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Snore-GANs: Improving Automatic Snore Sound
Classification With Synthesized Data
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Abstract—One of the frontier issues that severely hamper
the development of automatic snore sound classification
(ASSC) associates to the lack of sufficient supervised train-
ing data. To cope with this problem, we propose a novel data
augmentation approach based on semi-supervised con-
ditional generative adversarial networks (scGANs), which
aims to automatically learn a mapping strategy from a ran-
dom noise space to original data distribution. The proposed
approach has the capability of well synthesizing “realistic”
high-dimensional data, while requiring no additional anno-
tation process. To handle the mode collapse problem of
GANs, we further introduce an ensemble strategy to en-
hance the diversity of the generated data. The systematic
experiments conducted on a widely used Munich—Passau
snore sound corpus demonstrate that the scGANs-based
systems can remarkably outperform other classic data aug-
mentation systems, and are also competitive to other re-
cently reported systems for ASSC.
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|. INTRODUCTION

UTOMATIC snore sound classification (ASSC) targets at

developing an automated and non-invasive method for the
classification of Obstructive Sleep Apnea (OSA) based on the
snore sound [ 1]-[5]. OSA is characterized by repetitive episodes
of decreased (hypopnea) or completely halted (apnea) airflow
during sleep, despite the effort to breathe. According to the
statistic investigation in [6], approximately 3~7% adult men
and 2~5% adult women in the general population around the
world suffer from OSA. This leads to a serious deterioration of
health conditions, such as daytime sleepiness, excessive fatigue,
morning headache, and even high blood pressure and depression
mood in a long-term case [6]-[9]. To treat OSA, doctors need
to determine the obstructive position of the respiratory tract in
the very beginning. A standard determination approach often
associates with a Drug-Induced Sleep Endoscopy (DISE) pro-
cedure, in which a flexible nasopharyngoscope is introduced
into the upper airway while the patient is in a state of artificial
sleep [9], [10]. Vibration mechanisms and locations can be ob-
served while video and audio signals are recorded. However,
this diagnosis has many disadvantages, such as the exhaustive
time-consumption and the high strain of patients [10]. All these
disadvantages underline the necessity of ASSC.

However, the lack of sufficient amounts of labelled data has
become one of the major barriers to its progress. The ratio-
nales behind this problem can be summarized into four points.
1) Data privacy: Due to the sensitivity of health-associated data,
patients are often reluctant to publicly share their data. In addi-
tion, data privacy regulations restrict the legal usage possibilities
of health data [11]. ii) Time exhaustion when collecting data.
For example, to collect less than one thousand labelled sam-
ples for the ASSC sub-challenge in the INTERSPEECH 2017
Computational Paralinguistics challenges, about ten years were
taken across three hospitals [10], [12]. iii) Imbalanced nature
of classes: In practice, the patients who suffer from a tongue
base snoring or an epiglottis snoring are much fewer than the
ones from other types of snoring [10]. iv) A High requirement of
qualified experts for data annotation: To label these data, highly
experienced experts are demanded to analyze the recorded data
and determine the obstruction location based on their prior
knowledge.

The data sparsity problem becomes even worse with the re-
cent rise of high capacity deep neural networks, which are more
hungry for data to avoid underestimated parameters and poorly



generalized networks [13]. Data augmentation is an appealing
approach to alleviate the data sparsity problem because it is the-
oretically able to produce infinite amounts of labelled data at
minimum expense. In the context of machine learning, a plethora
of data augmentation approaches have been investigated [14]—
[16], which generally fall into two groups based on either trans-
formation or synthesis. The fransformation-based approaches
conduct a certain number of transformation operations on exist-
ing samples to generate additional samples while retaining the
annotations. These transformation operations include, for ex-
ample, random cropping, rotation, flips for image samples [14],
or the addition of diverse noises for audio samples [15]. Never-
theless, such data augmentation does not improve data distribu-
tion which is determined by higher-level features. In contrast,
the synthesis-based approaches manage to generate artificial
samples given specific labels via a synthesizer. The Synthetic
Minority Oversampling Technique (SMOTE) [17] is a typical
synthesizer-based data augmentation approach, which has been
widely used in the domain of machine learning. The underlying
idea is the creation of a new set of artificial samples by means
of the nearest neighbours belonging to the minority class. The
problem of the synthesizer-based approaches lies in the realistic
gap between the synthetic and real samples, leading the mod-
els to learn the wrong information from the synthetic samples.
Therefore, improving the synthesizer is considered to be vital
to close the gap.

Over the past few years, a promising generative model,
namely Generative Adversarial Networks (GANs), has attracted
extremely widespread research interests in machine learn-
ing [18]-[22]. It consists of two neural networks — a generator
and a discriminator, which contest with each other in a two-
player zero-sum game [18]. Since its inception, GANs have
been consistently demonstrated to be powerful in generating
impressively realistic images and natural languages [18], [23],
[24]. In this light, GANs emerge as a potential tool for data
augmentation. In the literature of machine learning, a handful
of related studies have been reported for some applications. For
instance, for gaze estimation, traditional synthesized images
were further decorated by an adversarial network, improving
the previous data augmentation models [25]. For object clas-
sification, images were straightforwardly generated by GANs
to increase the size of the training set [26], [27], leading to re-
markable performance improvement. For emotion recognition,
several class-specific GANs were used to efficiently transfer
data across different domains [28].

