
Phoneme-to-Grapheme Mapping for Spok

Axel Horndasch∗†, Elmar Nöth∗, Anton

∗ Lehrstuhl für Mustererkennung, Universit
† Sympalog Voice Solutions Gmb

{horndasch,noeth,batliner}@informatik.uni-erlan

Abstract

Automatic methods for grapheme-to-phoneme (G2P) and
phoneme-to-grapheme (P2G) conversion have become very popu-
lar in recent years. Their performance has improved considerably,
while at the same time these developments required less input from
expert lexicographers. Continuing in this tradition we will present
in this paper a data-driven, language-independent approach called
MASSIVE1 with which it is possible to create efficient online
modules for automatic symbol mapping. Our framework is solely
based on statistical methods for training and run-time and has been
optimized for P2G conversion in the context of spoken inquiries to
the Semantic Web, an issue researched in the SmartWeb project2.
MASSIVE systems can be trained using a pronunciation lexicon,
the output of a phone recognizer or any other suitable set of corre-
sponding symbol strings. Successful tests have been performed on
German and English data sets.
Index Terms: phoneme-to-grapheme/sound-to-letter conversion,
out-of-vocabulary words, Semantic Web.

1. Introduction
To be confronted with the task of converting symbol sequences
from one representation to another is quite common in the field of
speech processing. Automatic grapheme-to-phoneme conversion
(G2P), also referred to as spelling-to-pronunciation or letter-to-
sound conversion, plays an especially significant role when gen-
erating spoken language from free text input. The conversion of
phonemes to graphemes (P2G, also known as pronunciation-to-
spelling or sound-to-letter conversion) on the other hand is needed
less frequently, but it can be necessary when dealing with out-of-
vocabulary words (OOVs) in spoken dialogue systems. If for ex-
ample the output of a speech recognizer for an OOV hypothesis is
the underlying sequence of phonemic sub-word units, as suggested
in [1], it has to be converted to a sequence of letters if the dialogue
module expects graphemic input.

The goal of the SmartWeb project [2] is to build a question-
answering system that uses the Semantic Web as its knowledge
base. Because its multi-modal user interface provides for spoken
language inquiries, the need to handle out-of-vocabulary words is
a crucial point concerning speech recognition. This setup also af-
fects the requirements regarding the P2G module, which should
for example be able to produce n-best graphemic transcriptions
for OOV words which can be used for an intelligent search.

Consider for example a request like “Show me informa-
tion about the soccer player Burruchaga!” Having no other

1The name was chosen because with the approach Mapping Arbitrary
Symbol Sets Is Very Easy.

2http://www.smartweb-project.de
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rmation source, most people would probably misspell the
er’s name, even if they heard the correct pronunciation
rUtSa:ga/3. With the Semantic Web as a backup and a
ber of spelling alternatives the task of finding the right answer
e user’s request becomes a lot easier.
Our research has benefited greatly from earlier work on (bi-
ctional) G2P and P2G conversion, e. g. [3, 4, 5]. The main
s of this paper is to present a fully automatic approach for
eme-to-grapheme mapping in the context of open vocabula-
The approach is based on probabilistic methods for setting up
time systems offering utmost flexibility with respect to the in-

data. In the next section we shortly describe how we combine
ch recognition and the Semantic Web for question answering
martWeb. The algorithms we use at run-time and for creating
conversion systems within the MASSIVE framework are in-

uced in section 3. In section 4 we present the results of our
riments and how they can be compared to the results of other
ies. We conclude with an outlook on how the system could be
nced in the future.

Speech recognition and the Semantic Web
e questions to SmartWeb are not restricted concerning the do-
, it is important to rely on a combination of strategies for
ling unknown words in the speech input. The basic approach
use a hybrid speech recognizer4, into which the detection and
essing of OOV words is integrated. For every OOV hypothe-
semantic category is also returned, a method first mentioned
].

P2G result Rank Google Google + S

burachaga 1 36 4

boorachaga 2 0 0

burruchaga 3 108 000 627

bourachaga 4 0 0

buruchaga 5 785 31

e 1: Google hits for grapheme hypotheses converted from the
eme string /burUtSa:ga/.

Table 1 gives an idea on how the Semantic Web can help
respect to unknown words. In the first column the top

grapheme hypotheses for /burUtSa:ga/ returned by a

We will use SAMPA (http://www.phon.ucl.ac.uk/home/sampa/) for all
emic representations of words throughout this paper.
With hybrid we refer to the fact that the recognizer was trained to
uce words and sub-word units in its output.

