Cache related pre-emption delays in hierarchical
scheduling

Will Lunniss! - Sebastian Altmeyer? -
Giuseppe Lipari>* - Robert I. Davis!

Abstract Hierarchical scheduling provides a means of composing multiple real-time
applications onto a single processor such that the temporal requirements of each appli-
cation are met. This has become a popular technique in industry as it allows applications
from multiple vendors as well as legacy applications to co-exist in isolation on the
same platform. However, performance enhancing features such as caches mean that
one application can interfere with another by evicting blocks from cache that were
in use by another application, violating the requirement of temporal isolation. In this
paper, we present analysis that bounds the additional delay due to blocks being evicted
from cache by other applications in a system using hierarchical scheduling when using
either a local FP or EDF scheduler.

Keywords Cache related pre-emption delays - Hierarchical scheduling - Fixed
priority pre-emptive scheduling - Earliest deadline first pre-emptive scheduling -
Response time analysis

B Will Lunniss
wl510@york.ac.uk

Sebastian Altmeyer
sebastian.altmeyer @uni.lu

Giuseppe Lipari
giuseppe.lipari @univ-lille1.fr

Robert I. Davis

rob.davis@york.ac.uk

Department of Computer Science, University of York, York, UK
LASSY Group, University of Luxembourg, Luxembourg, Luxembourg
3 CRIStAL, UMR 9189, Univ. Lille, 59650 Villeneuve d’Ascq, France

4 IRCICA, USR 3380, 59650 Villencuve d’Ascq, France

202

1 Introduction

There is a growing need in industry to combine multiple applications together to build
complex embedded real-time systems. This is driven by the need to re-use legacy appli-
cations that once ran on slower, but dedicated processors. Typically, it is too costly
to go back to the design phase resulting in a need to use applications as-is. Further-
more, there are often a number of vendors involved in implementing today’s complex
embedded real-time systems, each supplying separate applications which must then
be integrated together. Hierarchical scheduling provides a means of composing mul-
tiple applications onto a single processor, such that the temporal requirements of each
application are met. Each application, or component, has a dedicated server. A global
scheduler then allocates processor time to each server, during which the associated
component can use its own local scheduler to schedule its tasks.

In hard real-time systems, the worst-case execution time (WCET) of each task
must be known offline in order to verify that the timing requirements will be met at
runtime. However, in pre-emptive multi-tasking systems, caches introduce additional
cache related pre-emption delays (CRPD) caused by the need to re-fetch cache blocks
belonging to the pre-empted task which were evicted from the cache by the pre-
empting task. These CRPD effectively increase the worst-case execution time of the
tasks, which violates the assumption used by classical schedulability analysis that a
tasks’ execution time is not affected by the other tasks in the system. It is therefore
important to be able to calculate, and account for, CRPD when determining if a system
is schedulable, otherwise the results obtained could be optimistic. This is further
complicated when using hierarchical scheduling as servers will often be suspended
while their components’ tasks are still active. In this case they have started, but have
not yet completed executing. While a server is suspended the cache can be polluted
by the tasks belonging to other components. When the global scheduler then switches
back to the first server, tasks belonging to the associated component may have to reload
blocks into cache that were in use before the global context switch.

1.1 Related work on hierarchical scheduling

Hierarchical scheduling has been studied extensively in the past 15 years. Deng and
Liu (1997) were the first to propose such a two-level scheduling approach. Later Feng
and Mok (2002) proposed the resource partition model and schedulability analysis
based on the supply bound function. Shin and Lee (2013) introduced the concept
of a temporal interface and the periodic resource model, and refined the analysis of
Feng and Mok. Kuo and Li (1998) and Saewong et al. (2002) specifically focused on
fixed priority hierarchical scheduling. Lipari and Bin (2005) solved the problem of
computing the values of the partition parameters to make an application schedulable.
Davis and Burns (2005) proposed a method to compute the response time of tasks
running on a local fixed priority scheduler. Later, Davis and Burns (2008) investigated
selecting optimal server parameters for fixed priority pre-emptive hierarchical systems.
When using alocal EDF scheduler Lipari et al. (2000a, b) investigated allocating server
capacity to components, proposing an exact solution. Recently Fisher and Dewan

203

(2012) developed a polynomial-time approximation with minimal over provisioning
of resources.

Hierarchical systems have been used mainly in the avionics industry. Integrated
Modular Avionics (IMA) (Watkins and Walter 2007; ARINC 1991) is a set of standard
specifications for simplifying the development of avionics software. Among other
requirements it allows different independent applications to share the same hardware
and software resources (ARINC 1996). The ARINC 653 standard (ARINC 1996)
defines temporal partitioning for avionics applications. The global scheduleris asimple
Time Division Multiplexing (TDM), in which time is divided into frames of fixed
length, each frame is divided into slots and each slot is assigned to one application.

1.2 Related work on CRPD

Analysis of CRPD uses the concept of useful cache blocks (UCBs) and evicting cache
blocks (ECBs) based on the work by Lee et al. (1998). Any memory block that is
accessed by a task while executing is classified as an ECB, as accessing that block
may evict a cache block of a pre-empted task. Out of the set of ECBs, some of them
may also be UCBs. A memory block m is classified as a UCB at program point p, if
(i) m may be cached at p and (ii) m may be reused at program point g that may be
reached from p without eviction of m on this path, assuming no pre-emption. In the
case of a pre-emption at program point p, only the memory blocks that are (i) in cache
and (i1) will be reused, may cause additional reloads. For a more thorough explanation
of UCBs and ECBs, see Sect. 2.1 “Pre-emption costs” of Altmeyer et al. (2012).

Depending on the approach used, the CRPD analysis combines the UCBs belong-
ing to the pre-empted task(s) with the ECBs of the pre-empting task(s). Using this
information, the total number of blocks that are evicted, which must then be reloaded
after the pre-emption, can be calculated and combined with the cost of reloading a
block to give an upper bound on the CRPD.

A number of approaches have been developed for calculating the CRPD when using
FP pre-emptive scheduling under a single-level system. They include Lee et al. (1998)
UCB-Only approach, which considers just the pre-empted task(s), and Busquets-
Mataix et al. (1996) ECB-Only approach which considers just the pre-empting task.
Approaches that consider the pre-empted and pre-empting task(s) include Tan and
Mooney (2007) UCB-Union approach, Altmeyer et al. (2011) ECB-Union approach,
and an alternative approach by Staschulat et al. (2005). Finally, there are advanced
multiset based approaches that consider the pre-empted and pre-empting task(s) by
Altmeyer et al. (2012), ECB-Union Multiset, UCB-Union Multiset, and a combined
multiset approach. There has been less work towards developing CRPD analysis for
EDF pre-emptive scheduling under a single-level system. Campoy et al. (2004) pro-
posed an approach where the majority of blocks are locked into cache, with a small
temporal buffer for use by those that are not. An upper bound on the CRPD can then
be calculated by including the relatively small cost of reloading the temporal buffer
for each pre-emption that could occur. Ju et al. (2007) considered the intersection of
the pre-empted task’s UCBs with the pre-empting task’s ECBs. Lunniss et al. (2013)
adapted a number of approaches for calculating CRPD for FP to work with EDF.

204

Including the ECB-Only, UCB-Only, UCB-Union, ECB-Union, ECB-Union Multi-
set, UCB-Union Multiset and combined multiset CRPD analysis for FP given by
Busquets et al. (1996), Lee et al. (1998), Tan and Mooney (2007), and Altmeyer et al.
(2012).

Xu et al. (2013) proposed an approach for accounting for cache effects in multicore
virtualization platforms. However, their focus was on how to include CRPD and cache
related migration delays into a compositional analysis framework, rather than how to
tightly bound the task and component CRPD.

This paper forms an extended version of “Accounting for Cache Related Pre-
emption Delays in Hierarchical Scheduling” (Lunniss et al. 2014a) which was
published in RTNS 2014. The main additional contributions are as follows: The intro-
duction of new CRPD analysis for hierarchical scheduling with a local EDF scheduler
(Sect. 7). Extending the evaluation with results for EDF and with some additional
evaluations to explain the differences in the results obtained using a local FP sched-
uler vs a local EDF scheduler. Note: Preliminary results for the EDF extension were
presented in a workshop paper “Accounting for Cache Related Pre-emption Delays
in Hierarchical Scheduling with Local EDF Scheduler” (Lunniss et al. 2014b) at the
JRWRTC at RTNS 2014.

1.3 Organisation

The remainder of the paper is organised as follows. Section 2 introduces the system
model, terminology and notation used. Section 3 covers existing schedulability and
CRPD analysis for single-level systems scheduled under FP. Section 4 details how
schedulability analysis can be extended for hierarchical systems. Section 5 introduces
the new analysis for accounting for CRPD in hierarchical scheduling with a local FP
scheduler. Section 6 covers existing schedulability and CRPD analysis for single-level
systems scheduled under EDF. Section 7 introduces the new analysis for accounting
for CRPD in hierarchical scheduling with a local EDF scheduler. Section 8 evaluates
the analysis using case study data, and Sect. 9 evaluates it using synthetically generated
tasksets. Finally, Sect. 9.4 concludes with a summary and outline of future work.

2 System model, terminology and notation

This section describes the system model, terminology, and notation used in the rest of
the paper.

We assume a uniprocessor system comprising m applications or components, each
with a dedicated server (S!...S™) that allocates processor capacity to it. We use W
to represent the set of all components in the system. G is used to indicate the index of
the component that is being analysed. Each server S¢ has a budget Q¢ and a period
PC, such that the associated component will receive Q€ units of execution time
from its server every PC units of time. Servers are assumed to be scheduled globally
using a non-pre-emptive scheduler, as found in systems that use time partitioning
to divide up access to the processor. While a server has remaining capacity and is
allocated the processor, we assume that the tasks of the associated component are

205

scheduled according to the local scheduling policy. If there are no tasks in the associated
component to schedule, we assume that the processor idles until the server exhausts
all of its capacity, or a new task in the associated component is released. We initially
assume a closed system, whereby information about all components in the system is
known. Later we relax this assumption and present approaches that can be applied to
open hierarchical systems, where the other components may not be known a priori as
they can be introduced into a system dynamically. These approaches can also be used
in cases where full information about the other components in the system may not be
available until the final stages of system integration.

The system comprises a taskset I' made up of a fixed number of tasks (7 ... 7,)
divided between the components which do not share code. Tasks are scheduled locally
using either FP or EDF. In the case of a local FP scheduler, the priority of task t;, is i,
where a priority of 1 is the highest and n is the lowest. Priorities are unique, but are only
meaningful within components. Each component contains a strict subset of the tasks,
represented by 'S, For simplicity, we assume that the tasks are independent and do
not share resources requiring mutually exclusive access, other than the processor. (We
note that global and local resource sharing has been extensively studied for hierarchical
systems (Davis and Burns 2006; Behnam et al. 2007; Asberg et al. 2013). Resource
sharing and its effects on CRPD have also been studied for single level systems by
Altmeyeretal. (2011,2012). However, such effects are beyond the scope of this paper).

