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Abstract
The properties of zero modes in particle-hole symmetric systems are analyzed
in the presence of strong random scattering by a disordered environment. The
study is based on the calculation of the time-averaged density distribution on
a lattice. In particular, a flat distribution is found for strong random scattering.
This  result  is  compared  with  a  decaying  distribution  for  weak  random
scattering by an analysis of the scattering paths. In the calculation we consider
the invariant measure of the average two-particle Green’s function, which is
related to lattice-covering self-avoiding (LCSA) strings. In particular, strong
scattering  is  associated  with  LCSA  loops,  whereas  weaker  scattering  is
associated  with  open  LCSA strings.  Our  results  are  a  generalization  of  the
delocalized  state  observed  at  the  band  center  of  a  one-dimensional  tight-
binding model with random hopping by Dyson (1953 Phys. Rev. 92 1331).

                                                                      
        

                                                              

1.  Introduction

We  consider  the  unitary  evolution  of  a  quantum  system,  which  is  characterized  by  the
Hamiltonian H.  Then  the  time-averaged  transition  probability  Prr′  between  two  quantum
states |r〉 → |r′〉 is defined as

Prr′ = lim
T→∞

1
T

∫ T

0

∣∣∣〈r′|e−iHt|r〉
∣∣∣
2
e−t/Tdt =

1
π
lim
ε→0

ε

∫
Grr′(E + iε)Gr′r(E − iε)dE  (1)

with ε = 1/T  and the Green’s function Grr′(E + iε) = 〈r′|(H − E − iε)−1|r〉. In a fermionic
system at low temperature only states near the Fermi surface contribute to transport. Therefore,
the main contribution to Prr′ comes from the two-particle Green’s function
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πrr′ =
1
π
lim
ε→0

εGrr′(EF + iε)Gr′r(EF − iε),  (2)

where EF = 0 for a particle-hole symmetric system with H → −H  under particle-hole trans-
formation. On a lattice the state |r〉 is a local Wannier state at the site r and πrr′ describes the
spatial spreading of the particle density from the source at r′ to a site r which can be consid-
ered as a time-averaged density distribution (DD) of the quantum system. Expression (2) can
be understood as a classical interpretation of the quantum dynamics in a disordered environ-
ment.  It  has been the foundation of transport  in disordered quantum systems, based on the
Kubo formalism (see [1]), and has attracted attention by researchers of different background,
ranging from electronic to photonic systems [2–4]. For the latter the time-averaged intensity
of  a  monochromatic  electromagnetic  field  with  frequency  ω ,  created  by  a  local  source  at
r0 = 0, reads [5–7]

I(r,ω) = lim
ε→0

εGr0(ω + iε)G0r(ω − iε)|j0;1|2 .  (3)

|j0;1|2  is the intensity of the local source.
The central idea of this work is that states are delocalized in the presence of particle-hole

symmetry. Delocalized behavior was observed for one-dimensional systems some time ago,
where  an  extended  state  was  found  at  the  band  center  of  a  one-dimensional  tight-binding
model with random hopping [8–10]. There was also numerical evidence for an extended state
at the band center in two-dimensional lattice models [11–14].

The absence of Anderson localization is only valid at the particle-symmetry, which is just a
point in the spectrum (e.g. at the Dirac node). We suspect that away from this symmetry point
there is a finite localization length, which increases continuously as we approach the symme-
try point. This behavior would indicate that in a vicinity of particle-hole symmetric point the
localization length is very large. The latter could be a problem in (numerical or real) experi-
ments to detect the Anderson localization length. On the other hand, the existence of a finite
but very large localization length could be useful for applications to avoid Anderson localiza-
tion in disordered photonic metamaterials by tayloring the bandstructure with a particle-hole
symmetry [15]. In this article though we will only address the particle-hole symmetry point.

The connection of the long-range properties of 〈πrr′〉d, where 〈...〉d  is the average over a
random distribution of scatterers, with symmetries and spontaneous symmetry breaking was
discussed early on by Wegner within a functional integral approach [16], who realized that this
aspect is related to a nonlinear sigma model [17]. The latter can be derived from the invariant
measure in a gradient expansion up to second order. This concept can also be applied to two-
dimensional particle-hole symmetric systems. Particle-hole symmetry is important for a large
class of physical systems, ranging from superconductors over Dirac fermions to topological
materials. In contrast to the general approach of Wegner, the particle-hole symmetry implies a
reduction of the underlying integration space [18].

