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Abstract
There are several methods to create visualizations of speech data. All of them, how-
ever, lack the ability to remove microphone-dependent distortions. We examined the use
of Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), and the
COmprehensive Space Map of Objective Signal (COSMOS) method in this work. To solve
the problem of lacking microphone independency of PCA, LDA, and COSMOS, we present
two methods to reduce the influence of the recording conditions on the visualization. The
first one is a rigid registration of maps created from identical speakers recorded under
different conditions, i.e. different microphones and distances. The second method is an
extension of the COSMOS method, which performs a non-rigid registration during the
mapping procedure. As a measure for the quality of the visualization, we computed the
mapping error which occurs during the dimension reduction and the grouping error as the
average distance between the representations of the same speaker recorded by different mi-
crophones. The best linear method in leave-one-speaker-out evaluation is PCA plus rigid
registration with a mapping error of 47 % and a grouping error of 18 %. The proposed
method, however, surpasses this even further with a mapping error of 24 % and a grouping
error which is close to zero.

Keywords: Speech intelligibility, speech and voice disorders, speech evaluation, dimen-
sionality reduction, Sammon mapping, QMOS, COSMOS, COmprehensive Space Map of
Objective Signal

1. Introduction

The facets of voices and speech are very complex. They comprise various stationary and
dynamic properties such as frequency, energy, and even more complex structures such as
prosody. In order to comprehend these characteristics, the high dimensionality of the speech
properties has to be reduced. The visualization in two or three dimensions was shown to
be very effective in many fields of application.

The visualization can reveal the relations between patients with voice disorders in different
graduations [5]. Each of the patients reads a standard text. This speech material is then
used for the visualization. Projection of new patients, i.e. speakers, allows to compare them
to the other speakers. This gives a better understanding of the different disorders. Fig. 1
shows a map of speakers with different degrees of hoarseness. On the top left, speakers
with a substitute voice are found. In these patients the larynx was removed due to cancer.
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Fig. 1: Visualization of voice disorders: The properties of the speaker’s voices are visible in the map. While
the y-axis contains the age of the speaker, the x-axis can be interpreted as the degree of hoarseness of the
speakers.

The artificial voice of the laryngectomized speakers can be interpreted as an extreme form
of hoarseness. Average age of the laryngectomees is about 60 years. At the top right, an
age-matched control group of normal speakers is located. At the bottom of the map are
speakers with chronic hoarseness. On the bottom right, young reference speakers are found.
Hence, the axes of the map can be roughly interpreted as the age on the y-axis and the
degree of hoarseness on the x-axis. All data were gathered with the same microphone with
the same recording setup. The map was computed with the COSMOS method as described
in Section 2.3.3

For routine clinical use [13], however, this poses a serious problem. Modern Internet
technologies allow for the recording of speech data at various locations simultaneously in
multi-site studies [8]. This also means that all data are recorded in different conditions
with different hardware and therewith varying quality of A/D conversion and microphones.
Recording conditions also have a great influence. Major factors are the distance between
the microphone and the speaker and the acoustical properties of the recording environment.
Given a speaker who was recorded simultaneously by multiple microphones of different
characteristics at different distances, the points representing the same speaker in the map are
spread across the result of the visualization. Fig. 2 gives an extreme example: The data were
recorded simultaneously with a close-talking microphone and a distant-talking microphone
(distance of about 2.5 m, cf. Section 2). The room had strong reverberations which are
only audible on the distant-talking microphone. The speakers form two clusters which is
caused by the acoustic difference between the two microphones. The two corresponding
representations of the same speaker are far away from each other in this visualization. The
dominating factor is the microphone in this example.

In order to alleviate this problem we investigated several techniques (cf. Fig. 3). Data of
the same speakers were recorded at two or more different locations or with different micro-
phones. We want to reduce the dimensionality of the data in order to create a visualization.
In a first step we take the audio data of each speaker and a speaker-independent speech
recognizer. The speaker-dependent data is used to create a speaker-dependent speech rec-
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Fig. 2: 51 speakers recorded simultaneously with two different microphones (remote and close-talk record-
ings): The two microphones form two clusters although both clusters contain the same speakers.

speaker-dependent speech data

speaker-adapted speech recognizer

dimension reduction (PCA, LDA, or Sammon)

microphone-normalization (affine Transformation)

robust map

extended Sammon (QMOS)

(dimension reduction and microphone-

normalization in one step)

Fig. 3: Steps to create a visualization: first the audio data of each speaker has to be processed to create
speaker specific features (here: the parameters of a speaker adapted speech recognizer). Then, the dimension
has to be reduced. In the last step the microphone influence has to be reduced. QMOS performs dimension
reduction and the elimination of the microphone-dependency in a single step.

ognizer. In this manner we get a time-invariant speaker-dependent model. The parameters
of the probability density functions of the this model can be interpreted as an abstract
representation of the speaker. However, this representation is still very high dimensional as
we will see in the following. Hence, the dimensionality still has to be reduced. Therefore,
we apply common dimension reduction techniques like the PCA, the LDA, or the Sammon
mapping (cf. [15]).