September 17-21, Pittsburgh, Pennsylvania



P2G system created with MASSIVE are shown. The third co-
lumn (labeled Google) contains the number of Google hits for the
grapheme hypothesis. In the fourth column (labeled Google + S)
the number of Google hits for the hypothesis and the search words
soccer player are displayed, simulating semantic context deduced
from the inquiry. The correct transcription burruchaga5 in the
third row is the unchallenged winner in both categories.

Having motivated the creation of n-best results, we want to
point out some other requirements that were important to us while
developing the MASSIVE framework. Apart from real-time pro-
cessing we wanted full flexibility with respect to other sub-word
units that might be used in future versions of the hybrid speech
recognizer. Also the issue of creating a P2G system for an English
language demonstrator for SmartWeb had to be taken into account.

3. The MASSIVE system
The basic idea behind MASSIVE is to create a sequence of symbol
pairs, e. g. of phonemes and graphemes, which are derived from
the alignment of corresponding representations in different alpha-
bets. The symbol pairs, which can be looked upon as words, are
then used for training a statistical language model; given a new
string during run-time, the conversion is done by splitting the in-
put into single symbols, creating probable pairs of input and output
symbols and doing a graph search.

lexicon entry
/IgzA:mpl,/ → example

initial alignment
I e g x z a A: m m p p l l, e

final alignment
I e g x z NIL A: a m m p p l, l NIL e

Figure 1: An example for iterative phoneme-grapheme alignment.
The -symbol separates entries from input and output alphabet.

It should be obvious that the quality of the alignment has a ma-
jor influence on the performance of the resulting conversion sys-
tem. Another problem that has to be dealt with are insertions and
deletions which are indicated using the NIL-symbol in figure 1.
MASSIVE attacks these issues during the training phase by an ite-
rative alignment procedure and the clustering of output symbols.

3.1. Iterative alignment of symbol sequences

Automatically aligning phonemic and graphemic representations
of a word is not trivial. Even if the number of symbols is the same,
the corresponding sounds and letters may be located at different
positions leading to insertions and deletions (as is the case in the
example in figure 1). Additionally, the most probable phonetic
counterpart of a letter depends very much on the position within a
word and the language.

To generate correct sequences of symbol pairs, MASSIVE
uses a naive initial alignment as a starting point. If possible, si-
milarities between input and output symbols can be taken into ac-
count at that stage (e. g. the same character encoding). After that
an EM-like algorithm is applied:

5The soccer player Jorge Burruchaga won the World Cup in 1986 with
Argentina scoring the decisive goal in the final against Germany.
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While old and new alignment differ

1. Compute distances between input and output
symbol based on the frequency of the according
symbol pair in the last alignment (expectation
step)

2. Align all corresponding symbol sequences again
with respect to the new distances using dynamic
programming (maximization step)

Similar ways to align phoneme and grapheme strings have
reported in other studies (e. g. in [7]), however most ap-

ches use manually compiled grapheme or phoneme clusters to
e a one-to-one mapping possible or the seeding for an initial
ment is not automatic.

Automatic clustering of output symbols

result of an alignment process always contains insertion or
tion patterns caused by symbol clusters in one representation
he word being mapped onto fewer symbols in the other re-
entation. For example the letter cluster ough can be mapped
a single symbol in SAMPA in different ways (e. g. /O:/ as

ought or /u:/ as in through). To think of all possible clusters
dvance is almost impossible, even if abbreviations and neolo-
s like Xmas are filtered out. For example the alignment of the

bol strings asthma and /{sm@/ results in the very unintu-
grapheme cluster sth.

While there are many grapheme clusters which can be mapped
single phoneme, correspondences of single letters to more than
phoneme also exist. For example the German letter z has the
cate /ts/ as the most probable phonemic equivalent, a si-
r case is the letter x which is usually pronounced /ks/. A
cal phoneme cluster in the English language is /ju:/ for the
r u.
From these examples it becomes clear that manual clustering
ot easy; it has to be done separately for every language or,
e generally speaking, for every different type of input. How-
, clustering can greatly facilitate the problem of modeling in-
ons in a conversion system, so that for MASSIVE an auto-
c approach is the only feasible option.

