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Abstract—Selecting the right scheduling policy is a crucial
issue in the development of an embedded real-time application.
Whereas scheduling policies are typically judged according to
their ability to schedule task sets at a high processor utilizations,
other concerns, such as predictability and simplicity are often
overlooked. In this paper, we argue that FIFO scheduling with
offsets is a suitable choice when these concerns play a key role.
To this end, we examine the predictability of FIFO, present a
schedulability analysis for it and evaluate both, performance
and predictability of FIFO scheduling with and without offsets.
Our results show that FIFO with offsets exhibits competitive
performance for task with regular periods, at an unmatched
predictability.

I. Introduction

First in, first Out (FIFO) scheduling — also referred to
as, first come, first serve (FCFS) — executes jobs in the
exact order of job arrival. No re-ordering or pre-emption can
occur, meaning that FIFO scheduling is arguably the simplest
scheduling policy with minimal scheduling overhead. This
simplicity comes at the cost of performance. FIFO is non-
preemptive by nature and provides no means to account for task
priorities. Schedulability under FIFO can only be guaranteed for
under-utilized systems with uniform period ranges. FIFO, on
the other hand, guarantees fairness, which plays an important
role in general-purpose applications, but not in the real-time
domain. Instead, the focus of the research community has often
been on achieving schedulability under unfavorable conditions
and high task-set utilizations. As a consequence, FIFO is only
considered an option for soft real-time systems, if at all. While
we agree with this assessment, we are interested in other
concerns than pure performance.

The research on FIFO scheduling is motivated by recent
developments in the area of model-based design. We are
interested in devising a model-based design environment called
CPAL [22, 1], short for Cyber-Physical Action Language,
that eases the design and verification of embedded real-
time systems. The motivation is to provide an environment
where also non-experts are able to quickly model and deploy
complex embedded systems without having to master real-
time scheduling and resource-sharing protocols. Especially
irreproducible faults due to different timing behaviors or race
conditions are a nightmare to debug. We acknowledge that
techniques to avoid these problems exist, but they constitute
a major obstacle for newcomers and make both design and
code more complex and error-prone. When processing power is
sufficient, as it is increasingly the case with today’s hardware,

other concerns than performance such as simplicity and
predictability become important.

In this context, we re-visit FIFO scheduling under modified
conditions and make a case for FIFO scheduling with strictly
periodic task activation and release offsets to increase the pre-
dictability and to improve the performance. The contributions
of our paper are threefold:
• We show that FIFO with offsets is unique in the sense

that it is both work-conserving and exhibits a single, well-
defined execution order.

• We provide a schedulability analysis for FIFO, both with
and without offsets.

• We evaluate the performance of FIFO scheduling in terms
of schedulable task sets, and compare the predictability
of FIFO against the two well-known non-preemptive
scheduling policies fixed-priority non-preemptive schedul-
ing (FPNS) and non-preemptive earliest deadline first
(EDFnp) in terms of distinct execution orders.

Related Work: FIFO scheduling has received limited atten-
tion in the real-time community, probably due to its inferior
performance. George and Minet [11] presented a scheduling
analysis for FIFO on a distributed system assuming sporadic
task releases, and Leontyev and Anderson [18] presented
a tardiness analysis for FIFO scheduling, also assuming a
distributed system and sporadic task releases. To the best of
our knowledge, FIFO with offsets has not yet been analyzed.

Adding offsets to improve schedulability, has been proposed
by Tindell [26] for fixed-priority pre-emptive scheduling (FPPS)
and has since been extended to earliest deadline first (EDF) [23,
16], to distributed systems [17] and to non-preemptive EDF
(EDFnp) [5].

All of these scheduling policies are work-conserving. Non-
work-conserving algorithms, as for instance recent work by
Nasri and Fohler [21], introduce idle times to delay long
tasks that would otherwise block tasks with a shorter deadline.
Despite the fundamental difference to FIFO (work-conserving
versus non-work-conserving), the motivation to introduce idle-
time is the same as to introduce offsets, namely to establish
schedulability of an otherwise unschedulable system.