However, no relevant studies have been reported to use GANs
to increase the quantity of annotated training data for intelli-
gent health care, especially for the ASSC, to the best of our
knowledge. Besides, despite the fact that some previous work
focuses on synthesizing standalone samples, for example, im-
ages, its performance remains unclear in the case of sequential
samples, such as audio data, which significantly differs from
the standalone samples. The generation of sequential samples,
however, heavily relies on the context information [24]. Albeit
a handful of related studies reported in the audio processing
domain, they either focus on speech enhancement [29], [30] or
music creation [31].
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Fig. 1. Data augmentation framework based on semi-supervised con-
ditional Generative Adversarial Networks (scGANSs) for model training.

Motivated by the aforementioned analysis, we made the fol-
lowing contributions in the present article. i) We, for the first
time, propose semi-supervised conditional GANs (scGANs) to
generate high-dimensional representations for the ASSC. Com-
pared with classic GANSs, the generation process of ScGANSs is
controlled by a condition, and thus there is no need for an addi-
tionally exhausting annotation process. Furthermore, in contrast
to conditional GANs [28], [32], the proposed scGANs require
only one model to synthesize different categorical data by the
integration of semi-supervised GANs. Besides, when designing
the scGANs, we choose the vanilla GANSs, rather than other
advanced GANSs such as Wasserstein GANs [33], following the
principle of the worst-case scenario and for the sake of easy
performance comparison. ii) We try to synthesize not only the
static acoustic data, but also the sequential acoustic data. For
the sequential data, we innovate a recurrent sequence generator
with recurrent neural networks, instead of a static data gen-
erator. iii) We introduce an ensemble of GANs to deal with
the mode collapse problem. iv) We comprehensively investigate
three widely used benchmark systems to evaluate the robustness
of the proposed methods.

The remainder of this article is organized as follows. In Sec-
tion II, we elaborately describe the proposed data augmentation
framework with semi-supervised conditional generative adver-
sarial neural networks. Then, in Section III, we introduce the
database and the experimental setups, followed by the descrip-
tion, analysis, and discussion of the experimental results and
findings in Section IV. Finally, we draw conclusions and sug-
gest future research directions in Section V.

Il. METHODS

In this section, we first outline the proposed data augmenta-
tion framework based on scGANs. Then, we comprehensively
describe the principle of GANs and semi-supervised conditional
GAN:s, followed by dynamic alternation and ensemble GANs
strategies that are introduced to overcome the training instability
and mode collapse problems of scGANs. We finally report the
approach to generate acoustic sequences.

A. The Framework of GANs-Based Data Augmentation

The framework of scGAN-based data augmentation is il-
lustrated in Fig. 1. In this framework, synthesized data S is
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artificially generated through scGANs (see Section II-B for
more details), and then combined with the original data from a
small-sized training set £. The expanded data set, i.e., S U L, is
further employed to train a model. In this work, we aim to gen-
erate high-dimensional representations (features) rather than the
raw samples mainly because of the difficulty of learning massive
variables in a continuum. Under the assumption that the model
trained with augmented data shows better performance than the
one merely trained with the small-size data set, the simulated
data are expected to be able to well reflect the distribution of
real data.

Albeit the availability of some other promising generative
models in machine learning, GANs usually empirically out-
perform them, such as variational autoencoders [34] on the
quality of images, and PixelRNN/Pixel CNN on the processing
speed [35], [36].

B. Semi-Supervised Conditional GANs

The vanilla GANs were first introduced in 2014 by Good-
fellow [18]. They comprise two basic components: a generator
(denoted as GG) and a discriminator (denoted as D). The G aims
to capture the potential distribution of real samples and gener-
ates new samples to ‘cheat’ the D as far as possible; whereas the
D is often a binary classifier, distinguishing the sources (i. e.,
real samples or generated samples) of the inputs as accurately
as possible. Therefore, the G and D are normally jointly trained
in a two-player zero-sum game, where the total gains of the two
players are zero. More details of the vanilla GANs can be found
in [18].

One major problem of the above unconditioned GANs as
aforementioned is the lack of label information when generating
the data, which constrains its application to data augmentation.
Conditional GANs (cGANs), however, utilize auxiliary infor-
mation c, such as the labels or a particular attribute setting, to
control the output as desired [37].

Besides, Odena recently proposed semi-supervised GANs
(sGANSs) [38], where the D becomes a combination of a
classifier and a discriminator. In detail, the discriminator D
classifies the input into K + 1 classes, where K is the number
of classes of a classification task. Real samples are supposed to
be classified into the first /& classes and the generated samples
into the K + 1-th class (i. e., fake). In the framework, however,
the generator GG aims to generate data that is classified into any
of the first K classes. The benefit of this strategy is two-fold:
Firstly, the approach performs well to find the distinguishing
boundary, hence creating a data-efficient classifier. Secondly,
it empirically performs more efficient for generating higher
quality samples than regular GANs[38], [39].

Motivated by this work [38], [39], we propose a novel struc-
ture, namely semi-supervised conditional GANs (scGANSs), as
structured in Fig. 2. They can be considered as extensions of
c¢GANs by forcing the discriminator D to output class labels as
well as distinguishing the real data from the fake data. Differing
from sGANs [38], the G of the scGANSs is conditioned with
auxiliary information (i. e., label information in this case), and
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Fig. 2. The framework of semi-supervised conditional Generative Ad-
versarial Network (scGANs).

aims to generate data that can be correctly classified into the
first K classes given the condition c.

