
An Extension for Feature Algebra

[Extended Abstract]

Peter Höfner
Institut für Informatik
Universität Augsburg

86135 Augsburg, Germany

hoefner@informatik.uni-augsburg.de

Bernhard Möller
Institut für Informatik
Universität Augsburg

86135 Augsburg, Germany

moeller@informatik.uni-augsburg.de

ABSTRACT

Feature algebra was introduced as an abstract framework for
feature oriented software development. One goal is to pro-
vide a common, clearly de�ned basis for the key ideas of
feature orientation. We �rst present concrete models for the
original axioms of feature algebra which represent the main
features of feature oriented programs. However, these mod-
els show that the axioms of the feature algebra do not re-

ect some aspects of feature orientation properly. Hence we
modify the axioms and introduce the concept of an extended
feature algebra. Since the extension is also a generalisation,
the original algebra can be retrieved by a single additional
axiom. Last but not least we introduce more operators to
cover concepts like overriding in the abstract setting.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and Tech-
niques|Object-oriented design methods; F.3.1 [Logics and
Meanings of Programs]: Specifying and Verifying and
Reasoning about Programs|Logics of programs,Mechanical
veri�cation,Speci�cation techniques

General Terms

Design, Languages, Veri�cation

Keywords

feature oriented software development, feature algebra, al-
gebraic characterisation of FOSD

1. INTRODUCTION
Over the last few years Feature-Oriented Software Devel-

opment (FOSD) (e.g. [7]) has been established in computer
science as a general programming paradigm that provides
formalisms, methods, languages, and tools for building vari-
able, customisable, and extensible software.

Copyright 2009 ACM This is the author's version of the work. It is posted
here for our personal use. Not for redistribution. The definitive Version of
Record can be found at:
https://www.infosun.fim.uni-passau.de/spl/apel/FOSD2009/

Feature algebra [3] is a formal framework that captures
many of the common ideas of FOSD such as introductions,
re�nements, or quanti�cation and hides di�erences of mi-
nor importance. It abstracts from the details of di�erent
programming languages and environments used in FOSD.
Moreover, alternative design decisions in the algebra re
ect
variants and alternatives in concrete programming language
mechanisms; for example, certain kinds of feature composi-
tion may be allowed or disallowed.
In one of the standard models of feature algebra, the struc-

ture of a feature is represented as a tree, called a feature
structure tree (FST) [2]. An FST captures the essential, hi-
erarchical module structure of a given program. Based on
that, feature combination can be modelled as superimposi-
tion of FSTs, i.e., as recursively merging their corresponding
substructures.
Feature algebra serves as a formal foundation of archi-

tectural metaprogramming [6] and automatic feature-based
program synthesis [10]. Both paradigms emerged from FOSD
and facilitate the treatment of programs as values manipu-
lated by metaprograms, e.g., in order to add a feature to
a program system. This requires a formal theory that pre-
cisely describes which manipulations are allowed.
In the present extended abstract we �rst derive a concrete

model for feature algebra that is based on FSTs. It was
already sketched in [3]; however we de�ne it in a precise way.
After introducing the abstract notion of a feature algebra,
we present another concrete model. Next we show that the
models are �ne as long as one does not consider feature
oriented programming on code level. If manipulation of code
and not only of the overall program structure is explicitly
included in the model some aspects of feature orientation
cannot be re
ected properly. In particular, we show that
merging, overriding or extending bodies of methods yields
problems. To overcome this de�ciency, we relax the axioms
and introduce the concept of an extended feature algebra.
To clarify the idea and to underpin the relaxation we also
extend the introduced model which can then handle code
explicitly. Finally we discuss how additional operators can
be introduced to capture even more properties of feature
oriented programming formally. In particular, we present
operators for merging, overriding and updating as they arise
in code modi�cation.