Structure: This paper is structured as follows. In Section II,
we explain our system and task model and introduce basic
properties of FIFO scheduling, and Section III provides a
schedulability test for FIFO with and without offsets. In
Section IV, we evaluate FIFO in terms of performance and
predictability, and Section V concludes the paper.



II. Real-time scheduling under FIFO

A. Execution Model

We now define the task set and execution parameters. We
assume a task set Γ made up of n tasks {τ1, . . . τn} running on
a single processor. Each task τi is represented by a tuple

τi : (Oi,Ci,Ti,Di),

where Oi is the task’s release offset, Ci the worst-case
execution time, Ti the task’s period and Di the deadline. The
task instances, also referred to as jobs, are scheduled non-
preemptively in order of their arrival. To this end, the scheduler
maintains a FIFO queue with ready jobs waiting for dispatch.

In case of simultaneous job arrival, jobs indices are used
as a tie breaker: George and Minet [11] have shown that in
case of simultaneous job arrival, deadline-monotonic order is
optimal. We thus assume without loss of generality that tasks
are indexed in deadline monotonic order. The job with lowest
index, i.e., with the shortest deadline, is queued first.

We assume constrained deadlines, i.e., ∀τi : Di ≤ Ti and
constrained offsets, i.e., ∀τi : Oi ≤ Ti. The task utilization is
defined as

Ui = Ci/Ti (1)

and the utilization of the complete task set by

UΓ = Ui (2)

The hyperperiod H of the task set is given by least common
multiple of all periods

HΓ = lcmi{Ti} (3)

and denotes the time after which the same arrival pattern
repeats.

A task produces an infinite sequence of jobs τ j
i with j ∈ N. A

job’s release time is denoted by r j
i and f j

i denotes its finishing
time. The response time Ri of task τi is then given by the
maximal delay between the release and completion of a job of
τi, i.e.:

Ri = max
j

{
f j
i − r j

i

}
(4)

We distinguish between strictly periodic and sporadic job
releases:

1) Sporadic Release: In case of sporadic job releases, period
Ti is interpreted as the minimal inter-arrival time. The job
release times are thus constrained as follows:

r0
i ≥ Oi (5)

r j
i ≥ r j−1

i + Ti (6)

A job’s deadline Di is interpreted relative to the job’s release
time:

d j
i = r j

i + Di. (7)

2) Periodic Release: In case of strictly periodic release, the
job release time r j

i of job τ
j
i is given by

r j
i = Oi + jTi (8)

and its absolute deadline by

d j
i = Oi + jTi + Di. (9)

Independently of the release pattern, FIFO scheduling is
work-conserving in the sense that it does not introduce any
idle times when work is pending. This means that prior to
any deadline miss, there must be a busy period in which the
processor is not idling. The busy period can be bounded using
various independent and incomparable methods:

George et al. [12] presented a bound based on the tasks’
deadline and the utilization of the task set:

LU := max
i

{
D1,D2, . . . ,Dn,

∑n
i=1(Ti − Di)UΓ

1 − UΓ

}
(10)

Ripoll et al. [24] presented a bound based on the following
recursive equation:

La+1
R :=

n∑
i=1

La
R

Ti
Ci (11)

Since both bounds LR and LU are independent, we can take
the minimum of both as the task set’s busy period L:

L := min{LR, LU} (12)

Naturally, the busy period is only bounded if the task set
utilization UΓ is less than or equal to one.

B. Basic Properties of FIFO Scheduling

In this section, we formulate and prove basic properties of
FIFO scheduling. As noted by Leontyev and Anderson [18],
non-preemptive execution is implied by the use of a FIFO
queue. This represents a stark contrast to other scheduling
policies such as EDF and DM, which exist in two variants, pre-
emptive and non-preemptive. Such a distinction is not possible
for FIFO as pre-emption would contradict the very nature of
FIFO scheduling, and can thus only be realized outside the
FIFO scheduling regime.

