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Abstract. Learning Sciences research often concerns the analysis of data from 
individual or collaborative learning processes. For the analysis of such data, var-
ious methods have been proposed, including Process Mining (PM) and Epistemic 
Network Analysis (ENA). Both methods have advantages and disadvantages 
when analyzing learning processes. We argue that a concerted use of both tech-
niques may provide valuable information that would be obscured when using 
only one of these methods. We demonstrate this by applying PM and ENA on 
data from a study that investigated how students regulate collaborative learning 
when faced with either motivational or comprehension-related problems. While 
PM showed that collaborative learners are more incoherent (i.e. more heteroge-
neous in their chosen activities) when regulating motivational problems than 
comprehension-related problems at the beginning, ENA revealed that in later 
stages of their learning process, they focus on fewer activities when being con-
fronted with motivational than with comprehension-related problems. Thus, a 
combination of the two approaches seems to be warranted. 

Keywords: Epistemic Network Analysis, Process Mining, Self-Regulation, 
Collaborative Learning, Co-Regulation, Shared Regulation. 

1 Problem Statement 

Learning Sciences research is often concerned with the analysis of how learning pro-
cesses emerge over time [1]. Traditionally, research typically used a coding-and-count-
ing approach to analyze such processes (e.g., summing up frequencies by which learn-
ers employ certain strategies). 

However, the problem with this routine is that it does not account for the dynamics 
of the learning process, i.e. for the fact that learners’ engagement in different learning 
processes may change over time. Researchers have thus called for methods that con-
sider learning processes in their temporal sequence [2]. One approach to do this is to 
use process mining (PM). PM uses mathematical algorithms to inductively discover 
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sequences of processes in event traces by visualizing them in process models. Based on 
Petri nets, process models are illustrations of systematically connected codes and tran-
sitions between codes and serve to uncover hidden information on the processes of in-
terest. 

For instance, using PM, [3] found that successful self-regulators initially prepare 
their learning before deeply processing information, whereas less successful learners 
did not show the described shift towards in-depth information processing. Yet, PM also 
has limitations such as partially producing “spaghetti-like” models that run the danger 
of becoming too complex for visual comparison. Additionally, PM does not provide 
statistical tests that check for differences between processes of different groups on a 
global level [4]. Furthermore, PM includes the individual activities of all subjects as an 
influence on the same process model with equal weighting. For example, if we want to 
investigate how groups regulate motivational as opposed to comprehension-related 
problems, it might be that one single person may be accountable for most loops on a 
single code in one situation (e.g., the person repeatedly applies an elaboration strategy), 
whereas in the other situation, such loops might be more evenly distributed across per-
sons. If these loops are not weighted, this may lead to a distorted picture of the regula-
tory differences between situations resp. between different groups.  

An approach that may help overcome these challenges is Epistemic Network Anal-
ysis (ENA) – a network analysis method based on a dimensional reduction procedure 
for tagging, extracting, and plotting meaningful compounds of activities by considering 
regulation processes as a network of coherent activities [5]. Some of its advantages are 
that ENA provides global statistical tests to compare models from different conditions 
(e.g., regulation processes in groups that experience motivational vs. regulation pro-
cesses in groups that experience comprehension-related problems), that it provides in-
formation on the relatedness of codes within a specific window size that can consider 
more than just two successive codes (as it is the case in PM), and routines such as 
rotating networks in space for visually highlighting group differences, or normalizing 
vectors to check whether differences between two models are caused by single individ-
uals within a group, but rather by a concerted (i.e., more or less evenly distributed) 
effort of the group. 

ENA has lately been used to analyze data from a wide variety of different contexts 
([6]; [7]). Despite its advantages, though, ENA still faces challenges: Since the net-
works drawn by ENA are based on so called adjacency matrices that include sums of 
counted code-code connections, it ignores start and end points and self-loop infor-
mation. Additionally, it simply highlights connections between certain activities, rather 
than the direction of transitions. Thus, when visually and statistically comparing two 
models with ENA, these characteristics are not considered. Given the mutual strengths 
and weaknesses of the two approaches, we argue that a concerted use of PM and ENA 
might help to better understand the temporal structure of learning processes. We test 
this assumption by applying both methods to the analysis of data from a study on how 
learners cope with different kinds of collaborative regulation problems. 
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2 Method 