2. A STANDARD MODEL
Based on feature structure trees (FSTs), we give a �rst

concrete model for feature algebra. The formal de�nition
of feature algebras will be given in the next section. Fea-

ture structure trees capture the essential hierarchical mod-
ule structure of a given program system (e.g. [3]). An ex-
ample is given in Figure 1, where a simple Java class Base
is described. For the present extended abstract we restrict
ourselves to Java; examples of other feature oriented pro-
gramming languages can easily described in a similar way.

class

enterclear

top

Base

method field

Calc

e1

e0

e2

packageUtil

Figure 1: A simple JAVA-class as FST ([6, 3])

It is well known that certain labelled forests can be en-
coded using strings of node labels (e.g., [5]). We use forests
rather than single trees in our description, since, in general,
we deal with several classes.
Let � be an alphabet of node labels and, as usual, �+

the set of all nonempty �nite strings over �. Every such
word can be thought of as the sequence of node labels along
the unique path from a root in the forest to a particular
node. In the sequel we will just write \path" instead of
the lengthy \string of labels along a path". Note that this
approach does not allow di�erent roots with identical labels
and no identical labels on the immediate descendants of a
node. However, this is not a restriction.
A �rst model now represents a forest by all possible paths

from roots to nodes. Since every pre�x of the path leading
to a node x corresponds to a path from the respective root to
an ancestor of x, with a path also all its non-empty pre�xes
are paths in the forest. Therefore the set of all possible paths
is pre�x-closed. Note, however, that a set of paths forgets
about the relative order of child nodes of a node, i.e., this
model is suitable only for unordered trees.

Example 2.1. The FST of Figure 1 is encoded as the fol-
lowing pre�x-closed set:

Base =def f Util; Util :: Calc; Util :: Calc :: top;
Util :: Calc :: clear; Util :: Calc :: enter;
Util :: Calc :: e0; Util :: Calc :: e1;
Util :: Calc :: e2 g ;

where :: is used to separate the elements of �. Of course all
occurring names must be elements of the underlying alpha-
bet, i.e., Util, Calc, top, clear, enter, e0, e1, e2 2 �. ut

Conversely, one can (uniquely up to the order of branches)
reconstruct a forest from the pre�x-closed set of its paths.
We de�ne P� as the set of all pre�x-closed subsets of

�+. Note that P� is closed under set union. Based on this,
feature tree superimposition can simply be de�ned as set
union. Hence the order of combination does not matter and
therefore addition is commutative and idempotent.

It is easy to show that (P�;[; ;) forms a monoid, i.e.,
[is associative with ; as its neutral element, and, because
of commutativity and idempotence of its addition operator
[, also satis�es the axiom of distant idempotence, namely
A [B [A = B [A for A;B 2 P�.
In addition to feature superimposition, feature algebra

also comprises modi�cations which in the concrete model
are tree rewriting functions.
It is easy to see that such functions can be used to model

many di�erent aspects of feature oriented programming and
development. With respect to FSTs a modi�cation might
be the action of adding a new child node (adding a method
to a class), of deleting a node (removing a method) or of
renaming a node (renaming a class). As we will see, alter-
ing the contents of a leaf node (overriding and extending a
method body) may lead to a problem.
A concrete tool for performing the operations of a feature

algebra is FeatureHouse [1, 2]. It allows composing features
written in various languages such as Java, C#, C, Haskell,
and JavaCC. With the help of this tool we will show in Sec-
tion 5 that the implementation and the axioms of feature
algebra given below do not coincide when modi�cations are
allowed to touch the code level. As long as the code is ig-
nored, i.e., only the method interfaces or the like are con-
sidered to be modi�able things works �ne.
This observation implies that, to achieve full congruence,

either the theory has to be adapted or the implementation of
FeatureHouse has to be changed. In Section 6 we introduce
an extension of feature algebra that is designed to cover also
features at code level.