Additionally, we want to reduce the influence of the recording conditions. In an ideal map
a speaker should be projected onto the same position even if he was recorded with a different
microphone or in a different room. In this manner one could collect one validated database
of voice and speech disorders. Later on, if a new recording site also wants to compare its
data with the validated database, a method is required to make the previously recorded
data comparable to the new site. In the following we will investigate two approaches to
realize this: The first one employs a linear transformation of the data points in order to
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Table 1: The recording conditions used in this work

set acronym environment

ct close-talking
ctrv close-talking artificially reverberated
rm distant-talking

project corresponding ones as close to each other as possible. The second one extends the
Sammon mapping by a grouping term which causes the same speakers to be projected as
close to each other as possible i.e. it uses the prior knowledge about the group membership
and punishes points belonging to the same speaker if they are apart from each other.

A last requirement of the map is that we want to project new speakers also into same
coordinates, even if the new speaker was collected with only one of the incorporated micro-
phones. Furthermore, this projection also has to be robust, i.e., if the speaker is collected
again with one of the other microphones it should also be projected into the same loca-
tion as projected before. This feature of the map will be tested in leave-one-speaker-out
evaluation.

All methods were evaluated using a children database described in the next chapter. It
is an appropriate database for the reduction of noise conditions since it consists of children
speech recorded with a head-set microphone and a microphone of a video camera. A third
recording condition was simulated using artificial reverberation as presented in [4].

2. Speech Data and Methods

The database used in this work contains speech of children. The children were at the
age from 12 to 14 years [1]. In total 51 pupils (21 male and 30 female) of two different
schools were recorded in the German language. The speech data were recorded by a video
camera in order to document the experiment and a head-mounted microphone (UT 14/20
SHURE UHF). The close-talk version is referred to as ct. From the sound track of the
video tape, a second version of the corpus was extracted: A distant-talk version (rm)
was obtained. The distance between the speaker’s position and the video camera was
approximately 2.5 m. In total, 8.5 hours of spontaneous speech were recorded. The data
were segmented automatically at long pauses into utterances of several words. The resulting
utterances contain 3.5 words on average. This corpus with 12,858 utterances in total was
split into a training, a validation, and a test set with 8,374, 1,310, and 3,174 utterances,
respectively. The size of the vocabulary is 850 words plus 350 word fragments. A category-
based 4-gram language model was trained on the transliteration of the training set and has
a perplexity of 50 on the test set.

Artificial reverberation is used to create distortions which resemble those caused by re-
verberation in a real acoustic environment. It is applied to the close-talking signal directly
before feature extraction. The idea is to convolve the speech signal with the impulse re-
sponses of an environment typical for the application, e.g. a living room. In this way, a
reverberated signal can be computed. For this application, impulse responses were mea-
sured in a specific environment. In current research artificial reverberation was found to
improve the robustness of speech recognizers against acoustic mismatches of training and
test data [9, 4]. In both articles the training data was reverberated using the same twelve
impulse responses from assumed speaker positions shown in Fig. 4. The responses differ in
the distance, the angle to the microphone, and the reverberation time T60. The reverber-
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60 cm

120 cm

240 cm

T   = 250 ms60

T   = 400 ms60

Fig. 4: Speaker positions for the impulse responses used in this work (black dot: microphone; squares:
assumed speaker positions)

ation time is defined as the time that passes until the signal decays to 10−6 of its initial
sound energy after the signal source has been switched off. This corresponds to a reduction
of 60 dB.

Each response is applied to 1
12

of the training data. So training data are created which
cover a broad variety of possible reverberation. Additionally, the recordings from the close
talk microphone were artificially reverberated to simulate another recording condition (ctrv).
In this way, three speech recognizers are trained for each child. These recognizers are used
for the creation of the visualizations. A signal-to-noise ratio cannot be computed between
all versions of the corpus since the data is not always frame-matched. Table 1 lists the
recording conditions available on the data.

To create a visualization the first step is to compute characteristic features from individ-
ual speech samples. Next, the dimensionality of those features has to be reduced to two or
three (for 2-D or 3-D visualization). These features are obtained from Gaussian mixture
densities of a speech recognizer which is adapted for each speaker [3, 9]. In this work we
examined common methods for the dimensionality reduction: Principal Component Analy-
sis (PCA), Linear Discriminant Analysis (LDA) and the Sammon mapping [15] (cf. Fig. 3).
For both linear methods (PCA and LDA), the parameters of the Gaussian densities are
directly transformed to the low-dimensional space. For the Sammon mapping, an appro-
priate distance measure has to be chosen. Shozakai et al. chose the Mahalanobis distance
[6] between the Gaussian densities of the speech recognizer. The resulting method is called
COmprehensive Space Map of Objective Signal (COSMOS) [10].