2.1 Participants and Design 

N=82 students (61 female, MAge=21.79, SDAge=4.86) who were on average in their 2nd 
semester (MStud=2.12, SDStud=0.57) of studies participated in this study. They received 
a booklet with four vignettes (in randomized order) that described a self-organized 
study group preparing for an exam that faced different kinds of regulation problems. 
One of the four vignettes described the group as experiencing no regulation problems 
at all, another one described the group as experiencing solely motivational problems, a 
third one said the group would experience solely comprehension-related problems, and 
a fourth one describing the group as experiencing both motivational and comprehen-
sion-related problems. That way, we established a 2x2-factorial within-subjects design 
with the independent factors “motivational problems” (with vs. without) and “compre-

hension-related problems” (with vs. without). 
For example, in the condition “motivational problems”, the vignette read: “Imagine 

you are part of a study group with three fellow students. You meet regularly and are a 
well-rehearsed team. Currently, you prepare with your group for an exam that is in 
three weeks. Concerning the content to be learnt for the exam, all group members have 
high knowledge and low learning motivation”. In the vignette "comprehension-related 
problems", for example, "high knowledge" and "low learning motivation" were turned 
into "low knowledge" and "high learning motivation". 

Due to lack of space, in this paper we focus our analysis on the conditions "with 
motivational problems/without comprehension-related problems" and "with compre-
hension-related problems/without motivational problems". 

2.2 Variables 

After each vignette, students received open-ended questions that asked them to indicate 
(a) what types of strategies they would apply if they were a member of the group, and 
(b) at what social level they would apply each of those strategies.  
 To measure the types of strategies, after each vignette, participants had to write down 
the exact sequence of actions they would perform to ensure high quality of learning in 
each situation (1. At first…, 2. After that…, 3. After that…, After that…, and so on). 
Open answers were coded by means of a coding scheme based on strategy classification 
schemes of [8] and [9]. This coding scheme differentiated between 1. elaboration strat-
egies, 2. surface-oriented strategies, 3. metacognitive strategies, 4. resource-oriented 
motivational strategies, 5. resource oriented-non motivational strategies, 6. other strat-
egies, and 7. no strategies (see Table 1). Two independent coders rated ten percent of 
the data and reached a sufficient level of interrater reliability (Cohen’s Kappa=0.73).  
 To measure the social level at which participants would apply those strategies, we 
provided three tick boxes after each strategy that asked them to indicate whether they 
would apply the respective strategy to (a) regulate their own learning (“self-level”), (b) 

to regulate some other group member’s learning (“co-level”), or whether the person 

would negotiate about that strategy with all group member (“shared level”; [10].  
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Table 1. Coding scheme for regulation activities along with examples. 

Strategy type code Example (in brackets the social level at which the answer was men-
tioned) 

Elaborative 

“[After that] I try to understand my part” (Self), “[After that], other 
members ask their questions” (Co), “[After that] joint elaboration of 
a summary” (Shared) 
 

Surface oriented 

“[After that] I skim through the material independently” (Self), 
“[After that], everyone learns their notes by heart” (Co), “[After 
that] everyone repeats the content independently” (Shared) 
 

Metacognitive 

“[After that] I also check if I am more motivated” (Self), “[After that] 
I ask who needs help with topics which the others perceived to be 
difficult” (Co), “[After that], we'll see if we’ve completed all that we 

had planned to learn.” (Shared) 
 

Motivational 

“[First], I formulate a bond between knowledge and my life“ (Self), 

“[After that], I try to bring humor into the learning situation” (Co), 
“[After that], the contents are asked together in plenary and made 
playful” (Shared) 
 

Non Motivational 

“[After that] I start to prepare independently: I structure my learning 
materials” (Self), “[After that] I ask the group what thoughts about it 
they had” (Co), “[After that] we make fixed dates so that we are 
"forced" to come” (Shared) 
 

Other 
“[First] I make an appointment” (Self), (no example provided for 

Co), “[After that], everyone goes home” (Shared) 
 

No “[After that] I write the exam with my already collected knowledge” 

(Self), (no examples provided for Co and Shared) 

2.3 Data Preparation 

Strategy type codes were paired with social level codes to generate meaningful codes 
(e.g., “Motivational Shared” indicates a motivational strategy that a participant reported 

to apply at the shared level) for each condition. Thus, from each of the seven strategy 
codes mentioned above, 3 “strategy type”—“social level” pair codes (= 18 codes in 
total) were generated. 

