it is clear
that S is a ∇-parallel tensor (see [1, Lemma 2.4] for a direct proof). Note that
2A = SJ = −JS, since 0 = D(J2) = SJ + JS. Further, Svw = −Swv by (3.3).

The torsion tensor of ∇ is

T (v, w) = ∇vw −∇wv − [v, w] = Avw −Awv.

We have 2Avw = SvJw = −JSvw, and thus Avw = −Awv. Hence

T (v, w) = SvJw = −JSvw, (8.2)

which shows again that T is ∇-parallel since so are S and J .
We want to compute S in terms our frame (F, F̄ ). By (4.9), (4.5), and (4.7), Fj

is a real multiple of

F oj = (ej − ifej)/
√

2,

where e1, e2, e3 ∈ O′ is an orthonormal 3-frame perpendicular to f with e3 = e1e2.
Since

(ei − ifei)(ej − ifej) = 2(ek + ifek),
(ei − ifei)(ej + ifej) = 0,
(ei − ifei)(ei + ifei) = −2 + 2if

for (i, j, k) = (1, 2, 3) up to cyclic permutations, we have from (8.1)

SF o
i
F oj =

√
2F̄ ok , SF o

i
F̄ oj = 0, SF o

i
F̄ oi = 0.

The real factors are given by (4.9). Thus

Lemma 8.1.
SF1F2 = F̄3,

SF2F3 = 2µF̄1,

SF3F1 = 2λF̄2,

SFj
F̄k = 0, ∀j, k.

(8.3)

�
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Recalling 2A = SJ and JFj = iFj , we obtain:

Corollary 8.2. For A′ = AF1 and A′′ = AF̄1
we have

2A′F1 = 0,
2A′F2 = iF̄3,

2A′F3 = −2iλF̄2,

2A′′F1 = 0,
2A′′F2 = 0,
2A′′F3 = 0.

�

Next we compute the curvature tensor R of ∇; see also [9, Cor. 3.4]. From
∇v = Dv +Av we obtain when [v, w] = 0:

Rvw = [∇v,∇w] = [Dv, Dw] +DvAw −DwAv + [Av, Aw].
Here [Dv, Dw] = Ro is the curvature tensor of the sphere S6,

Rovwx = 〈x,w〉v − 〈x, v〉w. (8.4)
Now 2Aw = (DwJ)J = SwJ , hence 2DvAw = Dv(SwJ) = (DvDwJ)J + SwSv.
Thus

2(DvAw −DwAv) = [Dv, Dw]J + [Sw, Sv],
and moreover

4[Av, Aw] = [SvJ, SwJ ] = [Sv, Sw],
since SvJSwJ = −SvJJSw = SvSw. Thus

Rvw = Rovw + (1/2)[Rovw, J ]− (1/4)[Sv, Sw]. (8.5)
Since Ro is determined by the metric, which is parallel, and since J and S are
parallel, we see directly that R is parallel.

Lemma 8.3. For R11̄ := RF1F̄1
= [∇F1 ,∇F̄1

] = [∇′,∇′′] we have

R11̄F1 = λF1, R11̄F2 = −λ2 F2, R11̄F3 = −λ2 F3

R11̄F̄1 = −λF̄1, R11̄F̄2 = λ

2 F̄2, R11̄F̄3 = λ

2 F̄3.

(8.6)

Proof. The first line follows from (8.5) with (8.4) and (8.3), where we put v = F1
and w = F̄1. Applying Ro11̄ = Ro

F1F̄1
to F1, F2, F3 we observe 〈F1, Fj〉 = 0 and

〈F1, F̄j〉 = λδ1j , hence
Ro11̄F1 = λF1, while R11̄F2 = 0, R11̄F3 = 0.

In particular, R11̄ commutes with J , and consequently the second term on the right
hand side of (8.5) vanishes, [R11̄, J ] = 0. It remains to compute [SF1 , SF̄1

]:

SF1 : F2 7→ F̄3, F3 7→ −2λF̄2,

SF̄1
: F̄2 7→ F3, F̄3 7→ −2λF2,
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while F1, F̄1 are mapped to 0. Thus [SF1 , SF̄1
] has eigenvalues −2λ for F2, F3 and

2λ for F̄2, F̄3, while F1, F̄1 are mapped to 0. Now the first line of (8.6) follows
from (8.5).