For the sake of completeness, we repeat the argument
of George and Minet [11] that deadline monotonic priority
assignment is an optimal tie breaker in case of synchronous
task arrival.

Lemma 1. Any task set schedulable with FIFO scheduling
and any arbitrary tie breaker is also schedulable with deadline
monotonic as tie breaker.

Correctness of Lemma 1 is obvious. For any two syn-
chronously released jobs, executing the job with the smallest
relative deadline first will not render a schedulable task set
unschedulable.

Next, we argue about the sustainability [4] of FIFO schedul-
ing:

Lemma 2. FIFO schedulable is sustainable with respect to
execution times: A schedulable task set will remain schedulable
if a task’s execution time decreases.

The execution order of FIFO solely depends on the task
release times. Consequently, the tasks will be executed exactly



in the order in which the tasks are released (assuming
a potentially unbounded FIFO queue). Reducing a task’s
execution time can thus only reduce, but never increase, other
jobs finishing times. In case of strictly periodic task releases,
we can formulate an even stronger version of Lemma 2:

Lemma 3. Deterministic execution order: Non-preemptive
FIFO scheduling with strictly periodic job releases and a
deterministic tie breaker enforces a unique execution sequence,
which corresponds to sequence of job releases.

A job’s τl
i release time rl

i solely depends on statically
defined parameters (see Equation (8)). Any job released prior
to rl

i has already been dispatched or waits in an earlier slot
in the FIFO queue. The deterministic tie breaker completes
the argumentation. Hence, simulation (assuming worst-case
execution times) serves as a valid schedulability analysis, but
may be prohibitively slow. We note that the uniqueness of the
execution sequence does not entail a fully static schedule (e.g.,
static cyclic scheduling based on schedule tables) which is
non work-conserving. In contrast, FIFO is work-conserving
and executes jobs whenever work is pending. An increase
in a task period, however, may render a schedulable task
set unschedulable as illustrates in Figure 1. Hence, FIFO
scheduling is not sustainable in the task’s periods.

Lemma 4. In case of constrained deadlines, a FIFO queue of
size is n, i.e., the number of tasks in the system, is sufficient
for any schedulable task set.

The correctness of Lemma 4 can be seen by observing
that each task may have at most one job in the FIFO queue
at any time. Two jobs of the same task within the FIFO
queue immediately implies a deadline miss since we assume
constrained deadlines, i.e., ∀iDi ≤ Ti.

C. Advantages of FIFO Scheduling

As confirmed in the experiments of Section IV, FIFO is
not a contender to most common real-time scheduling policies
with respect to the ability to produce feasible task schedules,
especially with long tasks. Only in special cases, FIFO will be
able to compete with the two dominant policies, fixed-priority
pre-emptive scheduling or earliest deadline first. Even amongst
the set of non-preemptive work-conserving scheduling policies
without offsets, where non-preemptive EDF is optimal [9],
FIFO is unlikely to achieve the same performance.

Yet, it is a common understanding that performance is not
the only criterion to select a scheduling policy. Furthermore,
real-world task sets often differ strongly from the ones used to
evaluate the performance of scheduling policies [10, 3]. In the
following, we describe the non-performance related properties
of FIFO that can be considered an advantage for FIFO:
• Simplicity: FIFO scheduling requires little more than a

FIFO queue to store pending jobs and is arguably one
of the scheduling policies with lowest implementation
overhead. Tasks are executed non-preemptively, which
also simplifies the runtime environment and the timing
verification.

• Starvation-Free: Unless the buffer size is exceeded and
jobs are dropped, each job is eventually executed. We note
that fairness may be also be considered a dis-advantage
since it does not provide a native solution to implement
different task criticalities.

• Work-Conserving: Similar to EDF or priority-driven
scheduling algorithms, FIFO scheduling executes ready
jobs and does not introduce unnecessary idle times.