3. FEATURE ALGEBRA
We now abstract from the concrete model of FSTs and

introduce the structure of feature algebra. It was �rst pre-
sented by Apel, Lengauer, M�oller and K�astner in [3]. There
a number of axioms is selected that have to be satis�ed
by languages suitable for feature oriented software devel-
opment. For the present paper we compact them and come
up with the following de�nition. To focus on the main as-
pects we omit a discussion of the variants and alternatives
described in the same paper.
A feature algebra comprises a set I of introductions that

abstractly represent feature trees and a set M of modi�ca-
tions that allow changing the introductions. The central op-
erations are the summation + that abstractly models feature
tree superimposition, the operator � that allows application
of a modi�cation to an introduction and the modi�cation
composition operator �.
Formally, a feature algebra is a tuple (M; I;+; �; �; 0; 1)

such that

� (I;+; 0) is a monoid satisfying the additional axiom of
distant idempotence, i.e., i+ j + i = j + i.

� (M; �; 1) is a groupoid operating via � on I, i.e., � is a
binary inner operation on M and 1 is an element of M
such that furthermore

{ � is an external binary operation from M � I to I

{ (m � n) � i = m � (n � i)

{ 1 � i = i

� 0 is a right-annihilator for � , i.e., m � 0 = 0

� � distributes over +, i.e., m � (i+ j) = (m � i) + (m � j)

for all m;n 2M and all i; j 2 I.
On the introductions of a feature algebra, the natural pre-

order or subsumption preorder is de�ned by i � j ,def

i + j = j; it is closely related to the subtyping relation
<: in the Deep calculus of [15]. The introduction equiva-
lence by i � j ,def i � j ^ j � i. Finally, we de�ne
the application equivalence � of two modi�cations m;n by
m � n ,def 8 i : m � i = n � i. This is clearly an equivalence
relation.
The model introduced in the previous section forms a fea-

ture algebra if a suitable set of tree rewriting functions is
chosen as the set of modi�cations. The set has to be cho-
sen carefully, since otherwise the functions might, e.g., vi-
olate the uniqueness conditions imposed on forests. The
axiom (m � n) � i = m � (n � i) is satis�ed by the usual de�ni-
tion of function composition: applying a composed function
is equivalent to applying the single functions in sequence.
Then the operator � coincides with function application and
� with function composition. Because of commutativity and
idempotence of [(which instantiates + in that model), the
natural preorder there actually is an order and coincides
with the subset relation �.
An advantage of this particular abstract algebraic de�ni-

tion is that it contains only �rst-order equational axioms,
i.e., it is predestined for automatic theorem proving. Since
we have encoded feature algebra in Waldmeister [9]1, we skip
the proofs. They can be found at a website [14].

Lemma 3.1. Assume i; j to be introduction sums and as-
sume m;n; o to be modi�cations of a feature algebra.

1. 0 � i and i � 0) i = 0.

2. + is idempotent; i.e., i+ i = i.

3. � is a preorder, i.e., i � i and i � j ^ j � k) i � k.

4. i � i+ j and j � i+ j.

5. i � k ^ j � k) i+ j � k.

6. + is quasi-commutative w.r.t. �, i.e., i+ j � j + i.

7. (m � (n � o)) � i = ((m � n) � o) � i.

8. (m � 1) � i = (1 �m) � i = m � i.

Meanings and relevance of Parts (1){(3) are straightfor-
ward. Part (4) says that addition determines an upper
bound with respect to the natural preorder. Part (5) shows
that the sum is even a least upper bound. Parts (7) and
(8) show that, up to application equivalence, � is associative
and 1 is its neutral element, i.e., (m � (n � o)) � ((m �n) � o)
and (m � 1) � (1 �m) � m.

4. ANOTHER STANDARD EXAMPLE
Since in certain applications the relative order of the im-

mediate successor nodes in a tree matters, we now present a
second model that re
ects forests of ordered labelled trees.
It uses the fact that all paths in a tree can be recovered from
the maximal ones that lead from roots to leaves by forming

1In contrast to [4], we use Waldmeister instead of Prover9
since it can handle multiple sorts. For feature algebra we
use the two sorts M and I.

their pre�x closure. It should be noted here that the maxi-
mal paths can be viewed as atomic introductions in the sense
of [3]. This could have been exploited already in the previ-
ous model, but would have led to a much more complicated
de�nition of tree superimposition. While an unordered for-
est can be represented as the �nite set of its maximal paths,
for an ordered one we use �nite lists of such paths. To make
the representation unique, we have to restrict ourselves to
lists that are pre�x-free, i.e., lists l that with a path p do
not contain a proper or improper pre�x of p elsewhere in l.
In particular, such lists are repetition-free. Like the previ-
ous model, this does not admit di�erent roots with identical
labels and no identical labels on immediate descendants of
a node.