Following  the  standard  integration  procedure  for  disordered  systems,  we  must  replicate
the integration space of both Green’s function (H ± iε)−1 separately, either using a fermion-
boson pair or n fermion or boson replicas. The reason for replicating both Green’s functions
separately is  that  in general  det(H + iε) �= det(H − iε).  On the other hand, in the particle-
hole  symmetric  case  with  the  particle-hole  transformation  UHTU† = −H  (U  is  a  unitary
transformation, T is the matrix transposition), it is sufficient to replicate only (H + iε)−1, since
det(H − iε) = det(−H + iε) = det(HT + iε) = det(H + iε).  The  first  equation  follows
from the fact that H is assumed to be 2N × 2N matrix. This enables us to choose, for instance,
fermions for (H + iε)−1 and bosons for (HT + iε)−1. Then it turns out that a rotation in the
fermion-Bose space is a symmetry transformation that is broken only by the ε term, and the
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above mentioned spontaneous symmetry breaking is found in the limit ε → 0. There exists a
Grassmann submanifold in the integration space, which is associated with the spontaneously
broken symmetry.  This is  described by an invariant measure,  which is the Jacobian for the
integration on the the associated submanifold. It depends only on a Grassmann field [19, 20].

Employing the nonlinear sigma model approximation by expanding the invariant measure
up to second order in the gradient operator leads to a diffusive behavior in the case of two-
dimensional Dirac fermions with diffusion coefficient

D(E) = lim
ε→0

ε2
∑

r

r2
k〈Gr0(E + iε)G0r(E − iε)〉d .  (4)

This is  not  surprising for weak disorder because massless two-dimensional  Dirac fermions
are diffusive already in the absence of  disorder  [21].  This  is  a  consequence of  fluctuations
due to electron–hole pair creation for arbitrarily small energy at the Dirac node, also know as
zitterbewegung. For stronger disorder this approximation is not sufficient though, as previous
calculations have indicated [22].  In other words,  the evaluation of the average two-particle
Green’s function

Kr̄r̄′ ∼ 〈G+;̄rr̄′G−;̄r′ r̄〉d with G± = G(∓iε) = (H ± iε)−1,  (5)

must be based on the invariant measure, which neglects exponentially decaying contrib utions
and keeps only the long-range properties. The physics of scattering in Kr̄r̄′  can also be visu-
alized  graphically.  The  individual  Green’s  functions  in  equation  (2)  can  be  represented  by
Feynman path integrals [25–27] for a particle moving from r′ to r  and by the complex con-
jugate integral for a particle moving from r  to r′ (reversed path). This pair of paths must be
averaged with respect to the disorder distribution to get equation (5). The averaging procedure
is affected by strong interference, since the Feynman paths are weighted by complex phase
factors. As a result of the Grassmann field in the invariant measure, the corresponding paths
of Kr̄r̄′  are LCSA strings. Details of these strings, depending on the scattering strength, are
discussed in this paper.

The paper is organized as follows. In section 2 the average two-particle Green’s function
Kr̄r̄′ is represented by the invariant measure and by a Grassmann functional integral with ran-
dom phases. Then the strong random scattering asymptotics is calculated in sections 3 and 4 a
geometric interpretation of the LCSA strings for strong random scattering (LCSA loops) and
weak random scattering (open LCSA strings) are compared. Finally, in section 5 the results of
the calculation are discussed in a more general context.

2. Averaged two-particle Green’s function

Now we consider a spinor Hamiltonian on a lattice of N sites and restrict ourselves to a two-
component spinor space. Then the Hamiltonian can be expanded in the Pauli matrix basis as
H = h1σ1 + h2σ2 + h3σ3,  where the coefficients hj  are N × N  matrices on the lattice. This
type  of  Hamiltonian  is  common in  condensed  matter  systems,  such  as  graphene  [23].  The
origin of the spinor structure is the underlying bipartite lattice (e.g. a honeycomb lattice in the
case of graphene and graphene-like materials). Other examples are topological insulators [24]
and photonic metamaterials [2, 3].

The effective average one-particle Green’s function at E  =   0 (i.e. at the symmetry point
between two bands)  reads for  the random 2N × 2N  Hamiltonian H  in  self-consistent  Born
approximation
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〈(H ± 2iε)−1〉d ≈ g± = [H0 ± 2i(ε+ η)]−1, H0 = 〈H〉d +Σ′  (6)

where Σ′ is the real part of the self energy and 2η is its imaginary part.
The effective Green’s function g± is the starting point of our study. It has a simple physical

interpretation, in which H0 describes the propagation of a quantum particle on a lattice and η
is an effective scattering rate caused by random scattering. η is proportional to the density of
states at the Fermi level EF = 0  [18]. Thus, it is directly related to the average one-particle
Green’s function; i.e. it is the imaginary part of g−.

g± can be used as an input to evaluate the average two-particle Green’s function (5) as the
Grassmann functional integral [28–30]

Kr̄r̄′ = − 1
N

∫

G
ϕr̄ϕ

′
r̄′J, N =

∫

G
J (7)

with the Jacobian J that reads

J−1 = det(1 + ϕϕ′ − ϕhϕ′h†), h := 1 − 4iηg+, h† := 1 + 4iηg− .  (8)

ϕr and ϕ′
r are Grassmann variables, which are conjugate to each other. Using the definition of

h the inverse Jacobian also reads

J−1 = det[1 + 4iη(ϕg+ϕ′ − ϕϕ′g−)− 16η2ϕg+ϕ′g−] .  (9)