A common assumption in real-time systems are sporadic
tasks with minimal inter-arrival times. We deviate from this
task model and assume strictly periodic task activation with
offsets. Under this restriction, FIFO also exhibits the following
advantages:
• Deterministic Execution Order: The execution order of

FIFO scheduling with offset and strictly periodic task
activation is uniquely and statically determined. This
means that whatever the execution platform and the task
execution times, be it in simulation mode in a design
environment or at run-time on the actual target, the task
execution order will remain identical. Beyond the task
execution order, the reading and writing events that can be
observed outside the tasks occur in the same order. This
property, leveraged by the CPAL design flow [22], provides
a form of timing equivalent behavior between development
and runtime phases which eases the implementation of the
application and the verification of its timing correctness.

• Execution Time Sustainability: FIFO scheduling is
sustainable in the tasks’ execution times, meaning that if
a task set is deemed schedulable and the execution times
of the tasks are reduced, the task set remains schedulable.

These properties greatly simplify verification and even enable
simulation as a valid (even though in many cases too timing
consuming) schedulability test. This is in stark contrast to
most non-preemptive scheduling policies, where scheduling
anomalies [14] prohibit the use of system simulation for
validation purposes.

Furthermore, we have found that FIFO is unique in that it
is the only scheduling policy that combines these properties:

Theorem 1. FIFO scheduling with strictly periodic task
releases is the only scheduling policy that is both work-
conserving and exhibits a unique execution order.

Proof. We observe that only upper bounds on the task’s
execution time are explicitly defined. A lower bound of 0 is
implicitly assumed. Consequently, the tasks’ actual execution
times at runtime can be arbitrary close to 0. In this case, any
work-conserving scheduling policy will eventually execute jobs
in order of job arrival, which corresponds to FIFO scheduling.
Any re-ordering of job executions would violate the uniqueness
of the execution order. Hence, we can conclude that FIFO
with strictly periodic job release is the only work-conserving
scheduling policy with a unique execution order. �

III. Schedulability analysis
We first revisit the schedulability analysis for sporadic release

times presented in [11], correct an assumption about the critical



instance and then provide a schedulability analysis for the more
restricted setting of strictly period job release times.

A. Sporadic Release Times
The schedulability test in [11] relies on the hypothesis that

the critical instance is given when all jobs are released (i)
synchronously and (ii) all subsequent jobs are released at
their highest rate, i.e., strictly periodic. The schedulability
tests checks for all task release within the busy period
whether or not a deadline miss occurs. Whereas a synchronous
job arrival indeed constitutes the critical instance for many
scheduling policies, FIFO scheduling is an exception. Figure 1
demonstrates the optimism using a task set with harmonic
periods and shows that the critical instance is not given in the
case of synchronous task release.

0 2 4 6 8 10 12 14 16

τ1 τ1

τ2 τ2

τ1 τ1τ1 τ1

τ2 τ2

τ1 τ1

(a) synchronous release

0 2 4 6 8 10 12 14 16

τ1 τ1

τ2 τ2

�

(b) asynchronous release

Fig. 1. Synchronous task release is not the critical instance for FIFO scheduling.
Indeed, τ1 meets its deadline in the synchronous case and exceeds it in an
asynchronous case. Γ = {τ1, τ2},C1 = 2,C2 = 4,D1 = T1 = 4,D2 = T2 = 8.

The construction of the critical instance is the key to the
schedulability test for FIFO scheduling. Yet, there is one critical
instance per task, instead of one instance for all tasks. In case
of sporadic task releases, any arrangement of task releases is
possible.

τ1 τ1

. . . . . .

τi−1 τi−1

τi τi

τi+1 τi+1

τi+2 τi+2

. . . . . .

τn τn

Fig. 2. Critical Instance for task τi. Tasks with lower priority than i are
released synchronously with i, tasks with lower priority are released ε before.

The critical instance for task τi occurs when the job τ
j
i is

positioned in the very last place in the FIFO queue, i.e.when

the queue already contains a job of each other task. Let r j
i be

the release time of job τ
j
i . Tasks with higher priority 1 have

released a job synchronously, i.e.