For the second line we just observe that R1̄1 = −R11̄ and therefore R11̄F̄j =
R1̄1Fj = −R11̄Fj . �

9. Structure equations

From Proposition 6.1 and Corollary 8.2 we obtain the derivatives of the Frenet
frame:

Proposition 9.1. Let M be a Riemann surface and f : M → S6 a pseudoholomor-
phic curve. Let ∇ denote the canonical G2-connection on S6 and let ∇′ = ∇∂/∂z
and ∇′′ = ∇∂/∂z̄. Let F1 = fz, F2 = f⊥zz, F3 = fz̄ × fz̄z̄ be the Frenet frame of f .
Then

∇′F1 = lzF1 +F2

∇′F2 = mzF2 + ih
2λµF3

∇′F3 = 0
∇′′F1 = 0

∇′′F2 = −µ
λ
F1

∇′′F3 = (ih̄/µ)F2 + (l +m)z̄F3.

Corollary 9.2. The frame F = (fz, f⊥zz, fz̄ × fz̄z̄) of E+ = {v ∈ O′c : f × v = iv}
solves the differential equations

∇′F = FB′, ∇′′F = FB′′ (9.1)

with

B′ =

lz 0 0
1 mz 0
0 ih

2λµ 0

 , B′′ =

0 −µλ 0
0 0 ih̄/µ
0 0 (l +m)z̄

 . (9.2)

Remark 9.3. In the superminimal case h = 0 we see that ∇F3 is a multiple of
F3. In our analogy with the Frenet frame of a space curve c, the third vector
F3 corresponds to the binormal f3 = f1 × f2, where f1 = c′ and f2 = (c′′)⊥,
and f ′3 is proportional to f3 if and only if the torsion of c vanishes (which means
that c is a planar curve). Thus Bryant [3] calls superminimal pseudoholomorphic
curves torsion free. However, they are not “planar” in any sense: a weak analogue
of planes would be a pseudoholomorphic embedding of a complex 2-dimensional
manifold into S6, but there are none. This makes these mappings particularly
interesting.

Remark 9.4. One might wonder why the matrices B′, B′′ obviously do not belong
to su3. The reason is that the frame F is not normalized. This can easily be
corrected by passing to the normalized frame F o with F = F oD, where D =
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diag(
√
λ,
√
µ,
√

2λµ). We have ∇F = ∇(F oD) = (∇F o)D + F o∂D and FB =
F oDB. Thus from ∇F = FB we obtain ∇F o = F oBo, with

Bo = DBD−1 − (∂D)D−1. (9.3)
We have

DB′D−1 =

√λ √
µ √

2λµ

lz 0 0
1 mz 0
0 ih

2λµ 0




1√
λ

1√
µ

1√
2λµ



=

 lz√
µ√
λ

mz

ih
µ
√

2λ 0

 ,

(∂zD)D−1 = 1
2 diag(lz,mz, lz +mz), hence by (9.3),

B′o =


1
2 lz 0 0√
µ√
λ

1
2mz 0

0 ih
µ
√

2λ − 1
2 (lz +mz)

 . (9.4)

Similarly,

B′′o =

−
1
2 lz̄ −

√
µ√
λ

0
0 − 1

2mz̄
ih̄

µ
√

2λ
0 0 1

2 (lz̄ +mz̄)

 = −(B′o)∗. (9.5)

Recall that ∇x = ∇′+∇′′ and ∇y = i(∇′−∇′′), where z = x+ iy is the conformal
coordinate. Thus

∇xF o = F o(B′o +B′′o ), ∇yF o = iF o(B′o −B′′o ),
and the matrices B′o +B′′o and i(B′o −B′′o ) belong to su3.

10. Integrability conditions

The coefficients of B′ and B′′ still must satisfy some relations, the integrability
conditions for the overdetermined system (9.1). In fact,

∇′∇′′F = ∇′(FB′′) = FB′B′′ + FB′′z ,

∇′′∇′F = ∇′′(FB′) = FB′′B′ + FB′z̄,

which implies
[∇′,∇′′]F = F ([B′, B′′] +B′′z −B′z̄) .