2.1 Features for Visualization

First, the 16 bit, 16 kHz speech signals are processed and 24 dimensional Mel-frequency
cepstral coefficient (MFCC) feature vectors are extracted from them every 10 msec. The
windows length is 256 samples, i.e., 16 msec. As features 12 static and 12 delta coefficients
are computed. The first MFCC and its delta is replaced by the energy of the signal.
Furthermore, cepstral mean subtraction (CMS) is applied.

In order to get a time-invariant representation of each speaker, we use the parameters of
Gaussian mixture densities of a speech recognizer as feature vectors for the visualization.
Those densities are adapted with Maximum Likelihood Linear Regression (MLLR) adaption
[3] for use with a semi-continuous Hidden Markov Models (SCHMM) speech recognizer that
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shares all of its 500 Gaussian densities for all states of the acoustical polyphone1 models [17].
Note, that this procedure is similar to the use of an universal background model [2]. The
mixture density fκ(x) has the following form:

fκ(x) =

K
∑

κ=1

αiκNiκ(x) with (1)

Niκ(x) =
1

(2π)M/2|Σiκ|1/2
e
−

1

2
(x − µiκ)⊤Σ−1

iκ (x − µiκ)

where αiκ is the weight for the Gaussian Niκ(x), µiκ the mean vector, Σiκ the covariance
matrix of state i. M denotes the dimension. The sum over all ακ equals 1.

For the linear dimensionality reduction methods (PCA and LDA), Gaussian mixture pa-
rameters can be directly interpreted as feature vectors. However, since each Gaussian has
600 parameters (24 in the mean vector and 576 in the covariance matrix) and there are 500
state-tied Gaussians, the total number of parameters is 300,000. Hence, the linear transfor-
mations are first applied to all Gaussians to reduce the number of parameters per Gaussian
from 600 to two. In a second transformation step, the dimension is further reduced to two
dimensions using the same type of linear transformation but trained for the reduction from
1000 parameters to two. This procedure is necessary since the storage requirements for
a full 300,000 × 300,000 matrix as computed in a full transformation would be too high.
Furthermore, the sheer number of parameters which would have to be estimated from just
a few observations would also cause great numerical difficulties.

For the case of the Sammon method, the processing can be performed in a single step.
However, a distance measure between each of the SCHMM recognizers has to be defined.

2.2 A Distance Metric for SCHMMs

For the computation of the distance between two SCHMMs m and n, there are several
applicable metrics. In our case we use the Mahalanobis distance [6] as in [18]. Since all
codebooks are adapted from the one original codebook by a linear transformation (MLLR)
the correspondences between the distributions are known. To calculate the distance between
two Gaussian mixtures, we use

di(m,n) =

K
∑

κ=1

√

(µ̂iκ(m) − µ̂iκ(n))TΣ−1(µ̂iκ(m) − µ̂iκ(n)) (2)

µ̂iκ(m) = αiκ(m)µiκ(m) (3)

for mixtures which consist of K Gaussians, with weighted mean vectors µ̂iκ(m) and µ̂iκ(n).
Σ is the mean covariance matrix of all Gaussians of both mixtures [6] and i is the state
number.

1 A polyphone is an acoustical model whose phonetic context may vary according to the amount of training
data which was available at the time of the training. We constructed a polyphone for each phoneme
sequence which could be observed at least 50 times in the training data [17]. Training data and the
recognizer is described in detail in [19].
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Fig. 5: The adidas problem is a set of points belonging to multiple classes which have the highest scatter in
a direction orthogonal to the axis with the best discrimination. Hence, the dimension reduction with PCA
would not yield an axis with good discrimination. In this example the class information would be lost [17].

Next, the distance between the two SCHMMs has to be computed as the sum of the
distance of all states [5]. That leads to the overall distance δmn between the SCHMMs m
and n:

δmn =

∑Ns

i=1 di(m,n)

Ns
(4)

where Ns is the number of states. In this manner a symmetric distance matrix D is
computed which holds all mutual distances between the SCHMMs.

2.3 Reduction of Dimensionality

2.3.1 PCA

PCA is a linear transformation that transforms the data to a new coordinate system such
that the largest variance comes to lie on the first coordinate (called the first principal
component), the second greatest variance on the second coordinate, and so on. The first
principal component is assumed to be the most important one for separation of data of
different classes. But this is not true in general, as can be seen in the so called adidas
problem (cf. Fig. 5).

We have a set of ν feature vectors ci(i = 1 . . . ν) which has to be transformed by a matrix
T so that the resulting feature vectors c′i show maximum spread in their first component.
This results in an eigenvalue problem

Σej = λjej (5)

with the covariance Σ of the features ci and eigenvectors ej and eigenvalues λj . The
transformation matrix T for reducing the feature vector dimension to ξ consists of the ξ
eigenvectors that correspond to the ξ largest eigenvalues.