Each task 7; may produce a potentially infinite stream of jobs that are separated by
a minimum inter-arrival time or period 7;. Each task has a relative deadline D;, a worst
case execution time C; (determined for non-pre-emptive execution) and release jitter
Ji. Each task has a utilisation U;, where U; = C; / T;, and each taskset has a utilisation
U which is equal to the sum of its tasks’ utilisations. We assume that deadlines are
constrained (i.e. D; < T;). In the case of a local FP scheduler, we use the notation
hp(i) to mean the set of tasks with priorities higher than that of task z; and hep(i) to
mean the set of tasks with higher or equal priorities. We also use the notation hp(G,i),
and hep(G,i), to restrict hp(i), and hep(i), to just tasks of component G.

With respect to a given system model, a schedulability test is said to be sufficient if
every taskset it deems to be schedulable is in fact schedulable. Similarly, a schedula-
bility test is said to be necessary if every taskset it deems to be unschedulable is in fact
unschedulable. Tests that are both sufficient and necessary are referred to as exact.

A schedulability test A is said to dominate another schedulability test B if all of
the tasksets deemed schedulable by test B are also deemed schedulable by test A, and
there exist tasksets that are schedulable according to test A but not according to test B.
Schedulability tests A and B are said to be incomparable if there exists tasksets that
are deemed schedulable by test A and not by test B and also tasksets that are deemed
schedulable by test B and not by test A.

Each task t; has a set of UCBs, UCB; and a set of ECBs, ECB; represented by a
set of integers. If for example, task 71 contains 4 ECBs, where the second and fourth
ECBs are also UCBs, these can be represented using ECBy = {1,2,3,4} and UCB;
= {2,4}. We use |UCB| to give the cardinality of the set, for example if UCB; =
{2,4}, |lUCB{| = 2 as there are 2 cache blocks in UCB|, Each component G also has
a set of UCBs, UCBY and a set of ECBs, ECBY, that contain respectively all of the

206

UCBs, and all of the ECBs, of the associated tasks, UCBC = UWI_GFG UCB; and
ECBY = Uy, rc ECB;.

Each time a cache block is reloaded, a cost is introduced that is equal to the block
reload time (BRT).

We assume a single level instruction only direct mapped cache. Data caches with a
write-through policy are also supported however, further extension would be required
for data caches under a write-back policy. In the case of set-associative Least Recently
Used (LRU)! caches, a single cache-set may contain several UCBs. For example,
UCB = {2,2,4} means that task 7; has two UCBs in cache-set 2 and one UCB in
cache set 4. As one ECB suffices to evict all UCBs of the same cache-set, multiple
accesses to the same set by the pre-empting task do not appear in the set of ECBs. A
bound on the CRPD in the case of LRU caches due to task t; directly pre-empting t;
is thus given by the intersection UCB; " ECB; = {m|m € UCB; : m € ECB;}, where
the result is a multiset that contains each element from UCB; if it is also in ECB;. A
precise computation of CRPD in the case of LRU caches is given in Altmeyer et al.
(2010). The equations provided in this paper can be applied to set-associative LRU
caches with the above adaptation to the set-intersection.

3 Existing schedulability and CRPD analysis for FP scheduling

In this section we briefly recap how CRPD can be calculated in a single-level system
scheduling using fixed priorities. Schedulability tests are used to determine if a taskset
is schedulable, i.e. all the tasks will meet their deadlines given the worst-case pattern
of arrivals and execution. For a given taskset, the response time R; for each task t;,
can be calculated and compared against the tasks’ deadline, D;. If every task in the
taskset meets its deadline, then the taskset is schedulable. In the case of a single-level
system, the equation used to calculate R; is Audsley et al. (1993):

RY + J;
R =i+ > [ﬂcj (1)

Vjehp(i) Tj

Equation (1) can be solved using fixed point iteration. Iteration continues until either
R;H'l > D; — J; in which case the task is unschedulable, or until Rf“"l = R in
which case the task is schedulable and has a worst-case response time of R;'. Note
the convergence of (1) may be sped up using the techniques described in Davis et al.
(2008).

To account for the CRPD, a term y; ; is introduced into (1). There are a number
of approaches that can be used, and for explanations of the analysis, see Altmeyer et
al. (2012). In this work, we use the Combined Multiset approach by Altmeyer et al.
(2012) for calculating the CRPD at task level. In this approach, y; ; represents the
total cost of all pre-emptions due to jobs of task 7; executing within the response time
of task 7;. Incorporating y; ; into (1) gives a revised equation for R;:

! The concept of UCBs and ECBs cannot be applied to the FIFO or Pesudo-LRU replacement policies as
shown by Burguiere et al. (2009).

207

RY +J;
R =Cit 2 ([Tﬂ Cﬁm) @)
J

Vjehp(i)

4 Schedulability analysis for hierarchical systems

Hierarchical scheduling is a technique that allows multiple independent components to
be scheduled on the same system. A global scheduler allocates processing resources
to each component via server capacity. Each component can then utilise the server
capacity by scheduling its tasks using a local scheduler. A global scheduler can either
be non-pre-emptive or pre-emptive. In this work we assume a non-pre-emptive global
scheduler.

4.1 Supply bound function

In hierarchical systems, components do not have dedicated access to the processor,
but must instead share it with other components. The supply bound function (Shin and
Lee 2013), or specifically, the inverse of it, can be used to determine the maximum
amount of time needed by a specific server to supply some capacity c.

Figure 1 shows an example for server S¢ with Q¢ = 5 and P® = 8. Here we
assume the worst case scenario where a task is activated just after the server’s budget
is exhausted. In this case, the first instance of time at which tasks can receive some
supply is at 2(P¢ — Q%) = 6.

We define the inverse supply bound function, isbf, which gives the maximum amount
of time needed by server S¢ to supply some capacity c as isbf ¢ (Richter 2005):

isbf%(c) =c+ (P% = Q%) ([él + 1) 3)

Fig. 1 General case of a server where Q¢ =5and P¢ =38 showing it can take up to 6 time units before
a task receives supply

208

" — —
5! [] []
A N I
-4 -2 0 2 4 6 8 10 12 14 16 18 20
[] component execution [task execution

Fig. 2 Example global schedule to illustrate the server suspend and resume calculation with
PO =pZ_pY =8 00=50%2=20"=1

In order to account for component level CRPD, we must define two terms. We use
EC (1) to denote the maximum number of times server S¢ can be both suspended and
resumed within an internal of length 7:

ECS(t) =1+ {#J (4)

Figure 2 shows an example global schedule for three components, G, Z and Y. When
t > 0, server S can be suspended and resumed at least once. Then for each increase in
t by P, server S could be suspended and resumed one additional time per increase
in 1 by PY. We note that this is a conservative bound on the number of times that a
server is both suspended and resumed within an interval of length z.

We use the term disruptive execution to describe an execution of server S while
server SC is suspended that results in tasks from component Z evicting cache blocks
that tasks in component G may have loaded and need to reload. Note that if server
SZ runs more than once while server S© is suspended, its tasks cannot evict the same
blocks twice. As such, the number of disruptive executions is bounded by the number
of times that server SC can be both suspended and resumed. We use XZ to denote the
maximum number of such disruptive executions.

XZ%(S%, 1) = min (EG(t), 1+ [#D (5)

Figure 3 shows an example global schedule for components G and Z. Between ¢ = 0
and ¢ = 6, component Z executes twice, but can only evict cache blocks that tasks in
component G might have loaded and need to reload once.

Note that if multiple components e.g. Y and Z run while component G is suspended,
then they can only evict the UCBs of component G once. The above observations are
used in the derivation of CRPD analysis in the next section.

sz l |
s¢ | — ——— 1
- 0 2 4 6 10 12 14

8
[__] component execution B task execution

Fig. 3 Example global schedule to illustrate the disruptive execution calculation with PG = pZ =3,
0% =5.07=3

209

5 CRPD analysis for hierarchical systems with local FP scheduler

In this section, we describe how CRPD analysis can be extended for use in hierarchical
systems with a local FP scheduler and integrated into the schedulability analysis for it.
We do so by extending the concepts of ECB-only, UCB-only, UCB-union and UCB-
union multiset analysis introduced in Busquets-Mataix et al. (1996), Lee et al. (1998),
Tan and Mooney (2007) and Altmeyer etal. (2012) respectively to hierarchical systems.
This analysis assumes a non-pre-emptive global scheduler such that the capacity of a
server is supplied without pre-emption, but may be supplied starting at any time during
the server’s period. It assumes that tasks are scheduled locally using a pre-emptive
fixed priority scheduler. We explain a number of different methods, building up in
complexity.

The analysis needs to capture the cost of reloading any UCBs into cache that may be
evicted by tasks belonging to other components; in addition to the cost of reloading any
UCBs into cache that may be evicted by tasks in the same component. For calculating
the intra-component CRPD, we use the Combined Multiset approach by Altmeyer
et al. (2012). This can be achieved by combining the intra-component CRPD due to
pre-emptions between tasks within the same component via the Combined Multiset
approach, (2), with isbf G, (3), with a new term, yl.G:

R =ishfC [Ci+ D Ri+Jj Ci+vij ¢ 6
ot = ; itV)ty (6)

) . T,
Vjehp(G,i)

Here, in represents the CRPD on task 7; in component G caused by tasks in the other
components running while the server, S¢, for component G is suspended. Use of the
inverse supply bound function gives the response time of t; under server, S¢, taking
into account the shared access to the processor.

5.1 ECB-only

A simple approach to calculate component CPRD is to consider the maximum effect
of the other components by assuming that every block evicted by the tasks in the other
components has to be reloaded. There are two different ways to calculate this cost.

5.1.1 ECB-only-all

The first option is to assume that every time server SC is suspended, all of the other
servers run and their tasks evict all the cache blocks that they use. We therefore take
the union of all ECBs belonging to the other components to get the number of blocks
that could be evicted. We then sum them up E G(R;) times, where EC(R;) upper
bounds the number of times server SC could be both suspended and resumed during
the response time of task 7;, see (4). We can calculate the CRPD impacting task t; of
component G due to the other components in the system as:

210

y¢ =BRT - ES(R)-| |) ECB” (7)

VZ e W
N #G

5.1.2 ECB-only-counted

The above approach works well when the global scheduler uses a TDM schedule,
such that each server has the same period and/or components share a large number of
ECBs. If some servers run less frequently than server S©, then the number of times
that their ECBs can evict blocks may be over counted. One solution to this problem
is to consider each component separately. This is achieved by calculating the number
of disruptive executions that server SZ can have on task 7; in component G during
the response time of task 7;, given by X Z(SY9, R)), see (5). We can then calculate an
alternative bound for the CRPD incurred by task 7; of component G due to the other
components in the system as:

¢ =BRT - 3 (XZ(SG, R)) - |ECBZD @®)

VZ e W
ANZ #G

Note that the ECB-only-all and ECB-only-counted approaches are incomparable.