It was shown in [22] that the inverse determinant J can be expressed with the help of a random
phase αrj (i.e. with a complex bosonic field) by the replacement H0 → H with

Hrj,r′j = eiαrj H0;rj,r′j′e−iαr′ j′ .  (10)

Then  the  averaged  two-particle  Green’s  function  becomes  a  phase  averaged  Gaussian
Grassmann integral

Kr̄r̄′ = − 1
N

〈∫

G
ϕ′

r̄′ϕr̄ exp

(∑
r,r′

ϕrCrr′ϕ
′
r′

)〉
α
=

〈adj̄rr̄′C〉α
N

, 〈...〉α =
1

2π

∫ 2π

0
...
∏
r,j

dαrj

(11)
with the adjugate matrix adj̄rr̄′C  and with the normalization factor

N =
〈∫

G
exp

(∑
r,r′

ϕrCrr′ϕ
′
r′

)〉
α
= 〈detC〉α .  (12)

The N × N  random phase matrix C, whose elements are

Crr′ = 4iη
∑
j,j′

(
grj,r′j′ − δrr′

∑
r′′

g†rj,r′′j′

)
− 16η2

∑
j,j′

grj,r′j′
∑
r′′,j′′

g†r′j′,r′′j′′

(13)
with g = [H + 2iη̄]−1, η̄ = η + ε,  determines  the  properties  of  the  DD.  With
κr = 16η

∑
r′
∑

j,j′(gg†)rj,r′j′ and with the relation g − g† = −4iη̄gg† we get a more compact
version of C as

Crr′ =

(
εκr −

∑
r′′

∆rr′′

)
δrr′ +∆rr′ , ∆rr′ = 4iη

∑
j,j′

grj,r′j′


1 + 4iη

∑
r′′,j′′

g†
r′j′,r′′j′′


 .  (14)
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The form of the matrix Crr′ implies
∑

r′ Crr′ = εκr, such that for ε = 0 there is a zero eigen-
value with a constant eigenvector, regardless of the specific realization of the random g. Thus,
detC always vanishes in the limit ε → 0. The very existence of this zero mode is essential for
the behavior of the two-particle Green’s function. What remains to be discussed is the related
propagation  for  different  wavevectors,  which  is  the  subject  of  this  paper.  For  the  strong-
scattering asymptotics it is easier to start directly from equation (9), while for a general discus-
sion in section 4 the random approach of equations (11) and (12) is more convenient.

3. Strong-scattering asymptotics

Starting from the Jacobian J, defined in equation (9) on a lattice with N sites, we expand

4iη(ϕg+ϕ′ − ϕϕ′g−)− 16η2ϕg+ϕ′g−

with η/η̄ ∼ 1 as

4
ε

η̄
ϕϕ′ − i

1
η̄
(ϕH0ϕ

′ − ϕϕ′H0) +
1

2η̄2 (ϕH2
0ϕ

′ + ϕϕ′H2
0)−

1
η̄2 ϕH0ϕ

′H0 + O(η̄−3),  (15)

and rescale the Grassmann field ϕϕ′/η̄ → ϕϕ′ such that we obtain

−i[ϕH0ϕ
′ − ϕϕ′(H0 − 4iε)] +

1
2η̄

(ϕH2
0ϕ

′ + ϕϕ′H2
0)−

1
η̄
ϕH0ϕ

′H0 + O(η̄−2) .

(16)
Then we get in leading order of 1/η̄

− log J = −
N∑

l=1

(−1)l

l

∑
{rk ,jk},1�k�l

A(l)
r1,j1,...,rl+1,jl+1

∣∣∣
rl+1=r1,jl+1=j1

,

where

A(l)
r1,j1,...,rl+1jl+1

= il
[
ϕr1ϕ

′
r1

H′
0;r1j1,r2j2 · · ·ϕrljlϕ

′
rljl H

′
0;rljl,rl+1jl+1

−ϕrl+1ϕ
′
r1

H0;r1j1,r2j2 · · ·ϕrljlϕ
′
rljl H0;rljl,rl+1jl+1

]

with H′
0;rj,r′j′ = H0;rj,r′j′ − 4iεδrr′δjj′. For rl+1 = r1 and jl+1 = j1 (i.e. for a loop) we obtain

A(l)
r1,j1,...,r1j1 =

{
4εϕr1ϕ

′
r1

l = 1
0 2 � l � N .  (17)

Thus, the leading order expression results in the simple relation

Tr
[
log

(
1 + ϕϕ′ − ϕhϕ′h†

)]
= 8ε

∑
r

ϕrϕ
′
r + O(η̄−1),  (18)

for which the Grassmann integration gives
∫

G
exp

{
−Tr

[
log

(
1 + ϕϕ′ − ϕhϕ′h†

)]}
∼ (−8ε)N .