2.3.2 LDA

While PCA does not use any information about the class of each feature (given by the
speaker information in our case), LDA uses it to maximize the ratio of between-class scatter
B and within-class scatter W [17]:

det(B)/det(W ) → max (6)
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The within-class and between-class scatter are defined as

W =
K

∑

i=1

piΣi, B =
K

∑

i=1

pi

where pi is the a priori probability that a sample belongs to class i (i = 1 . . . K), µi and Σi

are the mean and the covariance, respectively, of the samples of class i and µ is the mean
of all samples.

Solving (6) results in a generalized eigenvalue problem:

Be = λWe (7)

Again, the ξ eigenvalues that correspond to the ξ largest eigenvalues define the transfor-
mation T.

2.3.3 Sammon Mapping

Unlike the PCA, the Sammon mapping is a nonlinear method for mapping high-dimensional
data to a plane or a 3-D space [15]. In the late 1970’s, a fast-converging algorithm for a
generalized Sammon mapping was presented by Niemann and Weiß [12]. The Sammon
mapping uses the distances (cf. Section 2.2) between the high-dimensional data to find a
lower dimensional representation — called “map” in the following — that preserves the
topology of the original data, i.e. keeps the distance ratios between the low-dimensional
representation — called “star” in the following — as close as possible to the original dis-
tances. Hence, the Sammon mapping is cluster preserving. To ensure this, the function eS

is used as a measurement of the error of the resulting map (2-D case):

eS = s

N−1
∑

p=1

N
∑

q=p+1

(δpq − θpq)
2

δpq
with (8)

θpq =
√

(px − qx)2 + (py − qy)2 (9)

δpq is the high-dimensional distance between the high dimensional features p and q stored
in a distance matrix D, θpq is the Euclidian distance between the corresponding stars p and
q in the map. s is a scaling factor derived from the distances in the high-dimensional space:

s =
1

∑N−1
p=1

∑N
q=p+1 δpq

(10)

The transformation is started with randomly initialized positions for the stars. Then the
position of each star is optimized, using a conjugate gradient descent library [11].

2.4 Reduction of the Influence of the Recording
Conditions in the Visualization

2.4.1 Rigid Registration

The first approach to reduce the influence of the recording conditions is the use of a rigid
registration. The idea is to use utterances from several speakers and record each of them
under different conditions. Then the features generated from the recordings are transformed
into a 2-D (or 3-D) map. The map is split according to the recording conditions (h1 . . . hH),
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and afterwards a rigid registration is applied, aiming to reduce the distance between the
stars belonging to one speaker. The objective function for the registration is

eREG(hi, hj) =
1

Nm

∑

p

θ
phiphj (11)

for the two maps recorded in condition hi and hj , each consisting of Nm = N
H stars.

θ
phiphj is the Euclidian distance between the star phi of the map from hi and star phj of

acoustic condition hj . The registration is considered to be a Euclidian transformation from
hi to hj [16].

phj = A
hj

hi
phi + t

hj

hi
(12)

with the transformation matrix A
hj

hi
and the translation vector t

hj

hi
, i. e. it performs rotation

and translation only.
The error is minimized using gradient descent. Using a non-rigid registration is not

reasonable because this will lead to a great increase of the mapping error, i.e. loss of the
structure of the map.

For the projection of a new star into a map, the dimensionality has first to be reduced ac-
cording to the chosen method. Then, the registration can be performed according to Eq. 12.

2.4.2 Non-rigid Registration

The non-rigid approach can be included into the optimization process of the Sammon map-
ping: To minimize the distance between stars belonging to the same speaker, additional
information about the group membership is used. Therefore, a grouping error is introduced
to extend the objective function.

G =







g11 · · · g1N
...

. . .
...

gN1 · · · gNN






(13)

gij indicates whether the stars, or respectively the high-dimensional features, belong to
the same group, i.e. the same speaker. Hence, gij = 1 if the feature vector j corresponds
to speaker i, else gij = 0. Remember that one speaker is recorded in our application by
multiple microphones, so there are more recordings for one speaker. Therefore, G looks like
a sparse matrix.

The original error function of the Sammon mapping is altered such that it considers the
distance between stars that belong to the same group. So a new error function eQ is formed:

eQ = s
N−1
∑

p=1

N
∑

q=p+1

[

Qgpqθpq + (1 − Q)(1 − gpq)
(δpq − θpq)

2

δpq

]

(14)

where gpq is the group indicator and Q is the weight factor which balances the standard
Sammon error to the additional error term.

Again, gradient descent is applied. Taking partial derivatives leads to the following gra-
dient:
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∂eSE

∂qx
= s

n−1
∑

p=1

n
∑

q=p+1

[

Qgpq
−(px − qx)

√

(px − qx)2 + (py − qy)2
+

(1 − Q)(1 − gpq)
2(px − qx)(δpq − θpq)

√

(px − qx)2 + (py − qy)2

]

(15)

The derivatives for the other coordinates are formed analogously. Let D be the matrix of
all the distances between the speaker features δpq in all recording conditions hi (i = 1 . . . H)
(cf. Fig. 6):

D =







Dh1
h1

. . . DhH

h1
...

. . .
...