Example 4.1. The FST of Figure 1 is encoded as the fol-
lowing pre�x-free list:

Base =def [Util :: Calc :: top; Util :: Calc :: clear;
Util :: Calc :: enter; Util :: Calc :: e2;
Util :: Calc :: e1; Util :: Calc :: e0] :

ut

Superimposition + is now de�ned inductively over the
length of the �rst list:

� The empty list does not e�ect another list of paths:

[] + [q1; : : : ; qn] =def [q1; : : : ; qn]

� A singleton list [p] is added to an existing list by re-
placing existing pre�xes of it:

[p]+[q1; : : : ; qn] =def

8>>>>>><
>>>>>>:

[q1; : : : ; qn]
if p is a pre�x of some qi

[q1; : : : qi�1; p; qi+1; : : : ; qn]
if qi is a pre�x of p

[p; q1; : : : ; qn]
otherwise

� For longer lists we set

[p1; : : : ; pm; pm+1] + [q1; : : : ; qn] =def

[p1; : : : ; pm] + ([pm+1] + [q1; : : : ; qn])

We de�ne L� as the set of all pre�x-free lists of elements
of �+. It is easy to show that (L�;+; []) forms a (non-
commutative) monoid that additionally satis�es the axiom
of distant idempotence; its natural preorder re
ects list in-
clusion and the associated equivalence relation is permuta-
tion equivalence, i.e., equality up to a permutation of the list
elements. Also in this model, modi�cations are just rewrit-
ing functions with the same operations as before.
In both algebras P� and L� distant idempotence models

the fact that duplicating a feature has no e�ect. Hence idem-
potence seems of central interest in feature algebra. How-
ever, in the next section we will show that the axiom of dis-
tant idempotence yields problems in a model that considers
more details.

5. THE LOST IDEMPOTENCE
As mentioned in the previous sections, distant idempo-

tence (and hence idempotence), i.e., the fact that duplicat-
ing a feature has no e�ect, was of central interest in feature

algebra. In [4], it is stated that languages and tools for fea-
ture combination usually have the idempotence property.
This works �ne as long as a feature only contains the name

and not its implementation. At the code level this property
does not hold any longer. We illustrate this behaviour by a
Java program.

Example 5.1. Consider a Java method foo given by

void foo(int a) {
a++;
original(a);

}

When used in a feature superimposition, it updates a pre-
vious de�nition of foo; the pseudo-statement original(a)
inserts the original body. We assume further that foo is a
method of the class Bar. ut

To integrate code into an FST, each terminal node has to
be extended. According to this, we have also to extend the
pre�x-closed elements of the set P�. This is done as follows:
Each letter (element of �) at the end of a maximal path is
extended with code. This extension preserves that pre�xes
of paths are legal paths again. The following example should
clarify the main idea; an abstract and more precise de�nition
will be given below.

Example 5.2. With this explanation, the code of the pre-
vious example can be written as

Bar::foo
void foo(int a) {
a++;
original(a);

}

To shorten the notation we write Bar :: foo[A] where A is
an abbreviation for the complete code contained in the box.

ut

As mentioned before, feature algebra was introduced as
a formal treatment of FOSD and is intended to model Fea-
tureHouse at an abstract level. If, however, two occurrences
of the same feature appear in one program the code parts
have to be merged and hence the order of combination does
matter, since code parts of the are overwritten and/or up-
dated. We skip the details how FeatureHouse merges code
and applies overriding. Instead we illustrate the situation
by an example.