5.2 UCB-only

Alternatively we can focus on the tasks in component G, hence calculating which
UCBs could be evicted if the entire cache was flushed by the other components in the
system. However, task t; may have been pre-empted by higher priority tasks. So we
must bound the pre-emption cost by considering the number of UCBs over all tasks
in component G that may pre-empt task 7; and task 7; itself, given by tx € hep(G, i).

U UCB;,)

VYkehep(G,i)

We multiply the number of UCBs, (9), by the number of times that server S¢ can be
both suspended and resumed during the response time of task 7; to give:

y¢ =BRT -E°(R)-| |J UCB (10)
Vkehep(G,i)

This approach is incomparable with the ECB-only-all and ECB-only-counted
approaches.

211

5.3 UCB-ECB

While it is sound to only consider the ECBs of the tasks in the other components, or
only the UCBs of the tasks in the component of interest, these approaches are clearly
pessimistic. We can tighten the analysis by considering both.

5.3.1 UCB-ECB-all

We build upon the ECB-only-all and UCB-only methods. For task t; and all tasks that
could pre-empt it in component G, we first calculate which UCBs could be evicted
by the tasks in the other components, this is given by (9). We then take the union of
all ECBs belonging to the other components to get the number of blocks that could
potentially be evicted. We then calculate the intersection between the two unions to
give an upper bound on the number of UCBs evicted by the ECBs of the tasks in the
other components.

J ucBi|n| |J EcB” (11)
Vkehep(G,i) VZ e ¥
AN #G

This is then multiplied by the number of times that the server S® could be both
suspended and resumed during the response time of task ; to give:

y¢ =BRT - EY(R)) - J wuvcsi|n| |J EcB” (12)
Vkehep(G,i) YZ e ¥
NZ #G

By construction, the UCB-ECB-AIl approach dominates the ECB-only-all and UCB-
only approaches.

5.3.2 UCB-ECB-counted

Alternatively, we can consider each component in isolation by building upon the ECB-
only-counted and UCB-only approaches. For task 7; and all tasks that could pre-empt
it in component G, we start by calculating an upper bound on the number of blocks
that could be evicted by component Z:

U UCB; | N ECB? (13)
Vkehep(G,i)

We then multiply this number of blocks by the number of disruptive executions that
server SZ can have during the response time of task 7;, and sum this up for all com-

212

ponents to give:

yC =BRT - > [X*SC. R)) - |J UCB: | NECB” (14)
VZ e U Vkehep(G,i)
NZ #G

By construction, the UCB—ECB-counted approach dominates the ECB-only-counted
approach, but is incomparable with the UCB-only approach.

5.4 UCB-ECB-multiset

The UCB-ECB approaches are pessimistic in that they assume that each component
can, directly or indirectly, evict UCBs of each task 74 € hep(G, i) in component G
up toEY (R;) times during the response time of task 7;. While this is potentially true
when 7y = 1;, it can be a pessimistic assumption in the case of intermediate tasks
which may have much shorter response times. The UCB-ECB-multiset approaches,
described below, remove this source of pessimism by upper bounding the number
of times intermediate task t; € hep(G, i) can run during the response time of ;.
They then multiply this value by the number of times that the server S¢ can be both
suspended and resumed during the response time of task ty, E G(Ry).

5.4.1 UCB-ECB-multiset-all

First we form a multiset M ”Cl.’ that contains the UCBs of task t; repeated
ECS(Ry)Er(R;) times for each task 7 € hep(G,i). This multiset reflects the fact
that the UCBs of task 7 can only be evicted and reloaded E G(Ry)Ex(R;) times dur-
ing the response time of task 7; as a result of server S¢ being suspended and resumed.

ME? = U U UCB;y (15)

Vkehep(G,i) \ EG(R)Er(R;})

Then we form a second multiset M; eCh A that contains E G(R) copies of the ECBs
of all of the other components in the system This multiset reflects the fact that the
other servers’ tasks can evict blocks that may subsequently need to be reloaded at most
ECS(R;) times within the response time of task ;.

Mg = | J ECB” (16)
EGR) | VZevw
N #G

The total CRPD incurred by task t;, in component G due to the other components in
the system is then bounded by the size of the multiset intersection of M gcf’ , (15), and

213

Mg, (16).
v =BRT - Mgy 0 Mg (17)

5.4.2 UCB-ECB-multiset-counted

For the UCB-ECB-multiset-counted approach, we keep equation (15) for calculat-
ing the set of UCBs; however, we form a second multiset M g”:ll.’_c that contains
XZ2(89, R;) copies of the ECBs of each other component Z in the system. This mul-
tiset reflects the fact that tasks of each server SZ can evict blocks at most X% (S%, R;)
times within the response time of task ;.

Mg = |J Ec” (18)
VZeWw \XZ(SG,R)
AN #G

The total CRPD incurred by task t;, in component G due to the other components in
the system is then bounded by the size of the multiset intersection of M gcf’ , (15), and

Mg, (18).
v =BRT - |M&? n Mg (19)

5.4.3 UCB-ECB-multiset-open

In open hierarchical systems the other components may not be known a priori as
they can be introduced into a system dynamically. Additionally, even in closed sys-
tems, full information about the other components in the system may not be available
until the final stages of system integration. In both of these cases, only the UCB-
only approach can be used as it requires no knowledge of the other components. We
therefore present a variation called UCB-ECB-multiset-open that improves on UCB-
Only while bounding the maximum component CRPD that could be caused by other
unknown components. This approach draws on the benefits of the Multiset approaches,
by counting the number of intermediate pre-emptions, while also recognising the fact
that the cache utilisation of the other components can often be greater than the size of
the cache. As such, the precise number of ECBs does not matter.

For the UCB-ECB-multiset-open approach we keep Eq. (15) for calculating the
set of UCBs. Furthermore, we form a second multiset M gcfl.’_o that contains E¢ (R;)
copies of all cache blocks. This multiset reflects the fact that server SC can be both
suspended and resumed, and the entire contents of the cache evicted at most E G(R)
times within the response time of task 7;.

214

M0 = | dn.2.... N, (20)

EC(R))

where N is the number of cache sets.
The total CRPD incurred by task t;, in component G due to the other unknown
components in the system is then bounded by the size of the multiset intersection of
ME?, (15), and ME?=9, (20).

5.5 Comparison of approaches

We have presented a number of approaches that calculate the CRPD due to global
context switches, server switching, in a hierarchical system. All of the approaches can
be applied to a system where full knowledge of all of the components is available i.e. a
closed system. Two of the approaches, UCB-only and UCB-ECB-multiset-open, can
also be applied to systems where there is no knowledge about the other components
in the system i.e. these methods are applicable to open systems. This allows an upper
bound on the inter-component CRPD to be calculated for a component in isolation.
Figure 4 shows a Venn diagram representing the relationships between the different
approaches. The larger the area, the more tasksets the approach deems schedula-
ble. The diagram highlights the incomparability between the ‘-All’ and ‘-Counted’
approaches, which results in them determining a different set of tasksets schedulable.
The diagram also highlights dominance. For example, by construction, UCB-ECB-
multiset-all dominates UCB—ECB-multiset-open as it also considers the tasks in the
other components. Similarly, UCB—ECB-all dominates ECB-only-all as it considers

UCB-FCB-MU]IiSCl:@l_I ____ UCB-ECB-ALL
—. ECB-Only All

UCB-ECB-Multiset-Open

Fig. 4 Venn diagram showing the relationship between the different approaches

215

the tasks in all components whereas ECB-only-all does not consider the tasks in the
suspended component.

We now give worked examples illustrating both incomparability and dominance
relationships between the different approaches.

Consider the following example with three components, G, A and B, where compo-
nent G has one task, Let BRT=1, EC (Ry) = 10, XA(S%, Ry) = 10, XB(S°, Ry) = 2,
ECBA = {1,2} and ECBE = {3,4,5,6,7,8,9, 10}. In this example components A
and G run at the same rate, while component B runs at a tenth of the rate of component
G.

ECB-only-all considers the ECBs of component B effectively assuming that com-
ponent B runs at the same rate as component G:

yC = BRT x E¢(R) x |[ECBA UECB?

yC =1x10x [{1,2}U{3,4,5,6,7,8,9, 10}]
=10 x [{1,2,3,4,5,6,7,8,9,10}| = 10 x 10 = 100

By comparison ECB-only-counted considers components A and B individually, and
accounts for the ECBs of component B based on the number of disruptive executions
that it may have.

7€ = BRT x (XA(SC, Ry) x [ECBA| + X (5%, Ry) x [ECB|)

ylG =1x10x|[{1,2}]+2 x |{3,4,5,6,7,8,9, 10}|)
=(10x2)+(2x8) =36

We now present a more detailed worked example for all approaches where the
ECB-only-all approach outperforms the ECB-only-counted approach. This confirms
the incomparability of the -All and -Counted approaches.

Figure 5 shows an example schedule for four components, G, A, B and C, where
component G has two tasks. Let BRT=1, E¢(R;) = 1, E¢(Ry) = 2, E1(Ry) = 1
and E2(Ry) = 1, and the number of disruptive executions be:

XAS9 R)=1, XBSC R)=1, X(SC R) =1land X (5%, Ry) =2,
XB(SC, Ry) =2,XC(SY, Ry) =2.