Since sample size was insufficient to perform dimensionality reduction through 
ENA with all 18 codes, the aforementioned code pairs with their absolute and relative 
frequency were listed in descending order so that 7 codes, each accounting for at least 
five per cent of all pairs, could be selected for data analysis (see below). By choosing 
this threshold (= selection criterion), we arrived at almost complete models. 
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For example, of the codes that met this condition in the “motivational problems” 
condition, the Elaboration Shared code had the highest relative frequency of 0.21, 
while the Elaboration Self code reached the lowest relative frequency of 0.07. In the 
"comprehension-related problems" condition, also the Elaboration Shared code was 
most frequent (with a relative frequency of 0.25), but different to the other problem 
condition, also the Metacognitive Self code met the selection criterion with a relative 
frequency of exactly 0.05. It is noteworthy that in both conditions, five times the same 
of these seven codes fulfilled the inclusion criterion (the two exceptions: Motivational 
Shared in the motivational problem condition (relative frequency=0.16 in this condi-
tion) and Metacognitive Self in the comprehension-related problem condition) (since 
PM is based on event logs, artificial timestamps with identical time intervals between 
all consecutive codes were added to two event log files we created before conducting 
PM). 

Process Mining. For plotting regulation sequences with PM, we used the R package 
“bupaR” (version 0.4.2; [11]). The PM algorithm generated one precedence matrix per 
condition by using the absolute frequencies of antecedent and consequent codes (activ-
ities) and flow of each person within a condition (= “absolute_case”). As the data was 
stored in the data.frame format it had to be transformed into an eventlog object before 
the process map could be computed based on this object.  

Epistemic Network Analysis. For plotting the regulation sequences with ENA, we 
used the ENA 0.1.0 online tool ([12]) and included the following codes: Elaboration 
Self, Elaboration Co, Elaboration Shared, Motivational Shared, Non motivational 
Shared, Metacognitive Self, and Metacognitive Shared. We defined the units of analysis 
as the lines associated with a single value per condition (i.e., motivational problems, 
comprehension-related problems) associated with each participant’s case ID (= subset). 
Resultantly, one unit consisted, as an example, of the lines associated with the “moti-

vational problems” condition and the participant with Case ID 42. The ENA algorithm 
counted the frequencies of each of two “strategy type”—“social level” pairs (= binary 
summation) based on a moving stanza window size of three (each of three lines plus 
the two previous ones) within a given conversation [5]. That way, each person received 
one value within the 28 dimensional vector space (for seven codes the space is calcu-
lated 7+6+5+4+3+2+1) represented by the matrices per condition. 

To represent these values in the lower-dimensional vector space (= dimensional re-
duction), only the first seven dimensions were used as descriptors svdi=1.7. Equally, 
the respective node positions were calculated based on the summed adjacency matrices 
within each condition, Nj=1-7, while the centroid values of the network graphs were 
calculated based on the weighted connections of the nodes. A final optimization routine 
served to minimize the difference between the plotted points and the corresponding 
network centroids (Σi (pi-ci)), while an additional means rotation minimized the net-
work’s distance towards the x-axis in order to make possible group differences visible.  

The projection of all subsequent dimensions, on the other hand, was done using a 
singular value decomposition, which produces orthogonal dimensions that maximize 
the variance explained by each of these dimensions. 
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3 Results 

Process Mining. Process models (see Figure 1 and 2) show that students with motiva-
tional problems tend to start off with one of two kinds of strategies, both at the shared 
level: Motivational and Metacognitive Shared. In the comprehension-related problems 
condition, students clearly prefer starting off with Metacognitive Shared regulation, 
while Motivational Shared regulation does not play a large role in that condition at all. 
In both conditions, elaborative shared regulation seems to particularly be chosen later 
in the process. 

 

 

Fig. 1. Process Model for regulating motivational problems with absolute frequencies 
of all codes (boxes), as well as all observed directional code-code connections (arrows). 
Darker box colors indicate higher absolute code frequencies which means that the cor-
responding activities were observed more frequently, indicating that several persons 
have progressed from the corresponding first to the corresponding second activity (or, 
in the case of self-loops, that one person has performed the same activity several times 
in succession). 

 
When experiencing motivational problems, students appear to switch more often be-

tween Motivational and Metacognitive Shared regulation, between Non Motivational 
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and Elaborative Shared regulation, and between Elaborative and Motivational Shared 
regulation, as compared to situations with comprehension-related problems. 