Next  we  consider  a  perturbation  of  order  1/η̄.  A  lengthy  but  straightforward  calculation
(appendix B) gives for ε ∼ 0
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∫

G
det

(
1 + ϕϕ′ − ϕhϕ′h†)−1 ∼ (−8ε)N +

8ε
η̄

iN−2
∫

G
Tr

[
(ϕϕ′H0)

N]+ O(η̄−2),

(19)
which represents an LCSA loop, and with equation (B.6) we obtain with the spinor trace Tr2

∫

G
ϕr̄ϕ

′
r̄′ det

(
1 + ϕϕ′ − ϕhϕ′h†)−1 ∼ − iN−2

η̄

N−2∑
k=0

∫

G
Tr2

[
(ϕϕ′H0)

N−1−k
r̄r̄′ (ϕϕ′H0)

k+1
r̄′ r̄

]
+ O(η̄−2),

(20)
which represents an LCSA loop with fixed positions r̄ and r̄′ with r̄′ �= r̄. Here we have assumed
that the lattice can be completely covered by the expression Tr

[
(ϕϕ′H0)

N
]
. Depending on the

lattice this may not always be possible. An example are isolated lattice sites at the boundary,
which are connected only by one bond to the remaining lattice. These sites must be saturated
with εϕrϕ

′
r.  They contribute in the numerator as well  as in the denominator of  the ratio in

equation (11) and cancel each other there.
For the diagonal case r̄′ = r̄ we get

∫

G
ϕr̄ϕ

′
r̄ det

(
1 + ϕϕ′ − ϕhϕ′h†

)−1 ∼ (−8ε)N−1 − iN−2

η̄

∫

G
Tr

[
(ϕϕ′H0)

N]+ O(η̄−2) .  (21)

For ̄r′ �= r̄ the summation over the coordinates {rk} (k = 1, ..., N) is actually a (partial) permu-
tation of the lattice sites due to the Grassmann factors ϕϕ′. This implies that the k summation
of equation (20) is identical to the integral in equation (19), except for a factor 1/N:

D := iN−2
N−2∑
k=0

∫

G
Tr2

[
(ϕϕ′H0)

N−1−k
r̄r̄′ (ϕϕ′H0)

k+1
r̄′ r̄

]
=

iN−2

N

∫

G
Tr

[
(ϕϕ′H0)

N] .

(22)
This follows from the fact that (i) we have for a translational invariant H0

Tr
[
(ϕϕ′H0)

N] = NTr2[(ϕϕ
′H0)

N
r̄r̄]

and (ii) the sum over permutations of lattice sites reads for r̄ �= r̄′

(ϕϕ′H0)
N
r̄r̄ =

N−1∑
m=1

(ϕϕ′H0)
N−m
r̄r̄′ (ϕϕ′H0)

m
r̄′ r̄,  (23)

which gives equation (22). Eventually we obtain

Krr′ =
η̄

8ε
δrr′(−8ε)N−1 − η̄−1D + O(η̄−2)

(−8ε)N−1 − Nη̄−1D + O(η̄−2)
, (24)

where the prefactor η̄  is the result of the rescaling of the Grassmann field. In the limit η̄ → ∞
we get strong Anderson localization with vanishing localization length

Krr′ ∼
η̄

8ε
δrr′ , (25)

whereas for a large but finite η̄ with η̄ � ε(Et/ε)
N (Et is the tunneling energy of the Hamiltonian

H0) we get

Krr′ ∼
η̄

8Nε
. (26)

This result describes a uniform DD over the entire lattice.
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Although D drops out in the first order perturbation, for a deeper insight into the physical
origin of the result (26) we must calculate D. The spinor trace Tr2  can be rewritten in terms
of phase factors or Ising spins: for the product of 2 × 2 matrices H0;rk ,rk+1 we replace them

by the  scalars  Ãrkrk+1 =
∑

j,j′ SrjH0;rk j,r′j′S∗
rk+1j′,  where  Srj  is  either  a  phase  factor  exp(iαrj)

(0 � αrj < 2π) [22] or an Ising spin (Srj = ±1). For simplicity we choose the Ising spin here.
Then the trace reads

Tr2(H0;r1r2 · · ·H0;rnr1) = 2−2n
∑

{Srk j=±1}

(Ãr1r2 · · · Ãrnr1) .

For the example H0 = h1σ1 + h2σ2 we obtain

Ãrr′ = Sr1Sr′2 (arr′ + Trbrr′Tr′) , Tr = Sr1Sr2, a = h1 − ih2, b = h1 + ih2

and

2−2n
∑

{Srk j=±1}

Ãr1r2 · · · Ãrnr1 = ar1r2 · · · arnr1 + br1r2 · · · brnr1

such that we rewrite

D =
1
N

∑
r1,...,rN

′
(ar1r2 · · · arN r1 + br1r2 · · · brN r1),  (27)

where
∑

r1,...,rN

′  is  the restricted sum with rj �= rk  for j �= k. Thus, D  is  represented by the
sum of two types of LCSA loops, where the ‘propagators’ are a = h1 − ih2 and b = h1 + ih2,
respectively.