The following examples show how some of the approaches calculate the component
CRPD for task 7, of component G.
ECB-only-all:

vy = BRT x E®(Ry) x |[ECB* UECB? UECB®

yZ =1x2x1{2,3,4,5,6,7,8}U{2,3,4,5)U{4,5,6,7,8,9, 10}|
—2x1{2,3,4,5,6,7,8,9,10}| =2 x 9 = 18

s¢ L]
SB
g [I
T
s - m
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
[] component execution [l task execution [component-level CRPD [task-level CRPD
UCB ECB
S - {456,7,89,10}
S® - {2,3,4,5}
54 - {2,3,4,5,6,7,8}
5@ 23

Tl {17273} {172’3’4}

Fig. 5 Example schedule and UCB/ECB data for four components to demonstrate how the different
approaches calculate CRPD

ECB-only-counted:

S = BRTx (XA(SG, Ra) x ‘ECBA‘—FXB(SG, Ry) x ’ECBB’—I—XC(SG, Ry) x ’ECBCD

)/ZG =1x2x12,3,4,5,6,7,8}| +2x1[{2,3,4,5}| +2 x |{4,5,6,7,8,9, 10}|)
=2x7H+2x4)+2x7) =36

UCB-only:

¥ = BRT x EY(Ry) x |[UCB; U UCB,|
y$ =1x2x ({2} U(1,2,3}))
=2 x{1,2,3}| =6

All of those approaches overestimated the CRPD, although UCB-only achieves a much
tighter bound than the ECB-only-all and ECB-only-counted approaches. The bound

can be tightened further by using the more sophisticated approaches, for example,
UCB-ECB-multiset-counted:

MYS = (U UCB 1) U (U UCBZ)
EG(R)E1(Ry) EC (Ry)Ey(Ry)
MES = {2} U{1,2,3}U{1,2,3} = {1,1,2,2,2,3,3)

mg“=(|J BeB*|ul |J EcB®|u| |J ECBC
XA(SC Ry) XB(SG Ry) XC(SG Ry)

217

ML =1(2.3.4,5,6,7,8)U(2,3,4,5.6,7,8} U{2,3,4,5} U {2,3.4,5)
U{4,5,6,7,8,9,10}U {4,5,6,7,8,9, 10}
—=1{2,2,2,2,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,7,7,
7,7,,8,8,8,8,9,9,10, 10}

yX = BRT x ‘Mé‘f’z’ mMgfg—C‘ —1x1{2,2,2,3,3} =5

In this specific case, the UCB-ECB-multiset-all approach calculates the tightest
bound:

Mgt = |J (ECB* UECB® UECB®)

EG(Ry)
M54 =1 (2.3.4,5.6,7,8U(2.3,4,5) U {4,5,6,7,8,9, 10})
2
— | J2.3,4,5,6,7,8,9, 10)
2

—{2,2.3,3,4,4,5,5,6,6,7,7,8,8,9,9, 10, 10}
¢ = BRT x |Mg‘;f’2’ AMELA =1 % 1(2,2,3,3) = 4

Assuming there are 12 cache sets in total,” the UCB—ECB-multiset-open approach
gives:

M0 = | (11.2.3.4,5.6,7,8,9. 10, 11, 12})

EY(Ry)
MEE0 = | J({1,2,3,4,5,6,7,8,9,10, 11, 12})
2

—{1.1,2.2,3,3,4.4,5.5.6,6.7,7.8.8.9,9, 10, 10, 11, 11, 12, 12}
y€ — BRT x ‘Mgfg AMEL Ol =1 % 1{1,1,2,2,3,3)| = 6

6 Existing schedulability and CRPD analysis for EDF scheduling

In this section we briefly recap how CRPD can be calculated in a single-level system
scheduled using EDF.

EDF is a dynamic scheduling algorithm which always schedules the job with the
earliest absolute deadline first. In pre-emptive EDF, any time a job arrives with an
earlier absolute deadline than the current running job, it will pre-empt the current job.

2 Although we used 12 cache sets in this example, we note that the result obtained is in fact independent
of the total number of cache sets.

218

When a job completes its execution, the EDF scheduler chooses the pending job with
the earliest absolute deadline to execute next.

Liu and Layland (1973) gave a necessary and sufficient schedulability test that
indicates whether a taskset is schedulable under EDF iff U < 1, under the assumption
that all tasks have implicit deadlines (D;=T;). In the case where D; # T; this test is
still necessary, but is no longer sufficient.

Dertouzos (1974) proved EDF to be optimal among all scheduling algorithms on a
uniprocessor, in the sense that if a taskset cannot be scheduled by pre-emptive EDF,
then this taskset cannot be scheduled by any algorithm.

Leung and Merrill (1980) showed that a set of periodic tasks is schedulable under
EDF iff all absolute deadlines in the interval [0,max{s; }+2H] are met, where s; is the
start time of task t;, min{s; }=0, and H is the hyperperiod (least common multiple) of
all tasks’ periods.

Baruah et al. (1990a, b) extended Leung and Merrill’s work (1980) to sporadic
tasksets. They introduced h(t), the processor demand function, which denotes the
maximum execution time requirement of all tasks’ jobs which have both their arrival
times and their deadlines in a contiguous interval of length 7. Using this they showed
that a taskset is schedulable iff V¢ > 0, h(t) < t where h(¢) is defined as:

h(r) = max [0, 1+ r _T_DiJ} Ci (22)
=1

L

Examining (22), it can be seen that 4(#) can only change when ¢ is equal to an absolute
deadline, which restricts the number of values of ¢ that need to be checked. In order
to place an upper bound on 7, and therefore the number of calculations of A(t), the
minimum interval in which it can be guaranteed that an unschedulable taskset will
be shown to be unschedulable must be found. For a general taskset with arbitrary
deadlines ¢ can be bounded by L, (George et al. 1996):

(23)

" (T, — D) Ui
La:max[Dl,...,Dn, i=1 Ji i) l]

1-U

Spuri (1996) and Ripoll et al. (1996) showed that an alternative bound L, given by
the length of the synchronous busy period can be used. L, is computed by solving the
following equation using fixed point iteration:

+1 - [

R — | C; 24
v 2 { T; W ’ &9
i=1
There is no direct relationship between L, and L,, which enables ¢ to be bounded

by L= min(L,, L;). Combined with the knowledge that 4 (#) can only change at an
absolute deadline, a taskset is therefore schedulable under EDF iff U < 1 and:

YVt e Q,h(t) <t (25)

219

where Q is defined as:
Q = {dildx = kT; + D; Ady < min(Ly, Lp), k € N} (26)

Zhang and Burns (2009) presented their Quick convergence Processor-demand Analy-
sis (QPA) algorithm which exploits the monotonicity of h(z). QPA determines
schedulability by starting with a value of ¢ that is close to L, and then iterating back
towards O checking a significantly smaller number of values of ¢ than would otherwise
be required.

Task level CRPD analysis can be integrated into the EDF schedulability test by
introducing an additional parameter, y; ; (Lunniss et al. 2013). In this paper we use
the Combined Multiset approach by Lunniss et al. (2013) where y; ; represents the
cost of the maximum number E () of pre-emptions by jobs of task t; that have their
release times and absolute deadlines in an interval of length 7. It is therefore included
in (22) as follows:

h(t)ZZ(maX [O,I-I—r }PjJ]Cj+Vt,j) 27)
J

j=1

¥:,j can then be calculated using two different methods and the lowest value of the
two used to calculate the processor demand. These methods calculate the cost of each
possible individual pre-emption by task t; that could occur during an interval of length
r.

7 CRPD analysis for hierarchical systems with local EDF scheduler

In this section, we present CRPD analysis for hierarchical systems with a local EDF
scheduler by adapting the analysis that we presented for a local FP scheduler in Sect.
5.

Overall, the analysis must account for the cost of reloading any UCBs into cache that
may be evicted by tasks running in the other components. This is in addition to the cost
of reloading any UCBs into cache that may be evicted by tasks in the same component.
For calculating the intra-component CRPD, we use the Combined Multiset approach
by Lunniss et al. (2013) for EDF scheduling of a single level system. To account
for the component level CRPD, we define a new term th that represents the CRPD
incurred by tasks in component G due to tasks in the other components running while
the server, S©, for component G is suspended. Combining (27) with isbf G, (3), and
th, we get the following expression for the modified processor demand® within an
interval of length ¢:

W) = ishf© Z(max[0,1+\f _ fﬂcjw,j)wf (28)

j=1 /

3 Strictly, h(#) is the maximum time required for the server to provide the processing time demand.

220

In order to account for component CRPD we must define an additional term. The set
of tasks in component G that can be affected by the server S¢ being both suspended
and resumed in an interval of length ¢, aff(G,?) is based on the relative deadlines of
the tasks. It captures all of the tasks whose relative deadlines are less than or equal to
t as they need to be included when calculating /(z). This gives:

aff(G, 1) = {ri er%) > D,-} (29)

The primary difference between the analysis for FP and EDF, is that under EDF we
must determine the CRPD within an interval of length ¢, rather than within the response
time of a task. The other notable difference is that because the priorities of tasks are
dynamic, we must use the set of tasks that could be affected by server S¢ being both
suspended and resumed in an interval of length 7, rather than using the fixed set of
tasks with higher priorities. Therefore, the approaches presented for FP scheduling
can be adapted for EDF by making the following changes:

e Replace R; with ¢

e Replace hep(G, t) with aff(G, t)

e For the multiset approaches when considering intermediate tasks, replace Ry with
Dy

e Use (28) to determine schedulability

We now list the revised equations for determining the inter-component CRPD under
EDF.
ECB- ONLY- ALL

y8 =BRT - E%(1) - U ECB? (30)

VZ e W
N £ G

ECB- ONLY- COUNTED

yC=BRT - > (x7(s% 0 |RCB?) (31)
VZ e W
AN #G
UCB- ONLY
yC =BRT -E°()-| |J UCB; (32)

vkeaff(G,1)

221

UCB-ECB- ALL
vy =BRT - EC@) - U UCB; | n U ECB? (33)
vkeaff(G,1) VZew
AZ #£G
UCB-ECB- COUNTED
y¢ =BRT - > [X% - |J UCB: | NECB” (34)
VZ ew vkeaff(G,r)
N £ G
7.1 Multiset approaches
Mg = |) ucs (35)

VkeT'G \EG(Dy)Ex(t)

UCB-ECB- MULTISET- ALL

Mgt =) EcB” (36)
EGt) | VZevw
AN #G

v = BRT - | M) n M) (37)

UCB-ECB- MULTISET- COUNTED

MED=C = U U ECB? (38)
VZeWw \XZ(5G1)
AN #G
7 = BRT - M) 0 s~ | (39)

UCB-ECB- MULTISET- OPEN

Mg =) (1.2,.N) (40)
EG @)

7S = BRT - |M&h 0 Mgch=0 (41)

222

7.2 Effect on task utilisation and h(t) calculation

As the component level CRPD analysis effectively inflates the execution time of tasks
by the CRPD that can be incurred in an interval of length ¢, the upper bound L, used for
calculating the processor demand /(¢), must be adjusted. This is an extension to the
adjustment that must be made for task level CRPD as described in Sect. V. D. “Effect
on Task Utilisation and h(t) Calculation” in Lunniss et al. (2013). This is achieved by
calculating an upper bound on the utilisation due to CRPD that is valid for all intervals
of length greater than some value L.. This CRPD utilisation value is then used to
inflate the taskset utilisation and thus compute an upper bound L, on the maximum
length of the busy period. This upper bound is valid provided that it is greater than
L., otherwise the actual maximum length of the busy period may lie somewhere in
the interval [Ly L], hence we can use max(L. Lg4) as a bound.