Dh1
hH

. . . DhH

hH






(16)

where Dhi

hj
denotes the distances of all speakers recorded in condition hi to the speakers

recorded in condition hj .
For the projection of a new speaker p′ who was only recorded in condition hi a new distance

matrix D̂ is required. This matrix is like the distance matrix D except each partial matrix
Dhk

hj
(j, k = 1 . . . H) has one more row and column for the new speaker. However, only

matrix D̂hi

hi
can be computed directly since all distances in hi were observed. All distances

in D̂hi

hj
and D̂

hj

hi
(j 6= i) except the one concerning the speaker himself in the other recording

conditions are known. For the projection, all distances of the speaker to all other speakers in
all other recording environments are required. This, however, would mean that the speaker
has to be recorded in the other conditions as well since their differences might differ a lot. In
order to compute distances to and between unknown recording conditions hj and hk, some
kind of interpolation has to be chosen. For this interpolation we postulate the following:

1. The topology within one recording condition resembles the topology of the other
recording conditions at least to some extent i.e. a linear scaling can be performed:

D̂
hj

hj
≈ m(D

hj

hj
,Dhi

hi
)Dhi

hi
with (17)

m(Dhk

hj
,Dhs

hi
) =

N/H
∑

p,q=1

(δpq(D
hk

hj
) − µ(Dhk

hj
))(δpq(D

hs

hi
) − µ(Dhs

hi
))

N/H
∑

p,q=1

(δpq(D
hs

hi
) − µ(Dhs

hi
))2

(18)

µ(Dhk

hj
) =

H

N

N/H
∑

p,q=1

δpq(D
hk

hj
) (19)

δpq(D
hs

hi
) refers to the distance between stars p and q in block Dhs

hi
.

2. The distance between the speaker and himself projected to another acoustic en-
vironment can be approximated by the average distance from recording environ-
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ment hj to hi:

δp′p′(D̂
hj

hi
) ≈ t(D

hj

hi
,Dhi

hi
) (20)

t(Dhk

hj
,Dhs

hi
) = m(Dhk

hj
,Dhs

hi
)µ(Dhk

hj
)

−µ(Dhs

hi
) (21)

3. The distances between hk and hj (k, j 6= i) can be interpolated from the nearest
neighbor p∗ of the desired point p′ in known conditions Dhs

hi
and a scaling factor

υ(Dhk

hj
,Dhs

hi
).

δp′q(D̂
hj

hk
) − δp∗q(D̂

hj

hk
) ≈ υ(Dhk

hj
,Dhs

hi
)(δp′q(D

hs

hi
)

−δp∗q(D
hs

hi
)) (22)

Therefore, a set of two recording conditions has to be found where the distances re-
semble the distances of the unknown combination. In order to determine the similarity
between two blocks different measures can be applied. We decided for the Pearson
correlation r [14] between the corresponding entries of the blocks i.e.

Dhs

hi
=











arg max
D

hŝ
hi

r(Dhŝ

hi
,D

hj

hk
), if k, j 6= i

Dhi

hi
, else

(23)

with ŝ = 1 . . . H. Note, that we must choose block Dhi

hi
as the most similar block if

one of the acoustic conditions is already hi, since Dhi

hi
is the only block which contains

all distances, because all of them could be observed. Using the similar distance block
Dhs

hi
or Dhi

hs
which is analogously defined, the closest point in the known domain p∗ is

found:

p∗ = arg min
q 6=p′

δp′q(D
hs

hi
); (24)

In order to transform the distances from one block to another, the average scaling

υ(Dhk

hj
,Dhs

hi
) between the distances of blocks Dhs

hi
and D

hj

hk
has to be determined:

υ(Dhk

hj
,Dhs

hi
) =

1

(N − 1)2

∑

p,q 6=p′

δpq(D
hs

hi
)

δpq(D
hj

hk
)

(25)

The interpolation of the actual distance δp′q(D̂
hj

hk
) is now computed as postulated in

Eq. 22:

δp′q(D̂
hj

hk
) = δp∗q(D̂

hj

hk
) + υ(Dhk

hj
,Dhs

hi
)(δp′q(D

hs

hi
)

−δp∗q(D
hs

hi
)) (26)

Since D̂ is a symmetric matrix, D̂
hj

hk
= D̂hk⊤

hj
is valid. This equality can be employed

to save computation time.
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Known

Predicted from observed
distances
Predicted from prior
observations

Fig. 6: Structure of D̂ in the interpolation for unseen data with H = 3 and N = 15: The red values have to
be approximated from prior knowledge while the yellow values are estimated from observed data. All green
distances are observable and can hence be directly computed.

Based on these postulates, the projection of a new star which was just observed by a
single microphone becomes possible since all entries of D̂ can now be computed. Choosing
the right weight factor Q (cf. Eq. 14) is crucial to achieve a good reduction of the influence
of the recording conditions while keeping the mapping error low. Also the factor must not
be chosen too high, for otherwise it would corrupt the results when projecting new points
into an existing map. With a good choice for Q the acoustic differences are removed from
the map. In analogy to COSMOS the method is referred to as QMOS (Quality-independent
Map Of Speakers).