When experiencing comprehension-related problems, in turn, students seem to 
switch more often between Metacognitive Shared and Elaborative Self-regulation, be-
tween Metacognitive and Elaborative Shared regulation, and between Elaborative Co- 
and Shared regulation. 

The fact that weaker and stronger connections are more distinct in this process model 
might give rise to the interpretation that students tend to regulate comprehension-re-
lated problems in a more coherent way than they tend to regulate motivational prob-
lems. Further, it is noticeable that the temporal arrangement of codes in both conditions 
appears to be the same, and that only the “Motivational Shared” code comes in earlier 

in case of motivational problems. 
 

 

Fig. 2. Process Model for regulating comprehension-related problems with absolute 
frequencies of all codes (boxes), as well as all observed directional code-code connec-
tions (arrows). Again, darker box colors indicate higher absolute code frequencies 
which means that the corresponding activities were observed more frequently, indicat-
ing that several persons have progressed from the corresponding first to the correspond-
ing second activity (or, in the case of self-loops, that one person has performed the same 
activity several times in succession). 
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Epistemic Network Analysis. The first ENA model (see Figure 3a) shows that the first 
component mr1 represented by the x-axis explained 10.20% of the variance in the ENA 
parameter space, while the second component svd2 represented by the y-axis accounted 
for 15.10% of the variance. 

 

Fig. 3. (a) Networks of students in the conditions “motivational problems” (red) and 
“comprehension-related problems” (blue) with mean values (squares) and confidence 

intervals (boxes around squares). The x-axis is based on the descriptor mr1: values on 
this axis increase as participants demonstrate a higher emphasis on motivational regu-
lation. The y-axis is based on svd2 and primarily focuses on (meta-)cognitive regula-
tion. (b) Subtracted (= contrasted) networks for the conditions „motivational problems“ 

(red) and „comprehension-related problems“ (blue) which were generated by subtract-
ing both networks’ nodes and connection weights from each other. They serve to rep-

resent the differences between the two network graphs and illustrate what makes regu-
lation of motivational problems in collaborative learning different to the regulation of 
comprehension-related problems. 

Visualization of subtracted networks (see Figure 3b) shows that with the relatively 
stronger connections between metacognitive, elaboration, and non-motivational shared 
strategies with motivational shared strategies, the center of mass of the motivational 
problems condition network shifts to the right, while the relatively stronger links be-
tween elaboration and metacognitive strategies at all levels place the center of mass of 
the comprehension-related problems condition network to the left quadrants. 

In addition, the subtracted network retains the differences found by PM: When en-
countering motivational problems, students show higher scores along the x-axis (mr1 
can be seen as representative for motivational shared regulation) than when encounter-

a) b) 
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ing comprehension-related problems. It also reveals higher relative co-occurrences be-
tween Metacognitive Self-regulation and Elaborative Shared regulation in the condition 
with comprehension-related problems, but does not retain the higher frequencies be-
tween Non-Motivational and Elaboration Shared in the motivational problem condition 
any more that was shown by PM. 

Moreover, students in both conditions scored similarly on the y-axis (svd2 is repre-
sentative for meta-cognitive activities). This was statistically confirmed by a paired t-
test along the y-axis that failed to reject the null hypothesis as no statistical differences 
were found between the centroids in the condition with motivational (M=0.00, 
SD=0.60) and with comprehension-related problems (M=0.00, SD=0.66, t(81)=0.00, 
p=1.00). Nonetheless, a paired t-test along the x-axis revealed that the centroid of the 
motivational problem condition (M=0.29, SD=0.56) was significantly different from 
the centroid of the comprehension-related problems condition (M=-0.29, SD=0.24, 
t(81)=8.76, p=.00). On a more general level, these results illustrate that there are differ-
ences in how students in groups regulate motivational problems and in how they regu-
late comprehension-related problems. On a more specific level, they illustrate the shift 
of the regulation focus to motivational group activities in situations with motivational 
problems and to (meta-)cognitive activities at different social levels in situations with 
comprehension-related problems. 

Additional analyses to converge findings from PM and ENA. Apart from the fact 
that ENA, unlike PM, cannot consider start and end points as codes, ENA also lacks to 
consider self-loop frequencies that may differ between conditions. To make sure taking 
the loops into account would not have resulted in completely different results of the t-
tests, we proved that at least the self-loops of codes that were not plotted close to the x-
axis by ENA did not significantly differ between conditions. Thus, we used exact 
Fisher’s tests for count data to compare the cell frequencies of self-loops of all codes 
between both conditions that were already revealed by PM for significant differences 
(as the cell frequencies for the Motivational Shared code in the comprehension-related 
problems condition had zero counts, we have corrected for all cell frequencies based 
on a proposed procedure by [13]). 