We assign t = L.= 100 T4, to ensure that the maximum overestimation of both
the task level CRPD utilisation U? = y,/t and the component level CRPD utilisation
Ure =)/tG /t 1s 1 %, since the CRPD for at most one extra period may be included.
We determine U?© by calculating th, however, when calculating the multiset of the
UCBs that could be affected M gff ,(35), E'%*(t) is substituted for E () to ensure that

the computed value of U” Y is a valid upper bound for all intervals of length ¢ > L.

t — D,
E™¥ (1) = max (0, 1+ [. -D (42)

We use a similar technique of substituting E7'“*(¢) for E, () in the calculation of the

task level CRPD (as described in Sect. V. D. of Lunniss et al. 2013), to give U” .
IfU + UY +UYC > 1, then the taskset is deemed unschedulable, otherwise an

upper bound on the length of the busy period can be computed via a modified version

of (25):
o
atl < Y 1) +wur 43
w _sz(Tj+) i+ @3)

rearranged to give:

< : Sur (44)
w . .
T - U AU+ UrO)) L
Then, substituting in 7},4, for each value of T; the upper bound is given by:
U-T,
Lg = - (45)

(1— (U +UY +UY9))

Finally, L = max(L., Lg) can then be used as the maximum value of 7 to check
in the EDF schedulability test.

223

7.3 Comparison of approaches

In this section we have presented a number of approaches for calculating component
CRPD in a hierarchical system with a local EDF scheduler. These approaches all have
the same dominance and incomparability relationships as the approaches presented
in Sect. 5 for a local FP scheduler. We therefore refer the reader to Sect. 5.5 for
an explanation of the relationships between the approaches. However, the relative
performance between the approaches differs from the FP variants as shown in the next
section.

8 Case study

In this section we compare the different approaches for calculating CRPD in hierarchi-
cal scheduling using tasksets based on a case study. The case study uses PapaBench®
which is a real-time embedded benchmark based on the software of a GNU-license
UAV, called Paparazzi. WCETs, UCBs, and ECBs were calculated for the set of tasks
using aiT> based on an ARM processor clocked at 100MHz with a 2KB direct-mapped
instruction cache. The cache was setup with a line size of 8 Bytes, giving 256 cache
sets, 4 Byte instructions, and a BRT of 8us. This configuration was chosen so as to give
representative results when using the relatively small benchmarks that were available
to us. WCETs, periods, UCBs, and ECBs for each task based on the target system are
provided in Table 1. We made the following assumptions in our evaluation to handle
the interrupt tasks:

Interrupts have a higher priority than the servers and normal tasks.

Interrupts cannot pre-empt each other.

Interrupts can occur at any time.

All interrupts have the same deadline which must be greater than or equal to the
sum of their execution times in order for them to be schedulable.

e The cache is disabled whenever an interrupt is executing and enabled again after it
completes.

Based on these assumptions, we integrated interrupts into the model by replacing the
server capacity Q¢ in Eq. (3) by Q¢ — I9, where ¢ is the maximum execution time
of all interrupts in an interval of length Q€. This effectively assumes that the worst
case arrival of interrupts could occur in any component and steals time from its budget.

We assigned a deadline of 2ms to all of the interrupt tasks, and implicit deadlines
so that D; = T;, to the normal tasks. We then calculated the total utilisation for
the system and then scaled 7; and D; up for all tasks in order to reduce the total
utilisation to the target utilisation for the system. We used the number of UCBs and
ECBs obtained via analysis, placing the UCBs in a group at a random location in
each task. We then generated 1000 systems each containing a different allocation of
tasks to each component, using the following technique. We split the normal tasks at

4 http://www.irit.fr/recherches/ ARCHI/MARCH/rubrique.php3?id_rubrique=97.
> http://www.absint.com/ait/.

224

Table 1 Execution times, periods and number of UCBs and ECBs for the tasks from PapaBench

Task UCBs ECBs WCET (ms) Period (ms)

Fly-by-wire
11 interrupt_radio 2 10 0.210 25
12 interrupt_servo 1 6 0.167 50
13 interrupt_spi 2 10 0.256 25
Tl check_failsafe 10 132 1.240 50
T2 check_megal28_values 10 130 5.039 50
T3 send_data_to_autopilot 10 114 2.283 25
T4 servo_transmit 2 10 2.059 50
T5 test_ppm 30 255 12.579 25

Autopilot
14 interrupt_modem 2 10 0.303 100
15 interrupt_spi_1 1 10 0.251 50
16 interrupt_spi_2 1 4 0.151 50
17 interrupt_gps 3 26 0.283 250
TS5 altitude_control 20 66 1.478 250
T6 climb_control 1 210 5.429 250
T7 link_fbw_send 1 10 0.233 50
T8 navigation 10 256 4.432 250
T9 radio_control 0 256 15.681 25
T10 receive_gps_data 22 194 5.987 250
T11 reporting 2 256 12.222 100
T12 stabilization 11 194 5.681 50

random into 3 components with four tasks in two components and five in the other.
In the case of local FP scheduling, we assigned task priorities according to deadline
monotonic priority assignment (Liu and Layland 1973). Next we set the period of
each component’s server to 12.5 ms, which is half the minimum task period. Finally,
we organised tasks in each component in memory in a sequential order based on their
priority for FP, or their unique task index for EDF. Due to task index assignments,
this gave the same task layout in both cases. We then ordered components in memory
sequentially based on their index.

For each system the total task utilisation across all tasks not including pre-emption
cost was varied from 0.025 to 1 in steps of 0.025. For each utilisation value we
initialised each servers’ capacity to the minimum possible value, the utilisation of
all of its tasks. We then performed a binary search between this minimum and the
maximum, 1 minus the minimum utilisation of all of the other components, until we
found the server capacity required to make the component schedulable. As the servers
all had equal periods, provided all components were schedulable and the total capacity
required by all servers was <100 %, then the system was deemed schedulable at that
specific utilisation level. In addition to evaluating each of the presented approaches,

225

Local FP Scheduler Local EDF Scheduler

100 % | SUGABABGEK 100 %

80 % 80 %

60 % - 60 % -
No-Component-Pre-emption-Cost
UCB-ECB Multiset Open —&—
40 % UCB-ECB Multiset All —— ¢
UCB-ECB Multiset Counted —¢—
UCB-ECB All —<—
20 % - UCB-ECB Counted —&—
UCB-Only =——l—
ECB-Only All ——
. ECB-Only Counted —®—
0% T T T T T T

0 01 02 03 04 05 06 0O 01 02 03 04 05 06 07 08 09 1

Utilisation Utilisation

40 % o

Schedulable Systems (%)
Schedulable Systems (%)

20 %

Fig. 6 Percentage of schedulable tasksets at each utilisation level for the case study tasksets

we also calculated schedulability based on no component pre-emption costs, but still
including task level CRPD. For every approach the intra-component CRPD, between
tasks in the same component, was calculated using either the Combined Multiset
approach for FP (Altmeyer et al. 2012), or the Combined Multiset approach for EDF
(Lunniss et al. 2013).

The results for the case study for a local FP scheduler and local EDF scheduler
are shown in Fig. 6, note that graphs are best viewed online in colour. Although
we generated 1000 systems, they were all very similar as they are made up of the
same set of tasks. The first point to note is that the FP approaches deem a higher
number of tasksets schedulable than the EDF ones, despite EDF having a higher num-
ber of schedulable tasksets for the no-component-pre-emption-cost case. In Sect. 9,
we explore the source of pessimism in the EDF analysis. Focusing on the different
approaches, ECB-only-counted and ECB-only-all perform the worst as they only con-
sider the other components in the system. In the case of a local EDF scheduler, the
ECB-only-counted approach is unable to deem any tasksets schedulable except at the
lowest utilisation level. Next was UCB-ECB-counted which though it considers all
components, accounts for the other components pessimistically in this case study,
since all servers have the same period. The remainder of the approaches all had very
similar performance.

We note that no-component-pre-emption-cost reveals that the pre-emption costs are
very small for the PapaBench tasks. This is due to a number of factors including the
nearly harmonic periods, small range of task periods, and relatively low number of
ECBs for many tasks (Fig. 6).

9 Evaluation

In this section we compare the different approaches for calculating CRPD in hier-
archical scheduling using synthetically generated tasksets. This allows us to explore
a wider range of parameters and therefore give some insight into how the different
approaches perform in a variety of cases.

226

To generate the components and tasksets we generated n, default of 24, tasks using
the UUnifast algorithm (Bini and Buttazzo 2005) to calculate the utilisation, U;, of
each task so that the utilisations added up to the desired utilisation level. Periods 7;,
were generated at random between 10ms and 1000ms according to a log-uniform
distribution. C; was then calculated via C; = U; T;. We generated two sets of tasksets,
one with implicit deadlines, so that D; = T;, and one with constrained deadlines. We
used D; = y + x(T; — y) to generate the constrained deadlines, where x is a uniform
random number betweenOand 1,and y = max(7T; /2, 2C;). This generates constrained
deadlines that are no less than half the period of the tasks. All results presented in Sect.
9.1 are for tasks with implicit deadlines. In general the results for constrained deadlines
were similar with a lower number of systems deemed schedulable. The exception to
this is that under a local EDF scheduler, the UCB—ECB-multiset approaches showed
an increase in schedulability when deadlines were reduced by a small amount. This
behaviour is investigated and explained in Sect. 9.2.

We used the UUnifast algorithm to generate the number of ECBs for each task so
that the ECBs added up to the desired cache utilisation, default of 10. The number of
UCBs was chosen at random between 0 and 30 % of the number of ECBs on a per
task basis, and the UCBs were placed in a single group at a random location in each
task.

We then split the tasks at random into 3 components with equal numbers of tasks
in each. In the case of a local FP scheduler, we assigned task priorities according to
Deadline Monotonic priority assignment. Next we set the period of each component’s
server to Sms, which was half the minimum possible task period. Finally we organised
tasks in each component in memory in a sequential order based on their priority for FP,
or their unique task index for EDF, which gave the same task layout in both cases, and
then ordered components in memory sequentially based on their index. We generated
1000 systems using this technique.

In our evaluations we used the same local scheduler in each component, so that all
components were scheduled locally using either FP or EDF. However, we note that
the analysis is not dependent on the scheduling policies of the other components and
hence can be applied to a system where some components are scheduled locally using
FP and others using EDF.

We determined the schedulability of the synthetic tasksets using the approach
described in the fourth paragraph of Sect. 8.