On the other hand, we have seen in Lemma 8.3:

[∇′,∇′′]F = R11̄F = F diag(λ,−λ2 ,−
λ

2 ).

Thus an integrability condition for (9.1) is

diag(λ,−λ2 ,−
λ

2 ) = R11̄ = [B′, B′′] + (B′′)z − (B′)z̄. (10.1)
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The commutator [B′, B′′] equalslz 0 0
1 mz 0
0 ih

2λµ 0

 ,

0 −µλ 0
0 0 ih̄/µ
0 0 (l +m)z̄

 =


µ
λ

µ
λ (mz − lz) 0

0 −µλ + |h|2
2λµ2 ih̄mz/µ

0 − ih
2λµ (l +m)z̄ − |h|

2

2λµ2


and the derivatives are

(B′′)z =

0 −
(
µ
λ

)
z

0
0 0 ih̄

(
1
µ

)
z

0 0 (l +m)z̄z

 , (B′)z̄ =

lzz̄ 0 0
0 mzz̄ 0
0 ih

2

(
1
λµ

)
z̄

0

 .

Since (
1
µ

)
z

= −mz

µ
,

(
1
λµ

)
z̄

= − (l +m)z̄
λµ

,
(µ
λ

)
z

= (m−l)z
µ

λ
,

we obtain from (10.1):

diag
(
λ,−λ2 ,−

λ

2

)
= diag

(
µ

λ
− lzz̄,

|h|2

2λµ2 −
µ

λ
−mzz̄, (l +m)zz̄ −

|h|2

2λµ2

)
. (10.2)

Lemma 10.1. Let λ, µ be absolute value type functions on M such that
µ = λ(λ+ lzz̄) (10.3)

and let h : M → C be a holomorphic function. Then (10.2) is satisfied if and only
if

|h|2 = λ2µ2 + 2λµ2(l +m)zz̄. (10.4)
Proof. The condition (10.3) is equivalent to the equality in the first entry, and
moreover, the equalities in the second and third entries become the same. The
equality in the third entry is (10.4). �

Lemma 10.2. If F is the Frenet frame of a pseudoholomorphic curve f : M → S6

with Gaussian curvature K and h = 〈fzzz, fzzz〉, then (10.4) is equivalent to
|h|2 = λ6(1−K)2(∆ log(1−K) + 1− 6K), (10.5)

where ∆ is the Laplacian of the induced metric on M .
Proof. We have

l +m = log(λµ) (4.10)= log(λ3(1−K)) = 3 log λ+ log(1−K).
Further, from (log λ)zz̄ = −λK and µ = λ2(1−K) (cf. (4.10)) and ∂z∂z̄ = 1

2λ∆ we
obtain

2(l +m)zz̄ = −6λK + λ∆ log(1−K)
2λµ2(l +m)zz̄ = λ2µ2(−6K + ∆ log(1−K))

λ2µ2 + 2λµ2(l +m)zz̄ = λ2µ2(1− 6K + ∆ log(1−K))
= λ6(1−K)2(1− 6K + ∆ log(1−K)).
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Thus the conditions (10.4) and (10.5) are the same. �

11. Existence of pseudoholomorphic curves

Let M ⊂ C be an open domain. Suppose that on M a holomorphic function h
and absolute value type functions λ, µ are given satisfying (4.10) and (10.4),

µ = λ(λ+ lzz̄),
|h|2 = λ2µ2 + 2λµ2(l +m)zz̄,

where l = log λ and m = logµ. Over M we consider the trivial vector bundle
E = M ×O′c with a connection ∇ defined by

∇′F = FB′ and ∇′′F = FB′′,

where B′, B′′ are given in (9.2),

B′ =

lz 0 0
1 mz 0
0 ih

2λµ 0

 , B′′ =

0 −(λ+ lzz̄) 0
0 0 ih̄/µ
0 0 (l +m)z̄

 ,

and where F = (F1, F2, F3) : M → (O′c)3 with

F1 =
√
λF o1 , F2 = √µF o2 , F3 =

√
2λµF o3 ,

F o1 = (i− ili)/
√

2, F o2 = (j − ilj)/
√

2, F o3 = (k − ilk)/
√

2,

see (4.9). Here, i, j, k, l, li, lj, lk denote the basis of O′c, considered as constant
sections on E. In particular, the only nonzero derivatives are

∇′F1 = lzF1 + F2,

∇′F2 = mzF2 + ih
2λµ F3,

∇′′F2 = −(λ+ lzz̄)F1,

∇′′F3 = ih̄
µ
F2 + (l +m)z̄F3.