Since results showed no significant differences of self-loop frequencies between 
conditions except for the Motivational Shared code which was higher in the motiva-
tional than in the comprehension-related problem condition (this code was already plot-
ted close to mr1 in the ENA), MMot=32, MComp=1, p=.00, OR = 36.33 (95% CI: 6.02, 
1472.99), we take this as an indication that the group differences we found regarding 
mr1 would have maximally been even larger if the global test had also taken into ac-
count the self-loops on the motivational shared code beside the higher frequencies of 
this code in the motivational compared to the comprehension-related problems condi-
tion. 
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4 Discussion 

This paper intended to demonstrate a procedure for comprehensively testing differences 
between regulation processes by aid of PM and ENA. At the same time, it intended to 
depict ways to bypass the drawbacks of each technique. 

When performing PM and ENA individually, we encountered some of the problems 
of the two methods that are already discussed in literature. For example, when preparing 
the data for analysis, it turned out that our sample size was appropriate for PM, but too 
small for ENA. Therefore, less frequent codes had to be excluded from ENA (we also 
excluded these codes from PM as to better demonstrate the extent results of both meth-
ods converge). Also, PM created rather confusing models which were barely visually 
comparable due to the representation of all observed paths. The visual comparison in 
PM is also generally impeded by the fact that process models include all person-specific 
regulation paths with same weight irrespective to the person specific activity rate (for 
what ENA offers a solution). In addition, with PM, global differences between the mod-
els could not be verified by a statistical test. Interestingly enough, the arrangement of 
the codes in both models showed differences only in terms of the “Motivational Shared” 

code, which was positioned earlier in the process when motivational problems were 
present. Thus, PM showed that motivational problems are primarily regulated motiva-
tionally and metacognitively in the beginning, whereas for comprehension-related 
problems, the initial focus is on metacognitive regulation. 

These findings – which ENA failed to reveal – might indicate that students more or 
less automatically activate different motivational strategies to solve motivational prob-
lems, whereas they seem to be more analytical (and coherent) when faced with com-
prehension-related problems (see [14]). However, that elaborative shared regulation 
was rather chosen at the end of the process (in both process models), which seems to 
be in line with Boekaerts’ [8] three-layered model, claiming that goals and resources 
need to be regulated before learning and which is adheres to the findings of [3] which 
are described above. 

However, ENA allowed for a global statistical verification of the differences be-
tween the compared processes that could not be gained by PM. Additionally, while PM 
would have required further reductions of codes or code-connections to clearer visual-
ize regulation processes, ENA was able to clearly visualize group differences through 
differently weighted code-code-connections. The clear visualization of group differ-
ences was further due to the subtraction of networks and to the provided rotation of 
networks, which cannot be done in PM. Even though the shift towards joint motiva-
tional group efforts for motivational and towards activities closer to the learning pro-
cess for comprehension-related problems were already observed in PM, ENA revealed 
that students with comprehension-related problems frequently control their own regu-
lation when acquiring knowledge: because students constantly switched to motivational 
shared regulation in the regulation of motivational problems, but did not that much 
switch to one specific cognitive activity in the comprehension-related problems condi-
tion, ENA's visual comparison of conditions revealed that students regulate compre-
hension-related problems comparatively incoherently. 
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This latter observation would not have been apparent from PM. We specifically re-
vealed this through the ENA’s normalization of adjacency vectors. This routine, which 

is not implemented for PM, ensured that the number of each participant`s activities did 
not affect the structure and thickness of networks. In return, however, it removed the 
effect of the person-specific regulatory length, which PM considers, but does not clearly 
visualize. Furthermore, as ENA disregards start and end points of processes, as well as 
the order of selected paths and self-loop information (all information provided by PM), 
exact Fisher's tests for count data based on the self-loop information provided by PM 
complied with the findings of the global comparison. 

Overall, when critically appraising the use of each of the two methods and what they 
add to our understanding of the differences between motivational vs. comprehension-
related problem regulation in groups, we argue that the concerted use of PM and ENA 
has high potential in comparing regulatory processes and is superior to using only either 
technique. As an outlook for further research with process data remains to say that re-
searchers are already working on the development and refinement of so-called directed 
ENA; [15]).  
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