Example 5.3. Using FeatureHouse leads to the following
result:

Bar :: foo[A]� Bar :: foo[A]

=

Bar::foo
void foo(int a) {
a++;
a++;
original(a);

}

6= Bar :: foo[A]

where � is the feature combination of FeatureHouse. In par-
ticular, � is not idempotent and therefore the axiom of dis-
tant idempotence does not hold. ut

This short example and this short application of Feature-
House show that idempotence is not satis�ed in general in
the setting of FOSD. Moreover, either feature algebra is not
the formal model for FeatureHouse or FeatureHouse does
not follow the theoretical foundations introduced by the al-
gebraic structure.
This section provided only a brief description and focussed

on some parts of FeatureHouse and feature algebra which
lead to discrepancies. It was not the intention to explain
every fact of FeatureHouse and feature algebra in detail. The
interested reader is referred to the references [1, 3].

6. EXTENDED FEATURE ALGEBRA
We have shown that the axioms of distant idempotence

and hence also standard idempotence do not hold when ar-
guing at code level. The remainder of the paper presents
some ideas how to solve the described problems.
To model code-level behaviour at an abstract level we ex-

tend feature algebra by a third type C of code fragments.
We de�ne the structure of an extended feature algebra as

a tuple (M; I;C;+; �; �; j; 0; 1) with the following properties
for all m;n 2M , i; j 2 I and a; b; c 2 C:

� We consider pairs (i; c) where i is an introduction cor-
responding to a maximal path in the forest under con-
sideration and c is the code fragment contained in the
leaf at the tip of that path. We denote (i; c) by i[c].2

The set of all these pairs is denoted by I[C].

� (C; j) is a semigroup in which j is an update or override
operation (see below),

� (I[C];+; 0) is a monoid satisfying i[a] + j[c] + i[b] =
j[c] + i[ajb],

� (M; �; 1) is a groupoid operating via � on I[C],

� 0 is a right-annihilator for � and

� � distributes over +.

The original de�nition of a feature algebra can be retrieved
by choosing C as a set containing only one single element
(the empty code fragment).
The operation j can be seen as an update. In the previous

section, j merged code fragments. In the next section we will
discuss this operation in our concrete models. Note that we
have modi�ed the axiom of distant idempotence: adding a
feature a second time updates the earlier instance of that
feature rather than just ignoring it.
Unfortunately, we cannot de�ne a natural preorder on an

extended feature algebra. This is due to the lack of idem-
potence. Hence the counterpart of Lemma 3.1 reduces to

Lemma 6.1. Assume i; j to be introductions, m;n; o to
be modi�cations and assume c to be a code fragment of an
extended feature algebra. Then

1. (m � (n � o)) � i[c] = ((m � n) � o) � i[c] ,

2. (m � 1) � i[c] = (1 �m) � i[c] = m � i[c] .

2This �ts well with the notation of the example of the pre-
vious section.

To overcome the de�ciency of the missing preorder we can
de�ne two di�erent relations:

i[a] �r j[b] =def 9 k[c] 2 I[C] : i[a] + k[c] = j[b] ;

i[a] �l j[b] =def 9 k[c] 2 I[C] : k[c] + i[a] = j[b] :

This implies immediately the following

Lemma 6.2.

1. �l, �r are preorders

2. 0 �l i, 0 �r i

Up to now we do not know which of the orders should
be preferred. A further investigation of properties as well
as the interaction of both preorders will be part of future
research (cf. Section 8).

7. EXTENDING THE MODELS
In Section 5 we pointed out that FeatureHouse merges and

updates code. Therefore a formal model should also re
ect
this behaviour. Unfortunately this does not hold for the
models presented in Section 2, which led to our extension
by code fragments.
In this section, we show how to de�ne the update opera-

tor j in our concrete models.
In particular, we will identify the \common part" of two

given implementations of the same feature oriented program.
Based on the common part one can determine which part of
a method body has to be overridden and which part has to be
preserved. Of course these calculations highly depend on the
respective language and have to follow exact rules. In Java,
for example, FeatureHouse simply overrides declarations and
functions as long as the keyword original does not occur
in the code.3 For a detailed description we refer again to [1].
To model such behaviour we de�ne abstract interfaces for

each Java method. Whereas a general Java element may
contain arbitrary (legal) programming constructs, abstract
interfaces may contain only the types of the corresponding
Java parts and\forgets" the remaining bodies, initialisations
etc. We illustrate this behaviour by an example.