(11.1)

On E we have the tensor fields J, S, T,R, where

Jv = l × v, Svw = (v × w)T

and T,R are given by (8.2), (8.5), (8.4). In order to apply the existence and
uniqueness theorem in [6] we need ∇ to be a metric connection and J, S (and hence
T,R) to be parallel with respect to ∇. This follows by passing to the normalized
frame F o and using that B′o + B′′o and i(B′o − B′′o ) belong to the Lie algebra su3
acting on Span R(i, j, k, li, lj, lk) = C3 with l as complex structure, see (9.4), (9.5)
(Remark 9.4). The holonomy group belongs to SU3, which preserves the metric
and the tensors J and S, hence R.

We are ready now to prove Hashimoto’s result [8].
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Theorem 11.1. Let M be a simply connected Riemann surface carrying a com-
patible Riemannian metric ds2, possibly with branch points,10 and a holomorphic
6-form Λ. Let K be the Gaussian curvature and ∆ the Laplacian of ds2. Suppose
that 1−K is an absolute value type function. Then there is a unique pseudoholo-
morphic curve f : M → S6 (up to translation with elements of G2) such that ds2 is
the induced metric and Λ = Λ3 is the third Hopf differential (see section 5) if and
only if

(1−K)2(∆ log(1−K) + 1− 6K) = |Λ|2. (11.2)

Proof. “⇒” If such a pseudoholomorphic curve f : M → S6 is given, then (11.2) is
satisfied by Lemma 10.1 and (10.5); note that

|Λ|2 = |h|2/λ6. (11.3)

“⇐”: Let (M,ds2) and Λ be given with (11.2). Choosing a conformal coordinate
z on some simply connected open subset Mo ⊂M , we have ds2 = 2λdzdz̄ for some
absolute value type function λ, and the curvature of ds2 is K = −lzz̄/λ, where
l := log λ. Moreover, Λ = h(z)dz6 for some holomorphic function h with (11.3).
Further we define the absolute value type function

µ = λ(λ+ lzz̄) = λ2(1−K).

Using these functions, we consider the bundle E = Mo × T for

T = SpanC(i, j, k, il, jl, kl)

with sections F1, F2, F3 and a connection ∇ as defined in (11.1) at the beginning
of this section. By the main theorem of [6], there exist a smooth map f : M → S6

and a bundle isomorphism Φ : E → f∗TS preserving the metric and the tensors
J, S,R such that

Φ ◦ fz = F1 (11.4)
if and only if

∇′F̄1 −∇′′F1 = T (F1, F̄1) = 0,

[∇′,∇′′]F = RF1F̄1
F = F diag(λ,−λ2 ,−

λ
2 ).

(11.5)

The first equation holds by (11.1) since ∇′F̄1 = 0 = ∇′′F1.
The second equation comes down to (10.1) and (10.2) which in turn is equivalent

to (10.5) or (11.2), by Lemma 10.1. This proves existence and uniqueness of a pair
of maps (f,Φ) satisfying (11.4), and f is pseudoholomorphic since F1 and fz lie in
the i-eigenspace of J . Moreover, F = (F1, F2, F3) becomes the Frenet frame along
f (via Φ), using (11.1). In particular, from the “⇒”-part we see h = 〈(F2)z, (F2)z〉,
cf. (5.1). This finishes the proof. �

10A compatible Riemannian metric of a Riemann surface is locally of the type ds2 = 2λdzdz̄
for some conformal coordinate z on M , where λ is a positive function. If we allow for isolated
zeros of λ such that λ is an absolute value type function, such zeros are called branch points of
the metric ds2.
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Remark 11.2. Replacing Λ by eiθΛ for some constant angle θ does not change the
condition (11.2). This gives the associated family of the minimal surface f which
also consists of pseudoholomorphic curves.
Corollary 11.3. Let (M,ds2) be as in the assumptions of Theorem 11.1. Then
there is a superminimal (“torsion free”) pseudoholomorphic curve f : M → S6,
unique up to translations in G2, with induced metric ds2 if and only if