Mathematically, given real data x sampled from the distri-
bution pyatq(x), a latent random vector z sampled following
a simple prior distribution p,(z) (e. g., uniform or Gaussian
distribution), and the parameters 6, and 0, of the G' and D net-
works, respectively, the generator GG targets at maximizing the
log-likelihood that it assigns to the correct classes:

Lo =E, . (2log P(y = k[X)], (1

whilst the discriminator D aims to maximize the following log-
likelihood:

LD = Ex'\‘pda(a(x) [log P(y = IC|X)]
+Egp,(2)log P(y = fake|x)], (2)

where £ is among the first K classes, X = Gy, (z|c), and p,.(z)
indicates the latent random distribution relating to the condi-
tional information c. By taking the class distribution into the
objective function, an overall improvement in the quality of the
generated samples is expected.

It has to be noticed that the proposed scGANs differ from
the ones in [40], which are structured with two discriminators,
used for unsupervised (with unlabelled real data) and supervised
(with class-specific real data) true/false classification, respec-
tively. The proposed scGANs, however, can be further extended
with two discriminators in case of exploiting unlabelled data in
future efforts, which is beyond the research scope of this article.

C. Dynamic Alternation and Ensemble of
Semi-Supervised Conditional GANs

Generally, the training of G and D is conducted in an it-
erative manner, i. e., the corresponding neural weights 6,60,
are updated in turns [18]. Once the training is completed,
the generator GG is able to generate more realistic samples,
while the discriminator D can distinguish authentic data from
fake data. The adversarial training process, however, suffers
from two major issues: training instability and mode collapse
[19], [20].

When training the adversarial networks, ensuring the balance
and synchronization between the G and D plays an important
role in obtaining reliable results [18]. That is, the optimization



goal of adversarial training lies in finding a saddle point of,
rather than a local minimum between G and D. The inherent
difficulty in controlling the synchronization of the two adver-
sarial networks increases the risk of instability in the training
process.

In this light, we introduce a simple and efficient way called
dynamic alternation. That is, we dynamically alternate the train-
ing epochs between the generator GG and the discriminator D,
in contrast to the conventional approaches which often fix the
training epochs for both (fixed alternation). It is hoped that this
approach is able to keep the learning pace synchronously up-
dated between G and D), so as to avoid the training instability.

Mathematically, we respectively define a loss threshold func-
tion for G and D with

£TG/D = max(Ai + b, 0)7 (3)

where A, b, and c¢ are the hyper-parameters which control the
threshold together at the i-th training iteration. To guarantee £
being a monotonically decreasing function, A is normally less
than 1. In this article, these hyper-parameters are determined by
empirical experience. Once the training loss from G is below
a pre-defined loss Lr¢, the training process is altered to D.
Similarly, once the training loss from D is below another pre-
defined loss L1 p, the training process is altered to GG. Such an
alternation keeps repeating until a training convergence of G
and D. In doing this, we force the performance improvement of
G and D at a similar pace.

Apart from the training instability, another issue is the mode
collapse, which indicates that the generated samples have inte-
grated into a small subset of similar samples (partial collapse),
or even a single sample (complete collapse). In this case, the G
exhibits very limited diversity amongst generated samples, thus
reducing the usefulness of GANS.

To address this problem, some approaches are continually
emerging. For example, the cost function of the generator can be
modified to factor the diversity of generated batches [39]. More-
over, the unroll-GANSs allow the generator to ‘unroll’ updates of
the discriminator in a manner which is fully differentiable [41].

More recently, the work shown in [42], especially its ad-
vanced version [43], demonstrated that an ensemble of several
networks with different network structures or initializations can
improve the system performance significantly, in comparison
with the aforementioned unroll-GANSs [42], [43]. To this end,
we implement a standard ensemble approach [42] in our experi-
ments for the sake of easy comparison, hoping to obtain a better
estimation of the real data distribution py,,. The framework of
the ensemble of scGANs for data augmentation is depicted in
Fig. 3. Instead of training a single scGANs pair, we train a set of
scGANSs. These scGANs are with different network structures
(i. e., a different number of hidden nodes per layer in our ex-
periments) in order to maximally explore their differences, and
trained independently. When conducting data augmentation, we
aggregate the data from all scGANs, and randomly select data
from the pool which are further merged into the original training
set. By doing this, it is expected to expand the diversity of the
augmented data that come from separate scGANS.
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Fig. 3. Data augmentation by using an ensemble of semi-supervised
conditional Generative Neural Networks (scGANs). n: the number of
SCGANS.

D. Sequence Generation

The snore data are normally structured in a sequence. How-
ever, most available GANs were particularly designed to gen-
erate standalone samples (e. g., images). In this section, we
introduce a novel approach to generate sequential samples by
means of the GANs equipped with Recurrent Neural Networks
(RNNs) with Gated Recurrent Units (GRUs), since the GRU-
RNNs have been widely known to be efficient in capturing
long-range context information [44]-[46].

To be more specific, given a sequence
{x1,X2,...,Xr}, which comprises of 7T-length consecutive
high-dimensional vectors x, the goal of the recurrent GANs
is to learn

X117 =

'axt—l;c)7 (4)

while x; = f(z;c). In doing this, they are able to generate a
complete sequence X;.7 by feeding a latent random noise z, i. e.,
X1 = G(z). Intuitively, we illustrate the sequence generation
process in Fig. 4.

The generation process is indeed inspired by the Seq2Seq
modeling [47], where the decoder component takes the last out-
put at time ¢ — 1 as its input at time ¢, and takes the previous
hidden state at time ¢ — 1 as its initial state at time ¢. Differ-
ently, the conditional vector c is consistently used to guide G to
produce a designed sequence.