9.1 Baseline evaluation

We investigated the effect of key cache and taskset configurations on the analysis by
varying the following key parameters:

Number of components (default of 3)

Server period (default of Sms)

Cache Utilisation (default of 10)

Total number of tasks (default of 24)

Range of task periods (default of [10, 1000]ms)

227

100 % 100 % —

Local FP Scheduler Local EDF Scheduler

No-Component-Pre-emption-Cost
UCB-ECB Multiset Open \=——&—
UCB-ECB Multiset All

UCB-ECB Multiset Counted
UCB-ECB All

UCB-ECB Counted
UCB-Only

ECB-Only All

ECB-Only Counted

80 % - 80 % -

60 % - 60 % -

40 % 40 %

Schedulable Systems (%)
Schedulable Systems (%)

20 % 20 % -
0% 0% —
0 01 02 03 04 05 06 07 08 09 1 0O 01 02 03 04 05 06 07 08 09 1

Utilisation Utilisation

Fig. 7 Percentage of schedulable tasksets at each utilisation level for the synthetic tasksets

The results for the baseline evaluation under implicit deadline tasksets are shown
in Fig. 7. The results again show that the analysis for determining inter-component
CRPD for a local FP scheduler deems a higher number of systems schedulable than
the analysis for a local EDF scheduler. In the case of a local EDF scheduler, both ECB-
only approaches deemed no tasksets schedulable. In the case of a local FP scheduler
ECB-only-counted is least effective as it only considers the other components and
does so individually, followed by ECB-only-all. UCB—ECB-counted deemed a higher
number of tasksets schedulable, although it deemed significantly fewer for alocal EDF
scheduler than with a local FP scheduler. Under EDF, UCB-ECB-multiset-counted
was next, followed by all other approaches. Under FP, UCB-ECB-multiset-counted
performed similarly to UCB-only and UCB-ECB-all, crossing over at a utilisation of
0.725 highlighting their incomparability. Although UCB-ECB-all dominates UCB-
only, it can only improve over UCB-only when the cache utilisation of the other
components is sufficiently low that they cannot evict all cache blocks. The UCB—
ECB-multiset-all and UCB-ECB-multiset-open approaches performed the best for
both types of local scheduler.

Despite only considering the properties of the component under analysis, the UCB—
ECB-multiset-open approach proved highly effective. The reason for this is that once
the size of the other components that can run while a given component is suspended is
equal to or greater than the size of the cache then UCB-ECB-multiset-all and UCB—
ECB-multiset-open become equivalent.

Consider the UCB-ECB-Multiset approaches under a local EDF scheduler. Exam-
ining Eq. (35), we note that £ G (Dy) Ex (1) is based on the deadline of a task. Therefore,
the analysis under implicit deadlines effectively assumes the UCBs of all tasks in com-
ponent G could be in use each time the server for component G is suspended. Whereas,
under a local FP scheduler the analysis is able to bound how many times the server
for component G is suspended and resumed based on the computed response time of
each task which for many tasks is much less than its deadline, and period. Figure 8
shows a subset of the results presented in Fig. 7. When component CRPD is not con-
sidered, EDF outperforms FP. However, once component CRPD is taken into account,
the analysis for FP significantly outperforms the analysis for EDF.

228

100 % —) R
EDF No-Component-Pre-emption-Cost
EDF UCB-ECB Multiset Open =—&—
80 % | EDF UCB-ECB Multiset All —%—
< EDF UCB-ECB Multiset Counted = =>¢ =
s FP No-Component-Pre-emption-Cost
g FP UCB-ECB Multiset Open —&—
% 60 % — FP UCB-ECB Multiset All —x—
(? FP UCB-ECB Multiset Counted = => =
Qo
S
o _|
S 40 %
o
@
<
()
(2]
20 % —

0O 01 02 03 04 05 06 07 08 09 1
Utilisation

Fig. 8 Percentage of schedulable tasksets at each utilisation level for the synthetic tasksets directly com-
paring the analysis for local FP and EDF schedulers

9.2 Weighted schedulability

Evaluating all combinations of different parameters is not possible. Therefore, the
majority of our evaluations focused on varying one parameter at a time. To present the
results, weighted schedulability measures (Bastoni et al. 2010) are used. The benefit
of using a weighted schedulability measure is that it reduces a 3-dimensional plot to 2
dimensions. Individual results are weighted by taskset utilisation to reflect the higher
value placed on a being able to schedule higher utilisation tasksets. We used 100
systems for each utilisation level from 0.025 to 1.0 in steps of 0.025 for the weighted
schedulability experiments.

9.2.1 Number of components

To investigate the effects of splitting the overall set of tasks into components, we fixed
the total number of tasks in the system at 24, and then varied the number of components
from 1, with 24 tasks in one component, to 24, with 1 task per component, see Fig. 9.
Components were allocated an equal number of tasks where possible, otherwise tasks
were allocated to each component in turn until all tasks where allocated. We note
that with one component, the UCB-only and UCB-ECB-multiset-open approaches
calculate a non-zero inter-component CRPD. This is because they assume that every
time a component is suspended its UCBs are evicted, even though there is only one
component running in the system. With two components the ECB-only-all and ECB-
only-counted approaches are equal. Above two components the ECB-only-all, ECB-
only-counted and UCB—ECB-counted approaches get rapidly worse as they over-count
blocks. Under a local FP scheduler, all other approaches improve as the number of
components is increased above 2 up to 8 components.

229

P Local FP Scheduler . Local EDF Scheduler
0.8
)) No-Component-Pre-emption-Cost
2 2 9 UCB-ECB Multiset Open —H5—
S g 06 UCB-ECB Multiset All —%—
= = UCB-ECB Multiset Counted - - -
B k3 UCB-ECB All ——
= S o4 UCB-ECB Counted - <0~ -
g g UCB-Only —A—
ECB-Only All ——
ly

4 ECB-Only Counted ~ -®- -

0.2

0
1.2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1.2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Components Number of Components

Fig. 9 Varying the number of components from 1 to 16, while keeping the number of tasks in the system
fixed

Under a local EDF scheduler, all approaches that consider inter-component CRPD
show a decrease in schedulability as the number of components increases above 2.
The no-component-pre-emption-cost case shows an increase in schedulability up to
approximately 6—7 components before decreasing. This is because as the number of
components increases, the amount of intra-component CRPD from tasks in the same
component decreases. This is then balanced against an increased delay in capacity from
the components’ servers. As the number of components is increased, and therefore the
number of servers, Q¢ is reduced leading to an increase in PY — Q% which increases
the maximum time between a server supplying capacity to its component. We also note
that at two components, UCB-only, UCB-ECB-all and UCB-ECB-counted perform
the same; as do the Multiset approaches. This is because the ‘-All’ and ‘-Counted’
variations are equivalent when there is only one other component.

9.2.2 System size

We investigated the effects of introducing components into a system by varying the
system size from 1 to 10, see Fig. 10, where each increase introduces a new component
which brings along with it 5 tasks taking up approximately twice the size of the cache.
When there is one component, all approaches except for UCB-only and UCB-ECB-
multiset-open give the same result as no-component-pre-emption-cost. As expected,
as more components are introduced into the system, system schedulability decreases
for all approaches including no-component-pre-emption-cost. This is because each
new component includes additional intra-component CRPD in addition to the inter-
component CRPD that it causes when introduced. Furthermore, each new component
that is introduced into the system effectively increases the maximum delay before
search server supplies capacity to its components. Under a local FP scheduler, the ECB-
only-all approach outperforms UCB-ECB-counted above a system size of 2, UCB-
only and UCB-ECB-all outperform UCB-ECB-multiset-counted above a system size
of 3, highlighting their incomparability. Again we note that the ‘-All” and ‘-Counted’
variations are the same when there are only two components in the system.

230

Local FP Scheduler 1 Local EDF Scheduler

0.8 gk

No-Component-Pre-emption-Cost
UCB-ECB Multiset Open —&—
UCB-ECB Multiset All —¥—

UCB-ECB Multiset Counted — -~ -
UCB-ECB All ——

UCB-ECB Counted ~ <0~ -

UCB-Only —A&—
ECB-Only All ——
ECB-Only Counted — - -

0.6 [~

04 =

Weighted Measure
Weighted Measure

0.2

System Size System Size

Fig. 10 Varying the system size from 1 to 10. An increase of 1 in the system size relates to introducing
another component that brings along with it another 5 tasks and an increase in the cache utilisation of 2

9.2.3 Server period

The server period is a critical parameter when composing a hierarchical system. The
results for varying the server period from 1 to 20 ms, with a fixed range of task periods
from 10 to 1000 ms are shown in Fig. 11. When the component pre-emption costs are
ignored, having a small server period ensures that short deadline tasks meet their time
constraints. However, switching between components clearly has a cost associated
with it making it desirable to switch as infrequently as possible. As the server period
increases, schedulability increases due to a smaller number of server context switches,
and hence inter-component CRPD, up until approximately 7 ms under FP, and 7-8 ms
under EDF, for the best performance. At this point although the inter-component
CRPD continues to decrease, short deadline tasks start to miss their deadlines due to
the delay in server capacity being supplied unless server capacities are greatly inflated,
and hence the overall schedulability of the system decreases. We note that in the case
of EDF, the optimum server period is between 7 and 8 ms for most approaches and
9ms for the UCB-ECB-counted approach. This increase in optimum server period
over FP is due to the increased calculated inter-component CRPD under a local EDF
scheduler.

Local FP Scheduler Local EDF Scheduler

No-Component-Pre-emption-Cost
UCB-ECB Multiset Open —H—
UCB-ECB Multiset All —%—
UCB-ECB Multiset Counted — <~ -
UCB-ECB All ——

UCB-ECB Counted — <~ -
UCB-Only —&—

ECB-Only All —#—

ECB-Only Counted — -®- -

0.8

0.6 -

0.4

Weighted Measure
Weighted Measure

0.2

08¢
1.2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Server Period Server Period

Fig. 11 Varying the server period from 1 to 20 ms (fixed task period range of 10-1000 ms)

231

Local EDF Scheduler

Local FP Scheduler

1r 19
0.8
) [}
5 5 No-Component-Pre-emption-Cost
§ § 0.6 UCB-ECB Multiset Open —&—
s s UCB-ECB Multiset All —%—
3 3 UCB-ECB Multiset Counted — -x— -
= = UCB-ECB All ——
=) o 04 [
® ko) 04 UCB-ECB Counted - <>~ -
= = UCB-Only —A—
ECB-Only All —8—
0.2 ECB-Only Counted — -®- -
i ~o.
- 9-@ - . -
P S T Y Tl A e s i stk e | o _
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Cache Utilisation Cache Utilisation

Fig. 12 Varying the cache utilisation from 0 to 20

9.2.4 Cache utilisation

As the cache utilisation increases the likelihood of the other components evicting UCBs
belonging to the tasks in the suspended component increases. The results for varying
the cache utilisation from O to 20 are shown in Fig. 12. In general, all approaches show
a decrease in schedulability as the cache utilisation increases. Up to a cache utilisation
of around 2, the UCB-Only and UCB-ECB-multiset-open approaches do not perform
as well as the more sophisticated approaches, as the other components do not evict all
cache blocks when they run. We also observe that up to a cache utilisation of 1 under a
local FP scheduler, the ECB-only-counted, and the ECB-only-all approaches perform
identically as no ECBs are duplicated.