∆ log(1−K) = 6K − 1. (11.6)

12. Pseudoholomorphic curves in S5

Another interesting special case is when a pseudoholomorphic curve f : M → S6

actually takes values in some equator sphere S5 ⊂ S6. We will call it a pseudoholo-
morphic curve in S5.
Lemma 12.1. Let f : M → S6 be a pseudoholomorphic curve and z a conformal
coordinate on M . Then f takes values in some great sphere S5 ⊂ S6 if and only if

|h| = λµ.

Proof. Assume that f lies in S5. Then there exists a constant unit vector ξ (inside
N2) such that 〈f, ξ〉 = 0. Using fz, fzz, fzzz ⊥ ξ and (6.1) we obtain

λµ〈fz × fzz, ξ〉 = h〈fz̄ × fz̄z̄, ξ〉
and by conjugation

λµ〈fz̄ × fz̄z̄, ξ〉 = h̄〈fz × fzz, ξ〉.
Multiplying these two equations we find |h| = λµ.

Conversely, we assume that |h| = λµ. Then comparing (6.1) and its conjugate
we obtain a linear relation between

((
f⊥z̄z̄
)
z̄

)N2 and its conjugate:
h

λµ

((
f⊥z̄z̄
)
z̄

)N2 =
((
f⊥zz
)
z

)N2
. (12.1)

Thus the real and the imaginary part of ((f⊥zz)z)N2 are linearly dependent, and
hence there is a real unit vector ξ ∈ N2 which is perpendicular to ((f⊥zz)z)N2 .
Consequently, ξ is perpendicular to all derivatives of f up to third order, and
hence ξz ⊥ f, fz, fz̄, fzz, fz̄z̄, ξ. So ξz must be a multiple of ((f⊥zz)z)N2 , and by
(12.1) the same holds for ξz̄. On the other hand, 〈ξz̄, (f⊥zz)N2

z 〉 = 〈ξz̄, (f⊥zz)z〉 =
−〈ξ, (f⊥zz)zz̄〉 = 0 since from f⊥zz = fzz + lzfz we obtain (f⊥zz)zz̄ = fzzzz̄ + (lzfz)zz̄ ∈
Span (f, fz, fzz) ⊥ ξz. Thus ξ is a constant vector and we conclude that f lies in
S5 = S6 ∩ ξ⊥. �

Theorem 12.2. Let M be a simply connected Riemann surface with compatible
metric ds2 (possibly with branch points), and let K be its Gaussian curvature and
∆ its Laplacian. Suppose that 1−K is an absolute value type function. Then there
is an isometric pseudoholomorphic map f : M → S5 if and only if

∆ log(1−K) = 6K. (12.2)
In fact, up to translations with elements of G2 there is precisely one associated
family of such maps.
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Proof. If f : M → S5 is pseudoholomorphic with induced metric ds2 = 2λdzdz̄,
we have |h| = λµ and |h|2 = λ2µ2 = λ6(1 −K)2 using µ = λ2(1 −K). Thus the
integrability condition
(10.5) λ6(1−K)2(∆ log(1−K) + 1− 6K) = |h|2

becomes (12.2). Conversely, (12.2) becomes (10.5) when we put |h| := µλ =
λ3(1−K). Then

∆ log |h| = 3∆ log λ+ ∆ log(1−K) = 0,
using (12.2) and the relation between conformal factor and curvature, ∆ log λ =
−2K. Thus log |h| is harmonic, hence the real part of a holomorphic function, and
|h| is the absolute value of a holomorphic function h, uniquely determined up to
some constant phase factor eiθ. Thus Λ = hdz6 defines a holomorphic 6-form, and
we conclude from Theorem 11.1 that there is a pseudoholomorphic map f : M → S6

with induced metric ds2. Since |h| = λµ, we see from Lemma 12.1 that f takes
values in some great sphere S5 ⊂ S6. �
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