4. Geometric interpretation

We have found in section 3 that the asymptotic behavior of the DD is governed at strong scat-
tering by an LCSA loop (see figure 2(a)). On the other hand, for moderate scattering the DD
is related to LCSA string with four-vertices [22]. An example is given for a lattice with four
sites in figure 1. The four-vertex graphs resemble the thermal statistics of the two-dimensional
Ising model at the critical point [31, 32]. In the following we shall study and compare differ-
ent  contributions  to  the  DD which are  characterized according to  their  geometric  structure
as LCSA strings. While the actual form and values of the propagators are not relevant,  the
shape of the LCSA strings is essential. In particular, a single loop versus an open string that is
entangled with other strings belong to different classes (see figures 2(a) and (b)).

In general, an open string from r to r′ on a lattice with n  +  2 sites (see equation (A.1)),

∆rr1∆r1r2 · · ·∆rnr′ [−ϕ′
r′ϕr + ϕ′

rϕr]ϕ
′
r1
ϕr1ϕ

′
r2
· · ·ϕrn

cannot cover the entire lattice with Grassmann variables. This means that we need additional
contributions  with  Grassmann variables.  To find those  we must  distinguish  the  Grassmann
integral of N  in equation (12) and the corresponding Grassmann integral for Kr̄r̄′  in equa-
tion (11). Beginning with N , we can only use the diagonal term from the square brackets of
equation (A.1)

∆rr1∆r1r2 · · ·∆rnr′ϕ
′
rϕrϕ

′
r1
ϕr1ϕ

′
r2
· · ·ϕrn ,
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set rn = r  and borrow a factor εκr′ϕr′ϕ
′
r′  from the expansion of exp(−ε

∑
r κrϕrϕ

′
r). This

implies  that  N  always  vanishes  with  ε → 0,  as  already  mentioned  at  the  end  section  2.
Geometrically this is an LCSA loop as visualized in figure 2(a). Moreover, averaging over the
random phases of the LCSA string generates additional bridges between lattice sites due to

the term
∑

r′′,j′′ g†
r′j′,r′′j′′ in (14), such that we eventually get a LCSA graph with four-vertices

at  each  site  [22].  These  bridges  do  not  occur  in  the  strong  scattering  limit  though,  as  dis-
cussed in the previous section. Thus, the 1/η̄-expansion is graphically an expansion in terms
of four-vertices.

In the case of the integral (11) we must take the off-diagonal term from the square brackets
in equation (A.1),

−∆rr1∆r1r2 · · ·∆rnr′ϕ
′
r′ϕrϕ

′
r1
ϕr1ϕ

′
r2
· · ·ϕrn

and set r = r̄′, r′ = r̄. Thus the extra factor ϕ′
r̄′ϕr̄ in equation (11) completes the lattice cover-

ing by Grassmann variables. At fixed r̄, r̄′ we get the expression

(ϕr̄′∆rr1ϕ
′
r1
)(ϕr1∆r1r2ϕ

′
r2
) · · · (ϕrn∆rnr′ϕ

′
r̄)  (28)

which consists of factors of ϕrk∆rkrk+1ϕ
′
rk+1

 along a string connecting r̄′ and r̄, as depicted in
figure 2(b). This string must still be averaged with respect to the random phases. Again, aver-
aging creates bridges between the lattice sites, which results in a graph with four-vertices [22].
A simple example is depicted in figure 1 which has four-vertices except for the two external
sites r and r′ with two-vertices. The full line is the open LCSA string and the dashed lines are
the bridges created by phase averaging. To compare this with the strong scattering asymptotic

(a)

(b)

(c)

r’r

Figure  1.  Graphs  of  Krr′  with  open  LCSA strings  after  phase  averaging  for  4  sites.
Dashed lines represent g−, full lines g+ . There is one loop in (a), two loops in (b), and
three loops in (c).

b)a)

’r r’

Figure  2.  Examples  for  LCSA  strings  on  a  16  ×  9  square  lattice:  (a)  a  loop  from
the strong scattering limit of equation (20) and (b) an open string from the truncated
expansion for adjrr′ C̄  of equation (28) that connects the sites r′ and r.
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of section 3, we can create a loop from an open string with bridges through phase averaging.
As a result we get the loop of figure 2(a). An example with four lattice sites is the graph in
figure 1(c): after a 1/η̄ expansion we obtain a loop of the type in figure 2(a), since both g− and
g+ contribute an H0 in the leading terms of the expansion.