Example 7.1. On the left hand side there is a simple
Java method while its abstract interface appears on the right
hand side.

int min5(int a) {
int b=5;
if(a<b) return a;
else return b;

}

int min5(int a) {
int b;

}

The typing of the local variable b appears, since its declara-
tion may be overwritten during a feature combination. ut

A precise de�nition of the abstract interface will need to
re
ect also nested scopes etc. The use of abstract interfaces
may yield invalid Java code (e.g., return statements are
omitted). This does not matter, though, since it will only
be employed to identify the \common part".
Let again C be the set of possible code fragments and

T � C the set of the corresponding abstract interfaces. The
function that determines the abstract interface for a given

3There are some exceptions.

Java code is denoted by ai : C ! T . Next we de�ne two
functions

z ;� : P(C)� P(T)! P(C)

X z U = fx 2 X j ai(x) 2 Ug

X � U = fx 2 X j ai(x) 62 Ug :

The restriction operator z determines for a set X of code
fragments the ones whose corresponding abstract interfaces
lie in the given subset U � T , while the operator � selects
its relative complement.
To de�ne the update function j we need to lift the function

ai to sets of code fragments by

ai(X) =def fai(x) jx 2 Xg :

Then

XjY =def (Y � ai(X)) [X :

This means that all \old" de�nitions of elements in Y that
are rede�ned in X are discarded and replaced by the ones
in X; moreover, all elements of X not mentioned in Y are
added. It should be noted that ai and j are closely related
to the interface operator " and the asymmetric composition
&� in the Deep calculus of [15].
It turns out that this rather concrete de�nition can be

lifted to the same level of abstraction as that of our feature
algebra, which again opens the possibility for automated ver-
i�cation. The key is the observation that ai(X) is the least
set that leaves X unchanged under the selection operation z:

X = X z U , ai(X) � U

In fact, since X z U � U holds anyway by de�nition, this
can be relaxed to

X � X z U , ai(X) � U :

Mathematically, this is known as aGalois connection (e.g. [8,
11]). Also, ai behaves in many respects like the abstract
codomain operator of [12]. The de�nition of j is similar
to the ones based on relations or semirings with domain
(e.g. [16, 13]). These correspondences allow us to re-use a
large body of well-known theory | another advantage of an
abstract algebraic view.
Let us detail this a bit more. We may abstract the set C

of code fragments to a Boolean algebra L and the set T
of abstract interfaces to a subalgebra N of L. Then the
above functions can be characterised and generalised using
the following axioms:

(a+ b) z p = a z p+ b z p
a z 0 = 0

a z (p+ q) = a z p+ a z q

0 z p = 0

���������

(a+ b)� p = (a� p) + (b� p)
a� 0 = a

a� (p+ q) = (a� p)� q
= (a� q)� p

0� p = 0
a � a z p , aq � p

ajb = (b� aq) + a

where a; b 2 L, p; q 2 N and + denotes the supremum of
L, � its order, 0 the least element and aq is the abstract
counterpart of ai(a).
Note that this section only gives the main ideas how to

model the update operation in the abstract setting of an
extended feature algebra. The work presented is part of
ongoing work and will be investigated in much more detail
(see the next section).