Note that the use of the inter-acoustical differences from Eq. 22 is a crucial part in the
computation since the estimates from Eqs. 17 and 20 are very coarse (cf. Fig. 6). Using
Eq. 22 a lot of additional information is incorporated into the estimation process which
would be lost if we assume for example D̂hi

hj
= 0 (i 6= j) where 0 is the null matrix would

be used. So only the diagonal blocks of the distance matrix would have to be computed.
However, since D̂hi

hj
= 0 would end in a division by zero in the gradient function as well

as in the cost function, a new distance matrix D∗ =
∑

i D̂
hi

hi
has to be created and only

postulate (1) is required. The dimension of the new distance matrix is N
H ×N

H . Subsequently,
the normal Sammon mapping as defined in Eq. 8 can be performed to compute the lower
dimensional representation. This method is referred to as COSMOSΣ. As shown in Section 3
QMOS outperforms COSMOSΣ.

2.4.3 Quality Metrics for Maps

The measurement of the quality of a visualization is a very difficult task. In our case we
decided to use two measurements for the evaluation:

• Sammon Error eS: The remaining error is computed by the Sammon error function
according to Eq. 8. This error is used to describe the error of the topology in the low-
dimensional representation compared to the high-dimensional space. In the literature
this term was shown to be a crucial factor to describe the quality of a representation
[18, 10, 5]. Since the scaling of the maps influences the Sammon error, all maps were
scaled in order to match their average Euclidean distances with the average distances
of the high dimensional data, i.e. the best linear scaling in terms of the Sammon error
was created. In this manner a comparable Sammon error can be computed for the
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Table 2: Metrics for maps created from all data with the different visualization methods and rigid registra-
tion: Grouping works best with the PCA and rigid registration while COSMOS has the smallest Sammon
error.

eS eGrp

PCA 0.28 0.45
PCA + reg. 0.47 0.18
LDA 0.25 0.28
LDA + reg. 0.44 0.18
COSMOS 0.09 0.40
COSMOS + reg. 0.21 0.21

linearly transformed maps which might be scaled sub-optimally regarding the Sammon
error. All Sammon errors presented in the result section can also be interpreted as
percentages, i.e. a Sammon error of 0.25 corresponds to 25 % of the total sum of the
high dimensional distances.

• Grouping error eGrp: The average distance between stars belonging to the same group
(on a map with normalized coordinates in an interval between 0 and 1).

eGrp =
1

N

N−1
∑

i=1

N
∑

j=i+1

θijgij (27)

Note that the normalization is just performed with 1
N due to the sparsity of G.

A grouping error 0.25 corresponds to an average distance of 25 % of the maximum
distance in the map between the representations of the same speaker.

In order to test whether the mapping method is also applicable for unseen data, the ex-
periments were also conducted in Leave-One-Speaker-Out (LOO) evaluation. Therefore,
the mapping is performed as in matched conditions with all but one speaker. This speaker
is then projected into the map with the previously estimated transformation matrices in
case of the linear transformations. For the non-linear mappings the previously described
interpolation methods are applied. This is done for all recording conditions. eS and eGrp

are then computed using the LOO predicted representation of the speaker in all conditions.
Hence, the grouping error contains now the differences between the different conditions if
only one microphone was seen for the projection of the speaker. Iteration of this process
for all speakers yields the mean and the standard deviation of the LOO evaluated maps.

3. Results

The recording conditions differ a lot between the versions of the data. This can be seen in the
recognition rates of a speech recognition system trained with these data (using two thirds of
the data as training and one third as test). As reported in [7], the baseline recognition rate
for close-talking data is 77.2 % WA. The recognition drops to 12.0 % WA if the ct recognizer
is evaluated on the rm test set. In matched conditions speech recognition performs better
with 63.1 % WA on ctrv data and 46.9 % WA on rm). However, the recognition rate on the
rm data is almost of the rate of the ct data.

For all experiments the speech data, together with a transliteration of the spoken text, was
used to adapt a speech recognizer for each speaker, using MLLR adaption of the Gaussian
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(c) COSMOS + rigid registration

Fig. 7: Visualizations computed with rigid registration: Points representing the same speaker are connected
with lines. None of the visualization methods yields a good visualization. The speakers are almost randomly
distributed in each map.

mixture density for the SCHMM output probabilities. The mixture densities were used to
compute distances (cf. Section 2.2) or directly used as features (cf. Section 2.1). Then a map
was computed using the previously described methods. In the map all information from the
three recording conditions (ct, ctrv, and rm) should be represented optimally. Evaluation
criteria were the grouping error i.e. the distances between the stars representing the same
speaker in each condition and the Sammon error i.e. the preservation of the high-dimensional
topology.

The evaluation was performed for all dimensionality reduction techniques with and with-
out registration. The performance of the different methods, transforming a set of known
data, differed a lot. Table 2 shows the results. The method with the lowest grouping error
is PCA plus rigid registration. The method with the best Sammon error is COSMOS. The
visualizations of the rigid registered maps can be seen in Fig. 7. All three methods fail to
project the same speakers close to each other. None of the visualizations can be interpreted
properly.