lexicon entry
/A:gju:IN/ → arguing

alignment result
A: a NIL r g g j NIL u: u I i N n NIL g

clustering (first step)
A: a NIL r g g j NIL u: u I i N ng

clustering (second step)
A: ar g g j NIL u: u I i N ng

Figure 2: Clustering output symbols

Clustering symbols or, to be more precise, augmenting symbol
with clusters also has a negative effect: the segmentation of
gs becomes ambiguous. Consider the word firsthand, in
h the grapheme clusters sth and th can be found. In this
the letters s, t and h all contribute to the pronunciation of

word6 and should not be regarded as a cluster. To circumvent

The CMU Pronunciation Dictionary actually contains a second entry
irsthand which does not have a /t/ in its phonemic representa-



the segmentation problem we decided against clustering symbols
in the input alphabet. In figure 2 for example the final result of the
clustering process still contains a NIL-symbol on the right hand
side of a symbol pair (j NIL). As a consequence we have to allow
deletions to occur during run-time.

Our clustering algorithm, with which the example in figure 2
was generated, looks like this:

While there are NIL-symbols on the input side of sym-
bol pairs (the left hand side)

1. Count all n-grams with at least one symbol pair
containing a NIL-symbol in the input part and
one neighboring pair with a non-NIL input sym-
bol

2. Replace the most frequent n-gram with a new
symbol pair by merging input and output sym-
bols from all pairs in the n-gram (the NIL sym-
bols are of course removed from the input part)

It has to be noted that even if the alignment result is of
high quality, this process generates errors which lead to incor-
rect phoneme-grapheme correspondences. An example is the
word ricocheted for which the sequence of symbol pairs r r I i
k coch @ e S t eI e d d is generated by the alignment of
rIk@SeId and ricocheted. Unexpected clusters can be
caused by words from another language, abbreviations or erro-
neous correspondences in the input. For example during our ex-
periments with the German wordforms from the CELEX Lexical
Database [8] we found over 2500 errors7 simply by taking a closer
look at the grapheme clusters.

3.3. Training n-gram models with symbol pairs

The n-gram probabilities for the symbol pairs can be estimated
with standard maximum likelihood techniques using the results ob-
tained from alignment and clustering. The formal definition of the
probability of a sequence of symbol pairs can be written as

P (o1 q1, . . . , oT qT ) =

TY

t=1

P (ot qt|o1 q1, . . . , ot−1 qt−1).

The equation demonstrates the close relationship of our ap-
proach to the concept of joint n-gram models. Joint n-gram mo-
dels are a way of dealing with ambiguities by augmenting words
(or as in our case symbols) with extra information [9].

At run-time we face the task of mapping a sequence of sym-
bols o to the corresponding q in the output alphabet. This is done
with a simple beam search algorithm:

Split input string into single symbols
For the current input symbol

1. Generate all possible symbol pairs

2. Compute conditional probability for symbol pair

3. Take best sequences according to beam width

4. Next symbol

Remove all input symbols and return output string(s)

7The lion’s share of the errors were words containing the letter se-
quence schst which was in most cases transcribed as /St/ instead of
/Sst/.
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4. Evaluation
e experiments for this paper we used three different sets of

: the German version of the CELEX Lexical Database, the
U Pronunciation Dictionary [10] and the output of a phone
gnizer trained on the EVAR corpus [11]. Cross validation test
lts include the mean value and standard deviation (enclosed in
ntheses). Phoneme (p-acc), grapheme (g-acc) and word accu-
s (w-acc) were computed by subtracting the error rates (the
of all deletions, insertions and substitutions divided by the

ber of all symbols/words) from 100%.

Experiments on the CELEX Lexical Database

our tests on German data we took the SAMPA version of
ordforms (over 360000) contained in the CELEX Lexical

base (release 2, German version 2.5) and divided them up
equally large sets for 10-fold cross-validation. The set of
emes consisted of 59 entries, including a lot of interna-

al symbols but no affricates, diphthongs or any other clusters.
trained a 5-gram language model with the set of phoneme-
heme pairs we got from alignment and clustering.

P2G g-acc [%] w-acc [%]

aligned (naı̈v) 97.2 (0.1) 86.2 (0.2)
it. aligned 97.5 (0.1) 88.1 (0.2)

al. & clustered 99.6 (0.0) 96.1 (0.1)

e 2: phoneme-grapheme mapping results on CELEX (German
dforms)

Table 2 shows the results of the phoneme-to-grapheme (P2G)
. It can be seen that even by just aligning phoneme and
heme strings and training the language model, the results con-
ing the grapheme accuracy are already in the high nineties.
is mainly due to the large corpus size. However it can be seen

by iterative alignment and clustering the word accuracy can be
roved drastically. The average number of phoneme-grapheme
s extracted by the clustering procedure was 601.
Because MASSIVE can also be used for G2P conversion,
reated a G2P system based on the German wordforms from
EX. In our experiments, we were able to achieve an average
eme accuracy of 99.6% and a word accuracy of 96.8%, with
ame setup as for the P2G experiments.