As to the discriminator D, we further utilize another GRU-
RNN to distinguish the generated sequences from the real ones.

f(xt]xq,..

I1l. TRAINING AND VALIDATION

To evaluate the performance of the proposed data augmen-
tation approaches for ASSC, we selected the Munich-Passau
Snore Sound Corpus (MPSSC). The corpus has been widely
used in the intelligent health care research community [3], [10],
and has been employed as an official database for an ASSC
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Fig. 4. Sequence generation through a recurrent generator (h; : hidden
states at time ¢, c: conditional vector).

sub-challenge in the INTERSPEECH 2017 Computational Par-
alinguistics challenges [12].

A. The Munich-Passau Snore Sound Corpus

The MPSSC was introduced to classify the vibration location
within the upper airways when snoring [3], [10], [48]. Since the
data analysis and annotation process did not involve any studies
carried out by the authors on humans or animals, an ethical ap-
proval was not required. Starting material for the database were
existing recordings of DISE examinations from three medical
centres in Germany (i. e., Klinikum rechts der Isar, Technical
University Munich; Alfried Krupp Hospital Essen, and Uni-
versity Hospital Halle/Saale) which were taken during clinical
routine examinations between 2006 and 2015, using different
recording devices among the medical centres. In a DISE exam-
ination, the patient is slightly sedated and put into a condition
that resembles an artificial sleep state. By means of a flexi-
ble nasopharyngoscope, the upper airways are observed by an
experienced ENT physician, identifying the locations of tis-
sue vibration or airway narrowing while the patient snores or
undergoes obstructive events. Both the audio signals from the
microphone and the video signals from the nasopharyngoscope
were recorded synchronously. For the database, in excess of 30
hours of DISE recordings were analyzed.

For our experiments, the audio signal was extracted from the
mp4 recordings and stored in a wav-format (16 bit, 44.1 kHz).
To detect the snore sound events from the audio files, an au-
tomated algorithm was employed. In details, we averaged the
absolute value of the signal amplitude in 10 ms segments with
no overlap and determined the background noise level by means
of a 1024-step histogram averaging 10 s segments [10]. Only the
segments, which exceed two times the predefined background
noise level for a minimum duration of 300 ms, were annotated.
After that, we added 100 ms of signals before and after the actual
onset and end of the event, which was then extracted from the
original audio file, normalized, and saved as separate wav files
(16 bit, 16 kHz) [10]. Finally, an experienced human listener
(the fourth author) listened to all selected events and classified
them manually as either pure snoring (snore) or other sounds

TABLE |
DATA DISTRIBUTION OF THE MUNICH-PASSAU SNORE SOUND CORPUS
(MPSSC). V: VELUM; O: OROPHARYNX; T: TONGUE; E: EPIGLOTTIS

# train  devel test ).
v 161 168 155 484
(6] 75 76 65 216
T 15 8 16 39
E 32 30 27 89
> 283 282 263 828

(non-snore, or the snore severely disturbed by non-static back-
ground noise) [10]. For more details of this pre-processing step,
please refer to [10].

The selected snore events were then classified by medical
ENT (ear, nose, and throat) experts based on the findings from
video recordings. Only events with a clearly identifiable (i. e.,
single site of vibration and without obstructive disposition) were
included in the database, resulting in 828 snore events in to-
tal. Based on the VOTE scheme that is widely used to distin-
guish four structures involved in airway narrowing and obstruc-
tion [49], we defined four classes: V (i. e., Velum, including soft
palate, uvula, lateral velopharyngeal walls), O (i. e., Oropharyn-
geal lateral walls, including palatine tonsils), T (i. e., Tongue,
including tongue base and airway posterior to the tongue base),
and E (i. e., Epiglottis).

The annotated audio samples were then separated into
subject-independent training, development, and test partitions.
Table I displays the data distribution by partitions and classes.
The database is strongly imbalanced with a comparatively low
number of T and E samples. This is consistent with earlier
medical research, which has found that respiratory disturbances
occur more frequently at velopharyngeal and oropharyngeal
level, compared to the hypopharyngeal level [50]. For more
specific information about the database, the readers are referred
to [10].

B. Representations

To keep in line with the ASSC benchmark of the 2017 IN-
TERSPEECH Computational Paralinguistics challenges [12],
we chose three different kinds of acoustic feature sets at either
the frame level (i. e., low-level descriptor) or the segment level
(i. e., functional or Bag-of-Audio-Words).

1) Low-Level Descriptors: We used the ComParE16 high-
dimensional acoustic feature set employed in [51], which
contains 65 frame-wise Low-Level Descriptors (LLDs, e. g.,
energies, Mel-frequency cepstral coefficients, zero-cross rate,
jitter, shimmer, probability of voicing) as well as their first
derivations, leading to 130 LLDs. These LLDs are determined
according to a set of brute-force empirical evaluations on com-
putational paralinguistics [12], [51]. More detailed information
about the ComParE16 LLDs can be found in Table II.