Since the QMOS method is dependent on the weighting factor Q, the factor has to be
determined experimentally. Table 3 shows the dependency between the grouping error and
the Sammon error. The trade-off between grouping accuracy and reduction of the Sammon
error has to be determined. The higher Q the higher the Sammon error and the lower
the grouping error (cf. Fig. 8). The effect of the weight on the visualization is shown in
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Table 3: Comparison between the different mapping methods in matched and LOO condition: All methods
except QMOS fail to handle the LOO condition. For PCA, LDA, and COSMOS the rigid registration was
applied.

method known data LOO Projection
Q eS eGrp eS eGrp

PCA + reg. 0.47 0.18 0.47±0.00 0.18±0.00
LDA + reg. 0.44 0.18 17.76±9.15 0.06±0.05
COSMOS + reg. 0.21 0.21 0.24±0.01 0.14±0.01
COSMOSΣ 0.19 0.00 0.20±0.00 0.06±0.02
QMOS 0.00 0.09 0.40 0.10±0.00 0.40±0.01
QMOS 0.20 0.09 0.40 0.10±0.00 0.40±0.01
QMOS 0.40 0.09 0.39 0.10±0.00 0.39±0.01
QMOS 0.50 0.09 0.37 0.10±0.00 0.47±0.01
QMOS 0.60 0.09 0.36 0.10±0.00 0.36±0.00
QMOS 0.70 0.09 0.33 0.10±0.01 0.36±0.03
QMOS 0.75 0.16 0.07 0.16±0.03 0.22±0.10
QMOS 0.77 0.17 0.02 0.21±0.00 0.04±0.01
QMOS 0.80 0.17 0.02 0.21±0.00 0.04±0.01
QMOS 0.82 0.17 0.02 0.21±0.00 0.03±0.01
QMOS 0.85 0.18 0.03 0.22±0.00 0.04±0.00
QMOS 0.87 0.18 0.01 0.22±0.00 0.04±0.01
QMOS 0.90 0.18 0.03 0.23±0.00 0.03±0.01
QMOS 0.95 0.19 0.01 0.24±0.00 0.02±0.01
QMOS 0.96 0.24 0.00 0.24±0.00 0.00±0.00
QMOS 0.99 0.22 0.00 0.28±0.04 0.05±0.05
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Sammon error LOO
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Fig. 8: Sammon and grouping errors in dependency of Q (cf. Table 3)

Fig. 9. The optimal value of the grouping error is at Q = 0.87 with a grouping error of only
0.01. At that position the trade-off between grouping and Sammon error is also optimal.
Note that there are several configurations of Q which yield optimal sums of the grouping
error and the Sammon error, i.e. one can choose from several values of Q depending on the
problem one wishes to visualize.

Table 3 also displays the leave-one-speaker-out evaluation in order to test for the stability
of the method. As can be seen, the PCA with rigid registration performs as bad as in
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rm
ct

ctrv

(a) Q = 0

rm
ct

ctrv

(b) Q = 0.75

rm
ct

ctrv

(c) Q = 0.87

Fig. 9: QMOS with three different weight factors. On the left side, the recording conditions are marked as
close-talk (ct), ct + artificial reverberation (ctrv), and remote talk (rm). Note that almost all stars are at
the same position with Q = 0.87 and can, hence, not be distinguished. On the right side, the stars belonging
to one speaker are connected with lines. The fewer lines, the lower is the grouping error. The symbols
represent each individual speaker.
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Table 4: Correlations between the different blocks of the distance matrices D and its best predictors. Note
that in the line and in the column of the condition which is to be predicted only Nm values have to be
predicted. The correlations for the blocks where the most predictions (2Nm − 1) are required are printed in
bold face.

(a) Prediction of hct

D hct hctrv hrm

hct 1 (known) 0.90 (Dhct

hct

) 0.71 (Dhct

hct

)

hctrv 0.90 (Dhct

hct

) 0.98 (Dhct

hct
) 0.99 (Dhct

hrm
)

hrm 0.71 (Dhct

hctrv

) 0.99 (Dhrm

hct
) 0.87 (Dhct

hct
)

(b) Prediction of hctrv

D hct hctrv hrm

hct 0.98 (Dhctrv

hctrv
) 0.93 (Dhctrv

hctrv

) 0.99 (Dhctrv

hrm
)

hctrv 0.93 (Dhctrv

hctrv

) 1 (known) 0.63 (Dhctrv

hctrv

)

hrm 0.99 (Dhrm

hctrv
) 0.63 (Dhctrv

hctrv

) 0.85 (Dhctrv

hctrv
)