Experiments on the CMU pronunciation dictionary

setup for our tests on the CMU data is similar to the one used
CELEX. We split up the dictionary into ten parts consisting
bout 12700 entries each for cross-validation tests. We filtered
non-alphanumeric symbols except for the apostrophe8. Table
ows grapheme and word accuracies for n-best hypotheses ge-
ted with the MASSIVE system for the P2G task. In [3] word
letter accuracies of 50.3% and 91.2% respectively are reported
conditions described are very similar but only a single test set
used and no n-best output was presented). Our results come
close to that benchmark although, for efficiency reasons, we

doing without some of the concepts applied in [3] (e. g., no
s-based smoothing of symbol pairs, no exhaustive search).

The reason for this was to make our results comparable to the ones
rted in [3].



P2G g-acc [%] w-acc [%]

best 88.7 (0.1) 50.0 (0.3)
2-best 93.0 (0.1) 65.1 (0.4)
3-best 94.7 (0.1) 72.4 (0.3)
4-best 95.7 (0.1) 76.9 (0.3)
5-best 96.4 (0.1) 80.0 (0.3)
6-best 96.8 (0.1) 82.2 (0.4)
7-best 97.1 (0.1) 84.0 (0.3)
8-best 97.4 (0.1) 85.3 (0.3)
9-best 97.6 (0.1) 86.4 (0.3)
10-best 97.8 (0.1) 87.2 (0.3)

Table 3: n-best phoneme-grapheme mapping results for 10-fold
cross-validation on the CMU Pronunciation Dictionary

Considering the power of the Semantic Web, it is encouraging
that in 87.2% of all cases the first 10 hypotheses contained the
correct spelling. With a reordering of the hypotheses based on the
method described in section 2, the chances of coming up with the
correct spelling in first place are a lot better.

4.3. Experiments on the output of a phone recognizer

Since the motivation for MASSIVE was to come up with a com-
ponent for phoneme-to-grapheme conversion in the framework of
out-of-vocabulary speech recognition, we also experimented with
the conversion of data produced by a phone recognizer. We took
10000 turns from the EVAR corpus for training and 2500 turns
for testing a monophone recognizer (Mono Rec). With this sim-
ple setup we obtained a 65% phone accuracy along with a 43%
accuracy at the turn level (see table 4). In [11] a turn accuracy
(turn-acc) of 72.8% on the same data with a word recognizer and
a 4-gram category-based language model has been reported.

Mono Rec P2G Lex P2G Rec

swu-acc [%] 65.3 66.5 68.2
turn-acc [%] 43.2 38.5 47.6

Table 4: Phoneme accuracy of the recognizer and grapheme ac-
curacies after the P2G-conversion of the recognizer output using
systems trained with a lexicon (P2G Lex) and training material of
the recognizer (P2G Rec)

For testing phoneme-to-grapheme conversion we generated
two P2G modules. The first (P2G Lex) was trained using the
EVAR pronunciation lexicon. The set of corresponding phoneme
and grapheme strings for the second module (P2G Rec) was taken
from the training material of the monophone recognizer. With both
systems we came up with a better sub-word unit accuracy (swu-
acc) after the P2G conversion. One of the reasons for this is, of
course, that there were considerably fewer grapheme (29, includ-
ing umlauts and the ß character) than phoneme classes (57).

More interesting is the fact that the system trained with data
produced by the monophone recognizer does significantly better
than the lexicon-trained component in terms of grapheme and turn
accuracy (see tables 4). Apart from having more data to learn from,
P2G Rec can adjust to typical errors produced by the recognizer
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reas P2G Lex has only seen neat correspondences from the
on.

5. Conclusion
presented a data-driven framework called MASSIVE which
be used to automatically generate phoneme-to-grapheme and
heme-to-phoneme conversion systems. It is specially tailored
scenario involving spoken inquiries to the Semantic Web by

rating n-best graphemic transcriptions for out-of-vocabulary
ds. The approach is solely based on statistical methods, flexi-
owards the type and the language of the input and focused on
time efficiency. Experiments on German and English test sets
ed that MASSIVE is competitive w. r. t. approaches reported
e literature. To further improve the system, we are planning
tegrate new ideas regarding the preprocessing of the training
, for example by doing alternating alignment and clustering
s.
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