Phase averaging creates different configurations of bridges between lattice sites. A simple
case is one in which the bridges connect neighboring sites along the string, as visualized in
left graph of figures 1(a) and 3. (This usually does not mean nearest neighbors on the lattice.)
This case is formally associated with the replacement ∆rkrk+1 by 〈∆rkrk+1〉α in (28). The same
result is obtained from the expression (9) by expanding − log J  up to first order (also known
as the nonlinear sigma model approximation of the invariant measure):

− log J ≈ 16ηη̄
∑

r

Tr2(g+g−)rrϕrϕ
′
r − 16η2

∑
r,r′

Tr2(g+;rr′g−;r′r)ϕrϕ
′
r′

which contains the quadratic form
∑

r,r′ ϕrC̄rr′ϕ
′
r′ with

C̄rr′ = 〈Crr′〉 = 16ηεTr2(g+g−)rrδrr′ + 16η2

[∑
r′′

Tr2(g+;rr′′g−;r′′r)δrr′ − Tr2(g+;rr′g−;r′r)

]
.

For this example we obtain an approximation of the DD (11) as

Kr̄r̄′ ≈ C̄−1
r̄r̄′ .  (29)

Thus, the DD decays according to a power law: after a Fourier transformation C̄r−r′ → C̃q we
get C̃q ∼ Dq2 (q ∼ 0) and

Kr̄r̄′ → K̃q =
1

κ̄ε+ Dq2 + O(q3)
 (30)

with

κ̄ = 16ηTr2(H2
0 + 4η̄2)−1

rr , D = 16η2
∑

r

r2Tr2(g+;r−r′g−;r′−r) .

Another  example  of  the  random phase  representation  of  the  Jacobian  in  equations  (11)
and (12) uses the mean-phase approximation [7, 22]. Since we do not average this leads to a
decaying DD as given in equation (29) where C̄rr′ is replaced by Crr′ of equation (14) with
fixed uniform phases: eiαj ( j = 1, 2), where the two phase parameters α1,2 are determined by
a variational principle [22]:

H0;rj,r′j′ → H0;rj,r′j′ = H0;rj,r′j′ei(αj−αj′ ) .

The phase factors can also be understood as a rotation when we use a representation in terms
of Pauli matrices H0 = h1σ1 + h2σ2 + h3σ3:

H0 = (h1c + h2s)σ1 + (h2c − h1s)σ2 + h3σ3, c = cos(α1 − α2), s = sin(α1 − α2)

describes a rotation of H0 around the σ3 axis by the angle α1 − α2. Since this angle is fixed
by a variational principle, the discrete isotropy of the underlying lattice would determine it at
discrete values. For ∆rr′ in equation (14) this implies

∆rr′ = −8iη
[
(H2

0 + 4η̄2)−1
jj (h1c + h2s)

]
rr′

− 16ηη̄(H2
0 + 4η̄2)−1

rj,r′j.
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In the case of two-dimensional Dirac fermions with h1 = q1, h2 = q2 and h3  =  m (qj  are the
components of the wavevector, m is the Dirac mass) we obtain the result of [22]:

K̃q =
τ

4ε− is · q + 2q2/τ + O(q3)
, τ =

m2 + 4η̄2

8η
, s = (c, s) .  (31)

The term linear in the wavevector describes a ray mode along the unit vector s, whereas the
quadratic term describes the diffusion of the ray mode. For strong scattering τ  is large, which
favors linear propagation and suppresses the diffusive behavior. Then the expression K̃q has a
pole at s · q = −4iε which is related to the result equation (26) in the direction s. An additional
summation (or integration) of s over all directions fixed by the variational principle approxi-
mates the constant DD.

5.  Discussion

Returning to the Feynman paths mentioned in the Introduction, we have found that the contrib-
ution of G± in equation (5) is replaced after averaging with respect to random scattering by
an  open  LCSA string  with  propagator  g+  from the  Grassmann field  that  is  entangled  with
g− strings (bridges) through four-vertices. Typical examples are depicted in figures 1 and 3.
Contributions of the 1/η̄ expansion to 〈adj̄rr̄′C〉α in equation (24) are discussed in section 4.
It is essential to all contributions that there is a zero mode for any realization of the random
phase.

Terms of order 1/η̄ of the 1/η̄ expansion contribute equally with H0 factors from g+ and g−
(except for some minus signs), such that we obtain an LCSA loop (figure 2(a)). This implies
the uniform DD of equation (26). Another additive term to the numerator of expression (24)
is the partial sum of figure 3 that decays spatially according to a power law in equation (30).
In this case open LCSA strings must connect the sites r̄  and r̄′, which is the reason that Kr̄r̄′

decays in space unlike the constant DD in equation (26). And finally, an alternative approxi-
mation for 〈adj̄rr̄′C〉α is a uniform realization of the random phases. It gives ray modes in the
direction of the phase difference α1 − α2 (see equation (31)).