2) Functional-Based Features: Intuitively, the functional-
based approach projects the temporal LLD contours onto a set
of feature vectors with descriptive statistic functionals (see [52]



TABLE I
THE COMPARE AcousTIC FEATURE SET INCLUDES 65 Low-LEVEL
DESCRIPTORS (LLDS) OF DIFFERENT TYPES, AS WELL AS THEIR
FIRST DERIVATIONS (DELTA), RESULTING IN 130 LLDs

4 energy-related LLDs | Group

RMS energy, zero-crossing rate Prosodic
sum of auditory spectrum (loudness) Prosodic
sum of RASTA-filtered auditory spectrum Prosodic

55 spectral LLDs | Group
MEFCC 1-14 Cepstral
psychoacoustic sharpness, harmonicity Spectral
RASTA-filt. aud. spect. bds. 1-26 (0-8 kHz) Spectral
spectral energy 250-650 Hz, 1k—4 kHz Spectral
spectral flux, centroid, entropy, slope Spectral
spectral roll-off point 0.25, 0.5, 0.75, 0.9 Spectral
spectral variance, skewness, kurtosis Spectral

6 frequency-related LLDs | Group

fo (SHS and Viterbi smoothing) Prosodic
probability of voicing Voice quality
log. HNR, jitter (local and ¢§), shimmer (local) | Voice quality

for more details). Mathematically, this can be written as follows:
f:f([xi]aizla"'aT)7 (5)

where f denotes the segment-level feature vector; [x;] indicates
the sequential frame-wise LLDs; 1" is the total frames of a given
vocalization; and f denotes the functionals (i. e., statistic in-
formation) that are applied per LLD contour. Specifically, the
functionals can include: extremes (minimum, maximum, ranges,
etc.), mean (arithmetic, quadratic, geometric), moments (vari-
ance, skewness, kurtosis, etc.), percentiles (quantiles, ranges,
etc.), peaks (number, distances, etc.), temporal variables (dura-
tions, positions, etc.), and regression (coefficients, error). For
our experiments, the functional-based feature set contains 6 373
dimensional feature vectors [51].

3) Bag-of-Audio-Words: Bag-of-Audio-Words (BoAW) is
another type of segment-level acoustic representation. Extract-
ing BOAW involves three steps: i) codebook generation; ii) vec-
tor quantization; and iii) histogram construction. Differing from
bag-of-words for linguistic analysis, the total number of audio-
words (frame-wise LLDs) is indeed numerous with an equal
occurrence frequency of one. To reduce the codebook size (.5),
a k-means clustering or a random sampling is conducted to de-
termine the codewords (W) of the codebook (C) [53]. After
that, a multi-assignment quantization technique is executed to
map each audio-word to the first n closest codewords, mea-
sured by Euclidean distance. Finally, a histogram is constructed
by calculating the counts of occurrence of each codeword in all
acoustic frames over one vocalization segment. Mathematically,
the histogram representation b for a given vocalization v with
T, frames is

T,
b = Z(élﬂ,m 7m:17"'787 (6)
i=1

where ¢; ,, equals to 1 if the ¢-th frames is assigned to the m-th
codeword, otherwise, to 0. To minimize the effects relating to
the length disparities of different vocalizations, a normalization
process is further undertaken over b, to sum up all elements of
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b to one. More details about the BOAW generation can be found
in [53].

C. Implementation Setups

As to the acoustic features, we utilized the open-source toolkit
openSMILE [52] to extract the LLDs and functional-based fea-
tures, and the toolkit openXBOW [53] to distill the BoAW rep-
resentations.

When simulating the representations, we deployed GRU-
RNN-based scGANs. The generator and discriminator used the
same network structure, with two hidden layers and N nodes
per hidden layer, where N was set to be 60. As to the discrim-
inator, we appended an additional dense layer and a softmax
activation function for pattern classification. As to the GRUs,
we employed the standard version with sigmoid and tangent ac-
tivation functions [44]. To train the networks, we employed the
Adam optimization algorithm with an optimized learning rate
of 0.001 for the generator and 0.01 for the discriminator. The
batch size was set to be 64 to facilitate the training process. To
improve the generalization of the neural networks, we further
applied an L2 regularization term to the loss function with a
regulation value of 10E-4. Note that all these hyper-parameters
were optimized on the development set with the baseline sys-
tem — the one without GAN-based data augmentation and taking
LLD acoustic features as inputs. Thus, it avoids exhausting com-
putation caused by the grid-searching in numerous experimental
scenarios. Besides, we set the initial state of GRU to be zero,
and the initial weights of neural networks to be random values
with a standard deviation of 0.1. To find the saddle point be-
tween the generator and discriminator when training the GANS,
we employed the dynamic alternation strategy as described in
Section II-C to alternatively train the generator and discrimina-
tor. Specifically, with respect to Eq. (3), we set A, b, and ¢ to
be 0.95, 0, and 0.7 for the discriminator, and 0.95, 1.0, and 1.0
for the generator. These hyper-parameters were set according to
empirical experience. In further, we could use more advanced
approaches to search these values, for example, reinforcement
learning [46].

For the sequence generation, we partitioned the original se-
quence with variable length into multiple continuous segments
with a fixed window size of 400 ms and a step size of 100 ms.
This partially reduces the complexity of sequence generation.