We note that the weighted measure stays relatively constant for no-component-pre-
emption-cost up to a cache utilisation of approximately 2.5. This is because the average
cache utilisation of each component is still less than 1, which leads to relatively small
intra-component CRPD between tasks.

9.2.5 Number of tasks

We also investigated the effect of varying the number of tasks, while keeping the
number of components fixed. As we introduced more tasks, we scaled the cache util-
isation in order to keep a constant ratio of tasks to cache utilisation. The results for
varying the number of tasks from 3 to 48 are shown in Fig. 13. As expected, increas-
ing the number of tasks leads to a decrease in schedulability across all approaches
that consider inter-component CRPD. However, under a local EDF scheduler, the
no-component-pre-emption-cost case actually shows an increase peaking at 12 tasks
before decreasing due to the intra-component CRPD. Consider that when there are 3
tasks, there is only one task per component, so there is effectively no local scheduling.
Therefore schedulability is based solely on the global scheduling algorithm, which is
why the results for no-component-pre-emption-cost are the same for FP and EDF with
3 tasks. As more tasks are introduced the execution time of individual tasks is reduced,
making it less likely that a task will miss a deadline due to its components’ server not

232

. Local FP Scheduler 1~ Local EDF Scheduler

No-Component-Pre-emption- —_—
UCB-ECB Multiset Open
UCB-ECB Multiset All —%—

UCB-ECB Multiset Counted — =<~ -
UCB-ECB All ——

UCB-ECB Counted — <0~ -

UCB-Only —&—
ECB-Only All ——
ECB-Only Counted —~ - -

04 - z?

Weighted Measure
Weighted Measure

02 - \

e L
T R T T R ke ik, S SR S R S S o
3 6 9 12 15 18 21 24 27 30 33 36 390 42 45 48 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48

Number of Tasks Number of Tasks

Fig. 13 Varying the total number of tasks from 3 to 48 (1-16 tasks per component)

Local FP Scheduler

Local EDF Scheduler

0.8 — 0.8 [~

No-Component-Pre-emption-Cost
UCB-ECB Multiset Open —&—
UCB-ECB Multiset All —%—

UCB-ECB Multiset Counted — -~ -
UCB-ECB All ——

UCB-ECB Counted ~ <0~ -

UCB-Only —A&—
ECB-Only All —&—
ECB-Only Counted - - -

0.6 [~

‘O‘O‘Q_e><>©—<><>

04 - - 04 -

Weighted Measure
Weighted Measure

0.2 02 [~

X X = X =X =X X

0o X=X =X X X

/’X‘

ol 11 1) od
1.2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Period Range Period Range

Fig. 14 Varying the period range of tasks from [1, 100] to [20, 2000]ms (while fixing the server period at
5 ms)

running. This increases schedulability until the effect of the intra-component CRPD
outweighs it.

9.2.6 Task period range

We varied the range of task periods from [1, 100] to [20, 2000]ms, while fixing the
server period at 5 ms. The results are shown in Fig. 14, as expected, the results show an
increase in schedulability across all approaches as the task period range is increased.

9.3 EDF analysis investigation

The results for varying the system size, Fig. 10, and varying the cache utilisation,
Fig. 12, suggest that the inter-component CRPD analysis for a local EDF scheduler
has a significant reduction in performance when CRPD costs are increased. In this
section we present the results for varying the BRT, which impacts the cost of a pre-
emption, and for varying the deadlines of tasks. These results give further insight into
this behaviour.

233

Local FP Scheduler

Local EDF Scheduler

0.8

No-Component-Pre-emption-Cost
UCB-ECB Multiset Open —&—
UCB-ECB Multiset All —%—

UCB-ECB Multiset Counted — =<~ -
UCB-ECB All ——
UCB-ECB Counted — <~ -
UCB-Only —&—
ECB-Only All —i—
ECB-Only Counted — - -

06— '

04 o

Weighted Measure
Weighted Measure

0.2

Block Reload Time Block Reload Time

Fig. 15 Varying the block reload time (BRT) from O to 10 in steps of 1

9.3.1 Block reload time (BRT)

We investigated the effects of varying the BRT, effectively adjusting the costs of a pre-
emption in Fig. 15. With a BRT of O there is effectively no CRPD, so all approaches
achieve the same weighted measure. Once the BRT increases, the results show that
the performance of the approaches that consider inter-component CRPD under a local
EDF scheduler are significantly reduced. This indicates that the analysis for a local
EDF scheduler is particularly susceptible to higher pre-emption costs.

9.3.2 Deadline factor

We also varied the task deadlines via D; =xT; by varying x from 0.1 to 1 in steps of 0.1.
The results are shown in Fig. 16. Under a local FP scheduler, all approaches showed
an increase in the weighted measure as the deadlines are increased. Under a local EDF
scheduler, the no-component-pre-emption-cost case performs as expected, showing
an increase in schedulability as the deadlines are increased. Additionally, the non
UCB-ECB-multiset approaches also show an increase in the number of schedulable
systems. However, the UCB—ECB-multiset approaches show an increase in the number
of systems deemed schedulable, and hence the weighted measure, up to a deadline

- Local FP Scheduler 1 - Local EDF Scheduler

——— No-Component-Pre-emption-Cost
—&— UCB-ECB Multiset Open
—%— UCB-ECB Multiset All
~ - - UCB-ECB Multiset Counted
—<— UCB-ECB All
- <~ - UCB-ECB Counted
0.6 - —=— UCB-Only
—&— ECB-Only All
- ECB-Only Counted

0.8 [~ 08 -

0.4

Weighted Measure
Weighted Measure

0.2

0.1 0.2 0.3 0.4 05 06 0.7 0.8 0.9 1
Deadline Factor Deadline Factor

Fig. 16 Varying the task deadlines via D; = x7T; by varying x from 1 to 0.1 in steps of 0.1

234

factor of 0.8. After this point it shows a reduction in schedulability. This reduction
1s because although tasks deadlines are relaxed, and thus tasks are less likely to miss
them, the number of times that the inter-component CRPD is accounted for is also
increased as EC (Dy) Ex(¢) will increase with longer deadlines.

9.4 Conclusion

Hierarchical scheduling provides a means of composing multiple real-time applica-
tions onto a single processor such that the temporal requirements of each application
are met. The main contribution of this paper is a number of approaches for calculating
cache related pre-emption delay (CRPD) in hierarchical systems with a global non-
pre-emptive scheduler and a local pre-emptive FP or EDF scheduler. This is important
because hierarchical scheduling has proved popular in industry as a way of composing
applications from multiple vendors as well as re-using legacy code. However, unless
the cache is partitioned, these isolated applications can interfere with each other, and
so inter-component CRPD must be accounted for.

We presented a number of approaches to calculate inter-component CRPD in a
hierarchical system with varying levels of sophistication. We showed that when taking
inter-component CRPD into account, minimising server periods does not maximise
schedulability. Instead, the server period must be carefully selected to minimise inter-
component CRPD while still ensuring short deadline tasks meet their time constraints.

We found the analysis for determining inter-component CRPD under a local EDF
scheduler deemed a lower number of systems schedulable than the equivalent analy-
sis for a local FP scheduler. This is due to pessimism in the analysis for EDF, and
the difficulty in tightly bounding the number of server suspensions that result in
inter-component CRPD. Specifically, the analysis considers the number of server sus-
pensions that result in inter-component CRPD based on a task’s deadline. In contrast
for a local FP scheduler, the analysis can calculate a bound based on a task’s response
time.

While it was not the best approach in all cases we found the UCB-ECB-Multiset-
Open approach, which does not require any information about the other components
in the system, to be highly effective. This is a useful result as the approach does
not require a closed system. Therefore it can be used when no knowledge of the
other components is available and/or cache flushing is used between the execution of
different components to ensure isolation and composability.

The UCB-ECB-multiset-all approach dominates the UCB—ECB-multiset-open
approach. Therefore, if information about other components is available, it can be
used to calculate tighter bounds in cases where not all cache blocks will be evicted by
the other components. However, this requires a small enough cache utilisation such
that the union of the other components ECBs is less than the size of the cache.

We note that the presented analysis is not dependent on the scheduling policies of
the other components, and hence can be applied to a system where some components
are scheduled locally by a FP scheduler while others use an EDF scheduler.

Previous works by Lipari and Bini (2005) and Davis and Burns (2008) have investi-
gated how to select sever parameters. In the future, we intend to extend this work to find

235

optimal server parameter settings taking into account inter-component CRPD. Lunniss
et al. (2012) showed how the layout of tasks can be optimised to reduce CRPD. We
also intend to extend this work to layout components and their tasks in order to reduce
both intra- and inter-component CRPD so as to maximise system schedulability.

Acknowledgments This work was partially funded by the UK EPSRC through the Engineering Doctorate
Centre in Large-Scale Complex IT Systems (EP/F501374/1), the UK EPSRC funded MCC (EP/K011626/1),
the European Community’s ARTEMIS Programme and UK Technology Strategy Board, under ARTEMIS
grant agreement 295371-2 CRAFTERS, COST Action IC1202: Timing Analysis On Code-Level (TACLe)
and the European Community’s Seventh Framework Programme FP7 under Grant Agreement no. 246556,
“RBUCE-UP”. EPSRC Research Data Management: The benchmarks used were from external, publically
available benchmark suites, no new primary data was created during this study.