’

Figure 3. Example for a loop that consists of an open LCSA string connecting r′ and
r  which is connected with a sequence of blue dashed bridges. The bridges are created
by phase averaging. The links along the LCSA string consist of g+ propagators and the
bridges consist of g− propagators.
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The main results of sections 3 and 4 can be summarized as the ‘absence of Anderson locali-
zation’ in the presence of particle-hole symmetry. The two fundamental geometric structures
are visualized in figure 2, where figure 2(a) gives a uniform contribution to the numerator of
equation (26) and figure 2(b) gives a spatially decaying contribution. To obtain these results
we must average over a time period T (= 1/ε) which is much longer than the tunneling time
�/Et of the Hamiltonian.
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Appendix A. Open strings

The exponential expression in equations (11) and (12) can be rewritten with the help of equa-
tion (14) as

exp

(∑
r,r′

ϕrCrr′ϕ
′
r′

)
= exp(ε

∑
r

κrϕrϕ
′
r) exp(

∑
r,r′

[
∑
r′′

∆rr′′δrr′ −∆rr′ ]ϕrϕ
′
r′)

with

κr = 16ηTr2(gg†)rr, ∆rr′ = 16η2Tr2(grr′g†r′r) .

The expansion of the second exponential function leads to two types of open strings on the
lattice: type (i) consists of products of ϕrϕ

′
r
∑

r′′ ∆rr′′ links and type (ii) consists of products
of ϕr∆rr′ϕ

′
r′ links. Using the relation

exp

[∑
r,r′

(
∑
r′′

∆rr′′δrr′ −∆rr′)ϕrϕ
′
r′

]
= exp

[∑
r,r′

ϕr∆rr′(ϕ
′
r − ϕ′

r′)

]
=

∏
(r,r′)

[1 − ϕr∆rr′(ϕ
′
r′ − ϕ′

r)]

and assuming that a string has n  +  1 links, we get the ordered product

[ϕr∆rr1(ϕ
′
r1
− ϕ′

r)][ϕr1∆r1r2(ϕ
′
r2
− ϕ′

r1
)] · · · [ϕrn∆rnr′(ϕ

′
r′ − ϕ′

rn
)]

= ϕr∆rr1ϕ
′
r1
ϕr1∆r1r2ϕ

′
r2
· · ·ϕrn∆rnr′ϕ

′
r′ + ϕr∆rr1(−ϕ′

r)ϕr1∆r1r2(−ϕ′
r1
) · · ·ϕrn∆rnr′(−ϕ′

rn
)

= ∆rr1∆r1r2 · · ·∆rnr′ [ϕrϕ
′
r1
ϕr1ϕ

′
r2
· · ·ϕrnϕ

′
r′ + ϕr(−ϕ′

r)ϕr1(−ϕ′
r1
) · · ·ϕrn(−ϕ′

rn
)]

= ∆rr1∆r1r2 · · ·∆rnr′ [ϕrϕ
′
r1
ϕr1ϕ

′
r2
· · ·ϕrnϕ

′
r′ + ϕ′

rϕrϕ
′
r1
ϕr1 · · ·ϕ′

rn
ϕrn ]

= ∆rr1∆r1r2 · · ·∆rnr′ [ϕr(ϕ
′
r1
ϕr1ϕ

′
r2
· · ·ϕrn)ϕ

′
r′ + ϕ′

rϕr(ϕ
′
r1
ϕr1 · · ·ϕ′

rn
ϕrn)]

= ∆rr1∆r1r2 · · ·∆rnr′ [−ϕ′
r′ϕr + ϕ′

rϕr]ϕ
′
r1
ϕr1ϕ

′
r2
· · ·ϕrn .  (A.1)

This expression vanishes for r′ = r (i.e. for a loop).
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Appendix B. Strong-scattering expansion

From the expression (9)

Tr log
[
1 + 4iη(ϕg+ϕ

′ − ϕϕ′g−)− 16η2ϕg+ϕ
′g−

]

we get with (15) after a rescaling ϕϕ′/η̄ → ϕϕ′

Tr log [1 + ϕϕ′A′ − ϕAϕ′] +
1
η̄

Tr
[
(1 + ϕϕ′A′ − ϕAϕ′)−1

×
(
−ϕH0ϕ

′H0 +
1
2
ϕϕ′H2

0 +
1
2
ϕH2

0ϕ
′
)]

+ O(η̄−2), (B.1)

where A = iH0, A′ = iH0 + 4ε. The first term on the right-hand side gives with equation (17)

Tr log [1 + ϕϕ′A′ − ϕAϕ′] = 8ε
∑

r

ϕrϕ
′
r,

such that (B.1) reads

8ε
∑

r

ϕrϕ
′
r +

1
η̄

N−1∑
l=0

{
Tr

[
(ϕϕ′A′)

l
ϕϕ′H2

0

]
−

l∑
k=0

Tr
[
(ϕϕ′A′)

l−k
(−ϕAϕ′)kϕH0ϕ

′H0

]}
+ O(η̄−2) .

For the expressions in equation (7) we need

exp
{
−Tr log

[
1 + 4iη(ϕg+ϕ

′ − ϕϕ′g−)− 16η2ϕg+ϕ
′g−

]}

which reads with the above expansion

exp

[
−8ε

∑
r

ϕrϕ
′
r

][
1 − 1

η̄

N−1∑
l=0

{
Tr

[
(ϕϕ′A′)

l
ϕϕ′H2

0

]

−
l∑

k=0

Tr
[
(ϕϕ′A′)

l−k
(−ϕAϕ′)kϕH0ϕ

′H0

]}
+ O(η̄−2)

]
.