Due to the distinct characteristics of the three investigated
features (cf. Section III-B), we considered one static model,
i. e., Support Vector Machines (SVMs), which aims to learn the
segmental-level features (i. e., based on functionals or BOAWs),
and one dynamic model, i. e., GRU-RNNs, which attempts
to learn the sequential frame-level LLDs. In our experiments,
three learning systems have been implemented, referring to
i) functional-based features with SVMs (functionals + SVMs),
i) BoAW-based features with SVMs (BoAWs + SVMs), and iii)
sequential LLDs with GRU-RNNs (LLDs + GRU-RNNs), re-
spectively. Particularly, the selection of SVMs rather than other
typical classifiers mainly relates to two reasons: i) SVMs have
been officially employed in the 2017 INTERSPEECH ASSC
sub-challenge [12], as well as other related studies [54]-[56];
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TABLE Il
PERFORMANCE (UAR AS WELL AS CORRESPONDING STANDARD DEVIATION [SD]) COMPARISON ON BOTH THE DEVELOPMENT AND TEST SETS AMONG THE
PROPOSED SCGAN-BASED DATA AUGMENTATION APPROACHES, TRADITIONAL DATA AUGMENTATION APPROACHES, AND THE BASELINE SYSTEMS IN THREE
LEARNING SYSTEMS, I. E., FUNCTIONALS + SVMs, BOAWS + SVMSs, AND LLDs + GRU-RNNS. EXPERIMENTS ARE REPEATED IN 20 INDEPENDENT RUNS.
NET-60: DEFAULT SCGANS NETWORK STRUCTURE WITH 60 NODES PER HIDDEN LAYER; AVERAGE: AVERAGED RESULTS OVER FOUR DIFFERENT
NETWORK STRUCTURES OF SCGANS; ENSEMBLE: AN ENSEMBLE OF SCGANS

approaches functionals + SVMs BoAWs + SVMs LLDs + GRU-RNNs
UARgp [%] dev test dev test dev test
baseline (wo DA) 45.3+0.0 46.240.0 414400 482400 65.745.1 525498
transformation [15] 46.840.9 48.041.2 41.111 3 48.0+1.2 67.844.4 53.613.2
SMOTE[17] 45.140.5 47.0+08 413105  47.9+11 - -
cGANSs (net-60) 451413 46.041.9 413448 439431 67.0+£4.1 533436
scGANs (net-60) 52.7+0.7 499405 458426 54.8429 66.7438 52.343.4
scGANSs (average) 51.441.4 50.3+1.0 46.3+2.2 51.949.4 66.344.1 53.243.1
scGANs (ensemble) 53.842.4 51.547.1 468428 56.7+34 674440 5444138

* SMOTE has not supported to synthesis sequences yet

ii) our previous experimental results have shown that SVMs
generally perform more stable and better than other typical
classifiers (e. g., random forest) on the MPSSC database. For
example, we obtained the UARs on the development and test
sets of 34.9% and 35.2% by using functional+RF system, and
38.9% and 55.2% by using BoOAW + RF system. These results
are generally inferior to the obtained results by SVMs (cf.
Table III).

As to the SVMs, the complexity was determined on
the development set through the baseline experiments
without data augmentation by searching values among
[0.00001,0.00005,0.0001...,0.5,1,5]. Empirically, the com-
plexity was optimized to be 10E' — 4 and 10E — 3 in the cases
of functional-based features and BoAW representations, respec-
tively. For the GRU-RNNs model, we employed the same net-
work structure as for the discriminator in the scGANs, but with
only four output nodes (the discriminator has five output nodes
due to the ‘fake’ prediction). When training the GRU-RNNS, a
many-to-one strategy was used, i. e., after feeding a sequence
of LLD vectors, only the last states from the hidden layers were
considered for final classification. Again, the Adam optimizer
was implemented with the same learning rate and L2 regular-
ization value with the parameters of the discriminator.

To evaluate the performance of the investigated systems, we
kept in line with the evaluation metric, i. e., Unweighted Average
Recall (UAR), which was officially employed in the 2017 IN-
TERSPEECH ASSC sub-challenge, for the sake of performance
comparison. The UAR is calculated by the sum of recalls per
class divided by the number of classes, and thus can reflect a
meaningful overall accuracy despite class imbalances, such as
the one we are facing.

Due to the imbalanced class distribution of the MPSSC
database, we oversampled the data from the minority classes
by means of replication, forcing an even distribution. Differ-
ent from the proposed data augmentation approach that aims
to synthesize completely new data, this strategy increases the
weights of the losses from the minority samples. The advan-
tage relates to the fact that it increases the contributions of the
original minority samples which hold grounded class informa-
tion when modeling ASSC. Notably, when using GRU-RNNSs to
classify each recording, a majority voting strategy was applied

1.50 A

1.25 A

1.00 A

loss

0.75 1

0.50 1

0.25 1

0 20 20 0 20 20
# iteration # iteration

(a) fixed alternation (b) dynamic alternation

Fig. 5. The variation of losses while training the scGAN at every iter-
ation using the fixed alternation strategy (a) or the dynamic alternation
strategy (b).

to a set of related segments to come up with a final predic-
tion, since each recording was split into several sub-segments
as aforementioned.

IV. RESULTS AND DISCUSSION

In this section, we conducted comprehensive evaluations of
the systems with proposed scGAN-based data augmentation
(snore-GANs) on the selected MPSSC database.