8. CONCLUSION AND OUTLOOK
The present paper is based on earlier work by Apel, Len-

gauer, M�oller and K�astner [3]. They introduced a formal
model to capture the commonalities of feature oriented soft-
ware development such as introductions, re�nements and
quanti�cation. We have de�ned a concrete model for fea-
ture algebra and have illustrated that the axioms of feature
algebra are �ne as long as one does not consider feature ori-
ented programming at code level. Otherwise not all aspects
of feature orientation can be modelled. To remedy this, we
have introduced the structure of an extended feature algebra
which generalises the original de�nition. To clarify the idea
we have also extended the introduced models correspond-
ingly. Finally we sketched how additional operators can be
introduced to capture even more properties of feature ori-
ented programming like updating or overriding.
This extended abstract is a further step towards an alge-

braic theory that covers all aspects of FOSD. Of course, all
introduced operators like update need further investigation;
in particular Section 7 reports about ongoing work. On the
one hand more properties need to be derived; on the other
hand it has to be checked whether the extension adequately
covers the essential properties of FOSD, in particular, the
merging of code fragments. If this turns out not to be the
case, the extended feature algebra will need further modi�-
cation.

Acknowledgement.
We are grateful to Han-Hing Dang, Roland Gl�uck and the
anonymous referees for fruitful comments.

9. REFERENCES
[1] S. Apel, C. K�astner, and C. Lengauer. FeatureHouse:

Language-independent, automated software
composition. In 31th International Conerence on
Software Engineering(ICSE), pages 221{231. IEEE
Press, 2009.

[2] S. Apel and C. Lengauer. Superimposition: A
language-independent approach to software
composition. In C. Pautasso and �E. Tanter, editors,
Software Composition, volume 4954 of Lecture Notes
in Computer Science, pages 20{35. Springer, 2008.

[3] S. Apel, C. Lengauer, B. M�oller, and C. K�astner. An
algebra for features and feature composition. In
AMAST 2008: Proceedings of the 12th international
conference on Algebraic Methodology and Software
Technology, volume 5140 of Lecture Notes in
Computer Science, pages 36{50. Springer, 2008.

[4] S. Apel, C. Lengauer, B. M�oller, and C. K�astner. An
algebraic foundation for automatic feature-based
program synthesis and architectural
metaprogramming. Science of Computer
Programming, 2009. (to appear).

[5] F. Baader and T. Nipkow. Term Rewriting and All
That. Cambridge University Press, 1999.

[6] D. Batory. From implementation to theory in product
synthesis. ACM SIGPLAN Notices, 42(1):135{136,
2007.

[7] D. Batory and S. O'Malley. The design and
implementation of hierarchical software systems with
reusable components. ACM Transactions Software
Engineering and Methodology, 1(4):355{398, 1992.

[8] G. Birkho�. Lattice Theory. American Mathematical
Society, 3rd edition, 1967.

[9] A. Buch, T. Hillenbrand, and R. Fettig. Waldmeister:
High Performance Equational Theorem Proving. In
J. Calmet and C. Limongelli, editors, Proceedings of
the International Symposium on Design and
Implementation of Symbolic Computation Systems,
number 1128 in Lecture Notes in Computer Science,
pages 63{64. Springer, 1996.

[10] K. Czarnecki and U. Eisenecker. Generative
Programming: Methods, Tools, and Applications. 2000.

[11] B. A. Davey and H. A. Priestley. Introduction to
lattices and order,. Cambridge University Press, 2nd
edition, 2002.

[12] J. Desharnais, B. M�oller, and G. Struth. Kleene
algebra with domain. ACM Transactions on
Computational Logic, 7(4):798{833, 2006.

[13] T. Ehm. Pointer Kleene algebra. In R. Berghammer,
B. M�oller, and G. Struth, editors, RelMiCS, volume
3051 of Lecture Notes in Computer Science, pages
99{111. Springer, 2004.

[14] P. H�ofner. Database for automated proofs of Kleene
algebra. http://www.dcs.shef.ac.uk/�georg/ka
(accessed October 1, 2009).

[15] D. Hutchins. Eliminating distinctions of class: Using
prototypes to model virtual classes. In P. L. Tarr and
W. R. Cook, editors, Proceedings of the 21th Annual
ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications,
OOPSLA 2006, pages 1{20. ACM Press, 2006.

[16] B. M�oller. Towards pointer algebra. Science of
Computer Programming, 21(1):57{90, 1993.