(B.2)
It should be noticed that the diagonal term of A′  does not contribute due to the Grassmann
factors. Therefore, we can replace A′ → A  here. Since the Grassmann integation requires a
lattice covering of the Grassmann field we need only the highest number of l in the sum over
l. The contribution for l  =  N  −  1

Tr
[
(ϕϕ′A)N−1

ϕϕ′H2
0

]
−

N−1∑
k=0

Tr
[
(ϕϕ′A)N−1−k

(−ϕAϕ′)kϕH0ϕ
′H0

]
= 0

vanishes, as it can be seen by direct inspection of the sum:

Tr
[
(ϕϕ′A)N−1

ϕϕ′H2
0

]
= iN−1Tr

[
(H0ϕϕ

′)
N H0

]

and the second term simplifies to same expression, since the Grassmann variables in the prod-
uct must have N different coordinates. The next term with l  =  N  −  2 in the sum gives a non-
vanishing expression

Tr
[
(ϕϕ′A)N−2

ϕϕ′H2
0

]
−

N−2∑
k=0

Tr
[
(ϕϕ′A)N−2−k

(−ϕAϕ′)kϕH0ϕ
′H0

]
.  (B.3)
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The second term also reads

iN−2Tr
[
H0 (ϕϕ

′H0)
N−2−k

ϕ(−H0ϕ
′ϕ)kH0ϕ

′
]

= iN−2
∑
rr′

Tr2

{[
H0 (ϕϕ

′H0)
N−2−k

]
r′r

ϕr

[
H0 (ϕϕ

′H0)
k
]

rr′
ϕ′

r′

}
.

This expression survives the Grassmann integration of equation (B.2) only if r′ = r. Thus, we
can write for equation (B.3)

iN−2

{
Tr

[
H0 (ϕϕ

′H0)
N−1

]
−

N−1∑
k=0

∑
r

Tr2

([
H0 (ϕϕ

′H0)
N−2−k

]
rr

[
(ϕϕ′H0)

k+1
]

rr

})
. (B.4)

The last result means that the first expression

Tr
[
H0 (ϕϕ

′H0)
N−1

]
=

∑
r1,r2,...,rN−1

Tr2

(
H0;r1r2ϕr2ϕ

′
r2

H0;r2r3 · · ·ϕrN−1ϕ
′
rN−1

H0;rN−1r1

)

is nonzero only when r1 is different from all the other sites {rj} ( j = 2, ..., N − 1). This can be
inserted in the Grassmann integral with the expression (B.2) by borrowing a factor −8εϕr1ϕ

′
r1

from the first exponential factory to obtain equation (19).
For the product ϕr̄ϕ

′
r̄′ det

(
1 + ϕϕ′ − ϕhϕ′h†)−1 we get

ϕr̄ϕ
′
r̄′ exp

[
−8ε

∑
r

ϕrϕ
′
r

]

[
1 − 1

η̄

N−1∑
l=0

{
Tr

[
(ϕϕ′A′)

l
ϕϕ′H2

0

]
−

l∑
k=0

Tr
[
(ϕϕ′A′)

l−k
(−ϕAϕ′)kϕH0ϕ

′H0

]}
+ O(η̄−2)

]

and with r �= r′

=
iN−2

η̄
ϕr̄ϕ

′
r̄′

N−2∑
k=0

Tr
[
(ϕϕ′H0)

N−2−k
(−ϕH0ϕ

′)kϕH0ϕ
′H0

]
+ O(η̄−2) .  (B.5)

Moreover, we have

Tr
[
(ϕϕ′H0)

N−2−k
(−ϕH0ϕ

′)kϕH0ϕ
′H0

]
= Tr

[
(H0ϕϕ

′)
N−2−k H0ϕ(H0ϕϕ

′)kH0ϕ
′
]

,

which also reads
∑

r1,r2,...,rN−1

Tr2

( [
H0;r1r2ϕr2ϕ

′
r2
· · ·H0;rN−3−krN−2−kϕrN−2−kϕ

′
rN−2−k

]
H0;rN−2−krN−1−kϕrN−1−k

[
H0;rN−1−krN−kϕrN−kϕ

′
rN−k

· · ·H0;rN−1rNϕrNϕ
′
rN

]
H0;rN r1ϕ

′
r1

)
.

When we multiply this expression with ϕr̄ϕ
′
r̄′ it gives a nonzero result only if rN−1−k = r̄′ and

r1 = r̄ . Thus we get for the expression in (B.5)

− iN−2

η̄

N−2∑
k=0

Tr2

[
(H0ϕϕ

′)
N−1−k
r̄r̄′ (H0ϕϕ

′)k+1
r̄′ r̄

]
+ O(η̄−2) .  (B.6)
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