A. Dynamic Alternation Evaluation

Before the systematic performance evaluation, we firstly in-
vestigated the efficiency of the introduced dynamic alternation
training strategy for the scGANSs. In Fig. 5, we plotted the ob-
tained losses at each learning iteration of both the generator G
and the discriminator D. From the figure, we can see that when
using the conventional fixed-alternation training strategy, the
obtained loss curves from both G and D severely vibrate along
with the learning iterations, which clearly shows the training
instability when the number of epochs per iteration is fixed for
G and D (see Fig. 5(a)). In contrast, they are shown to be much
smoother when using the dynamic alternation training strat-
egy (see Fig. 5(b)). This suggests that the dynamic alternation
training strategy is capable of improving the training stability
of GANSs and thus facilitates the convergence of the training
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# augmented data
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# augmented data
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Performance (UAR as well as corresponding Standard Deviation [SD]) of data augmentation on the development set when increasingly

adding synthesized data to the three learning systems, i. e., functionals + SVMs (a), BoAWs + SVMs (b), and LLDs + GRU-RNNSs (c). Experiments
are repeated in 20 independent runs. scGANs: semi-supervised conditional GANs; cGANs: conditional GANs. net-60: default scGANs network
structure with 60 nodes per hidden layer; average: averaged results over four different network structures of scGAN; ensemble: an ensemble of

sCGANSs.

process, by forcing the learning process of both networks to
be in a similar pace. Nevertheless, it is worth noting that to
determine the hyper-parameters of the dynamic loss threshold
requires empirical experience.

B. Results of scGANs and Discussion

When generating the data, we filtered out such samples that
are not correctly recognized by the discriminator. In doing this, it
potentially removes the noisy samples possibly falling beyond
the scope of the original data distribution, and thus alleviates
their adverse effect in learning. Moreover, when adding the gen-
erated data to the original training set, we randomly selected the
generated samples evenly distributed over categories, in order
to handle the imbalanced data distribution problem.

The dotted green curves in Fig. 6 depict the obtained perfor-
mance of the three learning systems as aforementioned when
increasingly adding generated data to the original training set,
by using the default scGANs architecture (i. e., net-60; N = 60
nodes per hidden layer). To mitigate the performance fluctua-
tion caused by the random selection of generated data and the
random initialization of neural networks, we repeated 20 inde-
pendent runs for each data augmentation experiment.

In the case of the ‘functionals + SVMs’ system (cf. Fig. 6(a)),
it can be seen that the obtained UAR remarkably boosts from
45.3% to 47.8% when adding 50 synthesized samples per class,
and dramatically to 52.7% when adding 250 synthesized sam-
ples per class. Notable gain can also be observed for the ‘BoAWs
+ SVMs’ system (i. e., from 41.4% to 45.9% UAR). For the
‘LLDs + GRU-RNNs’ system, a moderate improvement could
be found (i. e., from 65.7% to 66.7% UAR). This tells us that a
scGAN-based data augmentation approach can indeed improve
the performance of the systems when dealing with sparse data.
Besides, we compared this system with the LSTM-RNNs-based
one with the same network architecture. The obtained results are
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Fig. 7. Performance comparison between LSTM-RNNs and GRU-
RNNs for the sequence generation.

shown in Fig. 7. It can be seen that GRU-RNNSs are competitive
to the LSTM-RNNS, but with fewer parameters to be trained.

When using the ‘functionals + SVMs’ system, we see that its
performance is continuously improving from the beginning but
then remains almost stable when increasingly adding synthe-
sized data. This may attribute to the fact that the model is prone
to learn more from the synthesized data due to their higher
weights. Although increasing the capacity of a network may
partially alleviate this problem, for the sake of better perfor-
mance comparison, we retained the network architecture in all
experimental scenarios. For the ‘BoAWs + SVMs’ and ‘LLDs +
GRU-RNNS5’ systems, the maximum positive effect is achieved
with a comparatively low number of only 50 synthesized sam-
ples per class, with a slight deterioration when adding more. A
possible explanation is a mode collapse problem, where the gen-
erated data do not well reflect the whole picture of the original
data distribution.
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Fig. 8.

Visualization (t-SNE) of the mixed original and synthesized data (i. e., functional-based features) in V, O, T, and E four categories. The

synthesized data were generated through a mono-scGAN (net-60) (a) or an ensemble of scGANs (ensemble) (b). The grey points: original data;
red, green, blue, and cyan circles/points: synthesized V, O, T, and E samples.

Therefore, it is of importance to find the optimal balance be-
tween original and synthesized data. Such an observation, how-
ever, is not obvious and the ideal ratio might best be determined
by experiments.

We further notice that in the case of the ‘LLDs + GRU-RNNs’
system, the data augmentation provides a limited performance
enhancement. This underlines the toughness of generating
sequential LLDs and requires further improvement in future
efforts.

Moreover, we compared scGANs with cGANs, of which
the performance is shown in Fig. 6 with cyan curves. Ob-
viously, scGANs are notably superior to cGANS in our case.
This conclusion relates to the essential drawback of cGANSs (cf.
Section II-B). That is, although cGANSs can simulate the overall
data distribution, they are unable to guarantee the data distribu-
tion match for a particular snore sound category.

C. Results of the Ensemble of scGANs and Discussion

To assess the effectiveness of an ensemble of scGANs, we
conducted the experiments with four different network struc-
tures of SCGANS, i. e., N = 40, 60, 80, and 100. The black
curves in Fig. 6 illustrate the system performance through an
ensemble of SCGANS (i. e., four ScGANS).

Generally speaking, it can be seen that the ensemble of
scGANs (i. e., ensemble) outperforms the mono-scGAN
(i. e., net-60; dotted green curves) for data augmentation.
The obtained UARs on the development set go up to 53.8%,
46.2%, and 67.4%, respectively, in the cases of ‘functionals
+ SVMs’, ‘BoAWs + SVMs’, and ‘LLDs + GRU-RNNs’. We
further averaged the performance of four mono-scGANs as
outlined previously. Similar performance improvement of the
ensemble of scGANs can be observed. Particularly, one can
notice that more synthesized data are required to achieve the
best performance when using an ensemble of scGANs. This

implicitly indicates that the generated data are more diverse
than the ones generated by a mono-scGAN, such that adding
more generated data delivers better system performance.