∀l<i∃k : r j
i = rk

l (13)

and all tasks with a lower priority have released an job just an
ε > 0 before, i.e.:

∀l>i∃k : rk
l = r j

i − ε (14)

Theoretically ε can be arbitrary small. In any realistic en-
vironment, however, the smallest interval between two job
arrivals of different tasks is non-negligible and determined
by the implementation of the execution environment and the
scheduler.

Consequently, the response time Ri of task τ
j
i in case of

FIFO scheduling with sporadic job releases and constrained
deadlines is given as follows:

Ri =


∑

j={1,...,n}C j − ε if i < n∑
j={1,...,n}C j if i = n

(15)

The response time computation is exact and exhibits linear
complexity in the number of tasks. It also highlights the low
performance of FIFO scheduling: only highly underutilized
systems can be deemed schedulable.

B. Strictly Periodic Release Times

Even though we are not aware of any work on FIFO schedul-
ing with offsets, we were able to construct a schedulability
analysis for this policy using already established schedulability
results. In particular, the schedulability test for EDF with offsets
presented by Pellizzoni and Lipari [23].

We note that FIFO is work-conserving in the sense that
it does not introduce any idle times when work is pending.
This means that prior to any deadline miss, there must be
a busy period in which the processor is not idling. As we
assume arbitrary offsets and strictly periodic releases, we do
not know when a deadline-miss happens and so, would need
to validate all busy periods within twice the hyperperiod. To
avoid this prohibitively long search, we construct for each task,
a hypothetical critical instance leading to a task’s first deadline
miss. Let τi be the task to miss its deadline, and τ j

i released at
r j

i the corresponding job. The critical instance happens when
all tasks other than τi release a job as close to r j

i as possible.
If we can prove that despite this pessimistic assumption, job
τ

j
i will finish before its deadline d j

i , we can conclude that no
job of task τi will ever miss its deadline. If we can repeat the
same argumentation for each task in Γ, we can conclude that
the complete task set is schedulable.

1) Construction of Γ̂: Formally, we define for each task τi

a pseudo task-set Γ̂ that represents the critical instance for task
τi. The two task sets Γ and Γ̂ only differ in the task offsets, the
rest of the parameters remaining identical. Let τ̂ j

i be a job that
misses its deadline. As we know that in a work-conserving

1Higher priority means here a smaller index value which is used as the
tie-breaker in case of simultaneous releases.



scheduling algorithm, a deadline miss must be within a busy-
period L, we set the release time as follows r̂ j

i = L and its
deadline to d̂ j

i = L + Di.
We now select the task parameter of each task τ̂l with l , i

to maximize the likelihood of a deadline miss of job τ̂
j
i . To

this end, we postpone the job release of the last job of task
τ̂l executed before the deadline miss as much as possible. An
earlier job release will only increase the slack time and so,
reduce the pressure on the finishing time of job τ

j
i .

In case of a higher priority task, i.e., τ̂l with l < i, the job
must be released just before or synchronously with τ̂ j

i , whereas
tasks with lower priority must be released strictly before τ̂ j

i .
Since we use task priorities as a tie breaker, a lower priority
task released synchronously with τ̂i would be executed after,
and not before task τ̂i.

Pellizzoni and Lipari presented a computation of the mini-
mum distance between any two release times of two different
tasks τi and τl (see [23], Lemma 2). In contrast to their work,
we are not only interested in the minimal distance, but also in
the minimal distance larger than zero. We therefore repeat the
computation of the minimal distance.

Let δ be distance between jth job of task τi and the k job
of task τl:

δi,l = j · Ti + Oi − k · Tl + Ol (16)

By replacing Ti with xi · gcd(Ti,Tl) and Tl with xl · gcd(Ti,Tl),
we get

δi,l = j · Ti + Oi − k · Tl + Ol

j · xi · gcd(Ti,Tl) + Oi − k · xl · gcd(Ti,Tl) + Ol

( j · xi − k · xl) gcd(Ti,Tl) + Oi − Ol

Since j · xi − k · xl can take any arbitrary value, we replace it
by x and get

δi,l = x · gcd(Ti,Tl) + Oi − Ol (17)