References

Altmeyer S, Maiza C, Reineke J (2010) Resilience analysis: tightening the CRPD bound for set-associative
caches. In: LCTES. New York, USA, pp 153-162

Altmeyer S, Davis RI, Maiza C (2011) Cache related pre-emption delay aware response time analysis for
fixed priority pre-emptive systems. In: Proceedings of the 32nd IEEE Real-Time Systems Symposium
(RTSS). Vienna, Austria, pp 261-271

Altmeyer S, Davis RI, Maiza C (2012) Improved cache related pre-emption delay aware response time
analysis for fixed priority pre-emptive systems. Real-Time Syst 48(5):499-512

ARINC (1991) ARINC 651: Design Guidance for Integrated Modular Avionics. Airlines Electronic Engi-
neering Committee (AEEC)

ARINC (1996) ARINC 653: Avionics Application Software Standard Interface (Draft 15). Airlines Elec-
tronic Engineering Committee (AEEC)

Asberg M, Behnam M, Nolte T (2013) An experimental evaluation of synchronization protocol mecha-
nisms in the domain of hierarchical fixed-priority scheduling. In: Proceedings of the 21st International
Conference on Real-Time and Network Systems (RTNS). Sophia Antipolis, France

Audsley NC, Burns A, Richardson M, Wellings AJ (1993) Applying new scheduling theory to static priority
preemptive scheduling. Softw Eng J 8(5):284-292

Baruah SK, Mok AK, Rosier LE (1990a) Preemptive scheduling hard-real-time sporadic tasks on one
processor. In: Proceedings of the 11th IEEE Real-Time Systems Symposium (RTSS). Lake Buena
Vista, Florida, USA, pp 182—-190

Baruah SK, Rosier LE, Howell RR (1990b) Algorithms and complexity concerning the preemptive schedul-
ing of periodic real-time tasks on one processor. Real-Time Syst 2(4):301-324

Bastoni A, Brandenburg B, Anderson J (2010) Cache-related preemption and migration delays: empirical
approximation and impact on schedulability. In: Proceedings of Operating Systems Platforms for
Embedded Real-Time applications (OSPERT). Brussels, Belgium, pp 3344

Behnam M, Shin I, Nolte T, Nolin M (2007) SIRAP: a synchronization protocol for hierarchical resource
sharing real-time open systems. In: Proceedings of the 7th ACM & IEEE International Conference on
Embedded Software (EMSOFT). pp 279-288

Bini E, Buttazzo G (2005) Measuring the performance of schedulability tests. Real-Time Syst 30(1):129—
154

Burguiere C, Reineke J, Altmeyer S (2009) Cache-related preemption delay computation for set-associative
caches—pitfalls and solutions. In: Proceedings of the 9th International Workshop on Worst-Case
Execution Time Analysis (WCET). Dublin, Ireland

Busquets-Mataix JV, Serrano JJ, Ors R, Gil P, Wellings A (1996) Adding instruction cache effect to schedula-
bility analysis of preemptive real-time systems. In: Proceedings of the 2nd IEEE Real-Time Technology
and Applications Symposium (RTAS). pp 204-212

Campoy AM, Séez S, Perles A, Busquets JV (2004) Schedulability analysis in the EDF scheduler with
cache memories. Lect Notes Comput Sci 2968:328-341

Davis RI, Zabos A, Burns A (2008) Efficient exact schedulability tests for fixed priority real-time systems.
IEEE Trans Comput 57(9):1261-1276

236

Davis RI, Burns A (2008) An investigation into server parameter selection for hierarchical fixed priority
pre-emptive systems. In: Proceedings of the 16th International Conference on Real-Time and Network
Systems (RTNS). Rennes, France, pp 19-28

Davis RI, Burns A (2005) Hierarchical fixed priority pre-emptive scheduling. In: Proceedings of the 26th
IEEE Real-Time Systems Symposium (RTSS)

Davis RI, Burns A (2006) Resource sharing in hierarchical fixed priority pre-emptive systems. In: Proceed-
ings of the 27th IEEE Real-Time Systems Symposium (RTSS). Rio de Janeiro, Brazil, pp 257-270

Deng Z, Liu JWS (1997) Scheduling real-time applications in open environment. In: Proceedings of the
IEEE Real-Time Systems Symposium (RTSS). San Francisco, USA

Dertouzos ML (1974) Control robotics: the procedural control of physical processes. In: Proceedings of the
International Federation for Information Processing (IFIP) Congress. pp 807-813

Feng X, Mok AK (2002) A model of hierarchical real-time virtual resources. In: Proceedings of the 23rd
IEEE Real-Time Systems Symposium (RTSS). Austin, TX, USA, pp 26-35

Fisher N, Dewan F (2012) A bandwidth allocation scheme for compositional real-time systems with periodic
resources. Real-Time Syst 48(3):223-263

George L, Rivierre N, Spuri M (1996) Preemptive and non-preemptive real-time uniprocessor scheduling.
Technical Report, INRIA

Ju L, Chakraborty S, Roychoudhury A (2007) Accounting for cache-related preemption delay in dynamic
priority schedulability analysis. In: Design, Automation and Test in Europe Conference and Exposition
(DATE). Nice, France, pp 1623-1628

Kuo T-W, Li C-H (1998) A fixed priority driven open environment for real-time applications. In: Proceedings
of the 19th IEEE Real-Time Systems Symposium (RTSS). Madrid, Spain

Lee C, Hahn J, Seo Y, Min S, Ha H, Hong S, Park C, Lee M, Kim C (1998) Analysis of cache-related
preemption delay in fixed-priority preemptive scheduling. IEEE Trans Comput 47(6):700-713

Leung JY-T, Merrill ML (1980) A note on preemptive scheduling of periodic, real-time tasks. Inf Process
Lett 11(3):115-118

Lipari G, Bini E (2005) A methodology for designing hierarchical scheduling systems. J Embed Comput
1(2):257-269

Lipari G, Baruah SK (2000a) Efficient scheduling of real-time multi-task applications in dynamic systems.
In: Proceddings of the 6th IEEE Real-Time Technology and Applications Symposium (RTAS). pp
166175

Lipari G, Carpenter J, Baruah S (2000b) A framework for achieving inter-application isolation in mul-
tiprogrammed, hard real-time environments. In: Proceedings of the 21st IEEE Real-Time Systems
Symposium (RTSS). Orlando, FL, USA, pp 217-226

Liu CL, Layland JW (1973) Scheduling algorithms for multiprogramming in a hard-real-time environment.
J ACM 20(1):46-61

Lunniss W, Altmeyer S, Davis RI (2012) Optimising task layout to increase schedulability via reduced cache
related pre-emption delays. In: Proceedings of the International Conference on Real-Time Networks
and Systems (RTNS). Pont a Mousson, France, pp 161-170

Lunniss W, Altmeyer S, Maiza C, Davis RI (2013) Intergrating cache related pre-emption delay analysis
into edf scheduling. In: Proceedings 19th IEEE Converence on Real-Time and Embedded Technology
and Applications (RTAS). Philadelphia, USA, pp 75-84

Lunniss W, Altmeyer S, Lipari G, Davis RI (2014a) Accounting for cache related pre-emption delays in
hierarchical scheduling. In: Proceedings of the 22nd International Conference on Real-Time Networks
and Systems (RTNS). Versailles, France, pp 183—-192

Lunniss W, Altmeyer S, Davis RI (2014b) Accounting for cache related pre-emption delays in hierarchical
scheduling with local EDF scheduler. In: Proceedings of the 8th Junior Researcher Workshop on
Real-Time Computing (JRWRTC). Versailles, France

Richter K (2005) Compositional scheduling analysis using standard event models. PhD Dissertation, Tech-
nical University Carolo-Wilhelmina of Braunschweig

Ripoll I, Crespo A, Mok AK (1996) Improvement in feasibility testing for real-time tasks. Real-Time Syst
11(1):19-39

Saewong S, Rajkumar R, Lehoczky J, Klein M (2002) Analysis of hierarchical fixed priority scheduling.
In: Proceedings of the 14th Euromicro Conference on Real-Time Systems (ECRTS). Vienna, Austria,
pp 173-181

Shin I, Lee I (2003) Periodic resource model for compositional real-time guarantees. In: Proceedings of the
24th IEEE Real-Time Systems Symposium (RTSS). Cancun, Mexico, pp 2—13

237

Spuri M (1996) Analysis of deadline schedule real-time systems. Technical Report, INRIA

Staschulat J, Schliecker S, Ernst R (2005) Scheduling analysis of real-time systems with precise modeling
of cache related preemption delay. In: Proceedings of the 17th Euromicro Conference on Real-Time
Systems (ECRTS). Balearic Islands, Spain, pp 41-48

Tan Y, Mooncy V (2007) Timing analysis for preemptive multitasking real-time systems with caches. ACM
Trans Embed Comput Syst 6(1):7

Watkins CB, Walter R (2007) Transitioning from federated avionics architectures to integrated modular
avionics. In: Proceedings of the 26th IEE/AIAA Digital Avionics Systems Conference (DASC)

Xu M, Phan LTX, Lee I, Sokolsky O, Xi S, Lu C, Gill C (2013) Cache-aware compositional analysis of
real-time multicore virtualization platforms. In: Proceedings of the 34th IEEE Real-Time Systems
Symposium (RTSS). Vancouver, Canada

Zhang F, Burns A (2009) Schedulability analysis for real-time systems with EDF scheduling. IEEE Trans
Comput 58(9):1250-1258

Will Lunniss was awarded an EngD in Computer Science from the
University of York in 2014. His thesis focused on the effects of cache
related pre-emption delays in embedded real-time systems. Will is
currently a Software Engineer at Rapita Systems Ltd. A spin out com-
pany from the University of York, specialising in the verification of
embedded real-time systems for the aerospace and automotive indus-
tries.

Sebastian Altmeyer is a post-doctoral researcher in the LASSY
Group of the University of Luxembourg since 2015 and was part
of the Computer Systems Architecture Group at the University of
Amsterdam, Netherlands from 2013 to 2015. He received his PhD in
Computer Science in 2012 from Saarland University in Saarbruecken,
Germany with a thesis on the analysis of preemptively scheduled hard
real-time systems. His research interests are the analysis and verifi-
cation of hard realtime systems in general, with a particular focus on
worst-case timing analysis and real-time scheduling.

238

4 A.i‘\ \

Giuseppe Lipari graduated in Computer Engineering from the Uni-
versity of Pisa (Italy) in 1996. He received his PhD in Computer
Engineering from the Scuola Superiore Sant’Anna of Pisa in 2000,
where he also worked as Associate Professor until 2014. From 2012,
he spent two years at the Ecole Normale Supérieure de Cachan
(France) as a Marie-Curie fellow. From 2014, he is Full Professor
of Computer Science at the University of Lille, where he is part
of the Embedded Real-Time Adaptative system Design and Execu-
tion (Emeraude) team of the Centre de Recherche en Informatique,
Signal et Automatique (CRIStAL) of Lille, and of the Institut de
Recherche en Composants logiciels et matériels pour 1’Information
et la Communication Avancée (IRCICA). His research interests span
over multiple domains related to embedded systems: real-time operat-
ing systems, scheduling algorithms, formal methods, timed automata,
and wireless sensor networks. During his career, he has co-authored
about one hundred papers in peer-reviewed scientific journals and

proceedings of international conferences. He is associate Editor of the Real-Time Systems Journal and
of the IEEE Transactions on Computers.

Robert I. Davis is a Senior Research Fellow in the Real-Time Sys-
tems Research Group at the University of York, UK. Robert also
holds an International Chair with the AOSTE team at Inria Paris-
Rocquencourt, France. He received his DPhil in Computer Science
from the University of York in 1995. Since then he has founded three
start-up companies, all of which have succeeded in transferring real-
time systems research into commercial products. Robert’s research
interests include scheduling algorithms and schedulability analysis
for real-time systems and networks.