To intuitively demonstrate this conclusion, Fig. 8 illustrates
the data distribution of the mixed original data and synthesized
data (based on functionals), either simulated by a mono-scGAN
(a) or ensemble of GANs (b). Generally speaking, compared
with the mono-scGAN, the ensemble of scGANS is capable of
generating more diverse data that better reflect the original data
distribution in all V, O, T, and E cases. The data diversity, on the
other hand, potentially results in less stable system performance,
as shown in Fig. 6 where the ensemble of scGANs generally
shows higher standard deviations in 20 independent runs.

Particularly, we investigated two classic data augmentation
approaches, i. e., audio transformation and SMOTE as briefly
described in Section I. For the transformation data augmenta-
tion, we degraded the original audio signals through diverse
noises (i. e., the CHiME noise' in rooms and the white noise)
in different signal-to-noise ratios of 10 ~ 25 dB. In total, data
of ten times the size of the original set were generated. For the
SMOTE approach, we synthesized the data belonging to the mi-
nority classes up to the number of the majority class (i. e., 161
samples).

In Table III we compare the best UARs achieved on both
the development and test sets through distinct approaches, i. e.,
baseline systems without data augmentation, traditional data
augmentation approaches, and the proposed scGAN-based ap-
proaches. Obviously, the results indicate that the scGAN-based
data augmentation promotes the baseline systems without any
data augmentation in the most scenarios. Furthermore, it is dis-
tinctly superior to the other two traditional data augmentation
approaches. It can be seen that the SMOTE approach is merely

Lobtained from http://spandh.dcs.shef.ac.uk/chime_challenge/chime2016/da
ta.html



TABLE IV
PERFORMANCE COMPARISON IN TERMS OF UAR BETWEEN THE PROPOSED
SYSTEM WITH SCGAN-BASED DATA AUGMENTATION AND OTHER
STATE-OF-THE-ART APPROACHES ON THE MPSSC DATABASE.
THE EXPERIMENTS WITH SGANS AND SCGANS WERE
CONDUCTED IN 20 INDEPENDENT RUNS

approaches (UARgsp [%]) dev test
related state-of-the-art approaches
end-to-end [57] 40.3 40.3
fused end-to-end and BoAW + SVM [12] 45.1 46.0
dual source filter + SVM [58] 49.6 —
fused GMM SV + SVM/RF,
Spec. + CNN [59] 57.1 51.7
fused FV/func. + (W)KPLS/KELM [60] — 64.2
sGANs (functionals) 509410 44.1435
sGANs (BoAWs) 49.042.7 Sl.lyso
sGANs (LLDs) 63.2438 52.844.1
proposed snore-GANs (data augmentation by scGANs)
functionals + SVMs 53.842.4 51.5411
BoAWs + SVMs 46.842.8 56.7+3.4
LLDs + GRU-RNNs 674440 544433

competitive to the baseline, possibly because an upsampling op-
eration has been applied to the original training set before the
experiments (cf. Section III-C). Moreover, the system perfor-
mance can be further improved when considering an ensemble
of scGANSs that is capable of dealing with the mode collapse
problem of GANS.

D. Performance Comparison With Other State of the Art

To further compare the performance of our proposed data aug-
mentation systems (snore-GANs) with other recently reported
systems, we made a summary of the obtained UARs in Table IV.
Generally speaking, it can be seen that our best-achieved results
are competitive with, or even superior to, most of the other state-
of-the-art systems. Particularly, we found that our systems can
remarkably outperform the end-to-end system [57] (i. e., 56.7%
vs 40.39% UARs) that recently has been consistently regarded
as one of the most attractive systems in the audio analysis [57].
This somewhat confirms the data sparsity challenge for the deep
learning-based approaches that often prefer to a large amount of
training data. Although some promising results were achieved
in previous works, such as [60], i) the results on the development
set were not provided; ii) the results were obtained by fusing
several different systems, in contrast to our results delivered
by merely one system. Furthermore, we also observe that the
snore-GANs outperform the conventional SGANSs in three dif-
ferent feature scenarios. This implies that the synthesized data
indeed can help provide additional class-specific information
for the classification models.

E. Discussion

In future, we will keep collecting more snore sound data from
different hospitals and patients to increase the data size and
diversity, on which we will re-evaluate the proposed methods.
Besides, more advanced or potential novel sequence generation
systems (e. g., variational recurrent autoencoders) [61]-[63] will
be further proposed and evaluated in our following work to
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improve the acoustic sequence generation models. Moreover, we
intend to apply the approaches to other health care tasks (e. g.,
cardiopathy and epilepsy) associated with other modalities, such
as biological signals, images, and video recordings.

V. CONCLUSION

To address the data scarcity problem for automatic snore
sound classification (ASSC), we introduced a novel data
augmentation approach based on semi-supervised conditional
Generative Adversarial Networks (scGANSs) in this article.
By performing extensive experiments on the Munich-Passau
snore sound corpus, we find that the scGANs-based data
augmentation, especially its ensemble variation, is capable of
generating new data which share a similar distribution with
the original data, resulting in an increased quantity of training
data without any human annotation efforts. By combining
the synthesized and original data, the performance of ASSC
systems was remarkably improved, indicating the effectiveness
and robustness of the proposed approach for ASSC.
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