(c) Prediction of hrm

D hct hctrv hrm

hct 0.87 (Dhrm

hrm
) 0.88 (Dhrm

hrm
) 0.92 (Dhrm

hrm

)

hctrv 0.88 (Dhrm

hrm
) 0.85 (Dhrm

hrm
) 0.89 (Dhrm

hrm

)

hrm 0.92 (Dhrm

hrm

) 0.89 (Dhrm

hrm

) 1 (known)

matched conditions with known data. The projection, however, is very stable with a stan-
dard deviation which is close to 0. LDA shows a very low grouping error but a very high
Sammon error which is caused by the projection of the new data. Since the data were not
seen during the computation of the transformation matrix, the new points are projected far
away from the other stars. Hence, in the resulting map the previously projected stars are
all very close to each other which causes the grouping error to be very low. The Sammon
error increases a lot and is on average 18 times higher than the sum of all high-dimensional
distances i.e. the result is mostly independent of the high-dimensional configuration. Rigid
registration of the COSMOS maps shows a similar performance in the LOO case as in the
matched case. The Sammon error is quite low, but the grouping error is high. This is
also the case for the COSMOSΣ mapping although it performs slightly better. The first
configurations with low Q show a very low Sammon error, but their grouping error is quite
high. With increasing Q the grouping error drops while the Sammon error grows. With
Q = 0.82 and Q = 0.96, two very stable configurations are found. One allows a greater
variation in the grouping of the points while the other one allows a greater deviation in
the dimensionality reduction error. The projection error is about half of the PCA Sammon
error while the grouping error is reduced close to zero even in LOO evaluation. If Q is
chosen too high, both errors increase (Q = 0.99).

Table 4 shows the prediction quality according to postulates 1,2, and 3 (cf. Section 2.4.2).
The prediction of the blocks outside the diagonal of D is performed according to the nearest
neighbor postulate. Good predictors of all blocks can be found. The best prediction block
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is printed in brackets behind the value. The correlations between the blocks range from
0.99 to 0.63 which are all significant (significance level p<0.01).

4. Discussion

In this study we evaluated visualization methods for speakers in different acoustic condi-
tions. For this purpose we chose a children database which consists of 25.5 hours (3×8.5 h)
in total. Speech data was recorded in three different ways showing high differences due to
the recording conditions.

We present common methods for the visualization of speaker data. None of them could
provide a reliable result. The linear methods for dimensionality reduction (LDA and PCA)
and the rigid registration could only yield maps in which the corresponding speakers are in a
corresponding region. The grouping error, however, is far too high to interpret the map. For
the PCA and rigid registration, this was also the case in the LOO evaluation. LDA could not
handle unseen data. It caused an extreme increase in the projection error. Investigation of
other linear methods such as Independent Components Analysis (ICA) showed even worse
results since the selection criterion for the components poses a major problem. Selection of
components which reduced the grouping error extremely increased the Sammon error and
vice versa. Only the proposed method could yield a satisfying representation of the data.
A configuration with a lower group or Sammon error than the proposed method could not
be obtained. Therefore, results with ICA are not presented in this article.

The non-linear dimensionality reduction with the Sammon mapping surpassed the lin-
ear methods in the projection error in all cases. The grouping error, however, was worse
even when a rigid registration was performed. So registration had to be included into the
process in a non-linear manner. On the one hand, the summation of corresponding dis-
tances and therewith declaring these points as identical worked well in matched conditions
(COSMOSΣ) with a grouping error of 0. On the other hand, the method had a rather high
grouping error in the LOO evaluation. However, the error is only half as high compared to
the rigid registration. In the LOO evaluation, only QMOS was able to create an accurate
representation of the speakers even when the recording was just performed with one micro-
phone. This was achieved by linear interpolation in the distance domain instead of the map
domain. The average grouping error was much lower than the minimal error of the other
transformations (PCA) in LOO evaluation while keeping the projection error in the same
range as the other non-linear methods (e.g. COSMOSΣ).

In the future QMOS will be applied on clinical data. First a database with validated data
has to be collected using a single microphone. Next, the data can be used as calibration
data. Then new recording stations can use these data to compare new speakers with the
validated data set.

5. Conclusion

We successfully created a new method for the robust visualization of speaker dependencies:
Using our method it is possible to display speech data although the data were collected with
different microphones. Furthermore, the method can even handle very strong differences in
the acoustic conditions which occurred in the data.

The QMOS method is the only method to reduce the influence of recording conditions
on a visualization (grouping error was almost zero) while keeping the mapping error low
(Sammon error eS < 0.25). It performs better than rigid registration in minimizing the
grouping error with a Sammon error that is about half of the error in the linear methods
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(PCA and LDA). The key to create an appealing map with well-balanced Sammon and
grouping error is how to choose an appropriate weight factor Q.

Finally, the data collected with different microphones can be projected into one single
map. This allows for unified maps of speaker dependencies which enable analyses of speech
data even if they were collected in different acoustic conditions.
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Pavelka, editors, Text, Speech and Dialogue; 8th International Conference TSD 2005, volume
3658 of Lecture Notes in Artificial Intelligence, pages 226–233. Springer, Berlin, Germany, 2005.
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