Now, we just need to find smallest δi,l ≥ 0 and the smallest
δi,l ≥ 1, which are given by

x =
Ol − Oi

gcd(Ti,Tl)

and
x′ =

Ol − Oi + 1
gcd(Ti,Tl)

Applying these values to Equation (17), we get

∆i,l = Oi − Ol +

⌈
Ol − Oi

gcd(Ti,Tl)

⌉
gcd(Ti,Tl). (18)

and
∆′i,l = Oi − Ol +

⌈
Ol − Oi + 1
gcd(Ti,Tl)

⌉
gcd(Ti,Tl). (19)

Finally, we can set the release time of the last job τ̂k
l of task

τ̂l executed before τ̂ j
i as follows:

r̂k
l =

r̂ j
i − ∆i,l if l ≤ i

r̂ j
i − ∆′i,l if l > i.

(20)

The offset of task τi is given by

Ôi = r̂ j
i mod Ti, (21)

and for all other tasks l , i by

Ôl = r̂k
l mod Tl. (22)

The remaining task set parameters, i.e., the relative deadline, pe-
riod and execution time remain unchanged. Figure 3 illustrates
the task set parameters.

Theorem 2. A deadline miss of task τi in Γ entails a deadline
miss of job τ̂

j
i within task set Γ̂

∃k : f k
i > dk

i ⇒ f̂ j
i > d̂ j

i

Proof. Let k be the job index, so that f k
i > dk

i holds. We
know that prior to the deadline miss of τi,k, there must be a
busy period without any idle time. Let t be the length of this
busy period. The number of job releases Nl of task τl within
[rk

i − t : rk
i ] is given by

Nl =

⌊
t − disti,l

Tl

⌋
+ 1

where disti,l is the distance between rk
i and the last job of τl

executed before rk
i . Analogously, the number of job releases

N̂l of task τ̂l within [r̂k
i − t : r̂k

i ] is given by

N̂l =

⌊
t − ˆdisti,l

Tl

⌋
+ 1.

Since there is a deadline miss at dk
i and an idle time before

rk
i − t, we know that ∑

l

Nl ·Cl > t + Di.

By construction, ˆdisti,l ≤ disti,l, and hence Nl ≤ N̂l. Therefore,
we can conclude that

∑
l N̂l · Cl ≥

∑
l Nl · Cl > t + Di, and

so, there must be a deadline miss at d̂k
i , which concludes our

proof. �

2) Schedulability of τ̂ j
i : Using Theorem 2, it is sufficient

to validate the schedulability of Γ̂: if τ̂i in Γ̂ is schedulable
with FIFO, so is τi in Γ. Furthermore, since we know which
job of task τ̂i will miss its deadline in case of a deadline
miss, it is sufficient to concentrate on the jth job τ̂

j
i , which

allows us to reduce the analysis time. If we are able to prove
or disprove a deadline miss of job τ̂

j
i , we can immediately

abort the schedulability analysis of task τi. Consequently, we
concentrate only on job τ̂ j

i and ignore all others. First, we define
the number of job releases that may postpone the completion
of task i within a given time interval.

The function ηinc
l (t1, t2) denotes the number of job releases

of task τl within the time interval [t1 : t2], i.e., including t2 and
is given as follows:

ηinc
l (t1, t2) =

⌊
t2 − Ôl

Tl

⌋
+ 1 −

⌈
t1 − Ôl

Tl

⌉
(23)
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Fig. 3. Illustration of the pseudo task set Γ̂ and the schedulability test of τi with 1 < i < l. The release time r̂ j
i of job τ̂

j
i is set to L and its deadline d̂ j

i to
L + Di. For all other tasks, the release time of the last job executed before τ̂ j

i is moved as close to L as possible. For each task release t within [0 : L], the
schedulability analysis needs to verify that the processor demand does not exceed the available processor time.

The function ηexc
l (t1, t2) denotes the number of job arrivals of

task τ j within the time interval [t1 : t2), i.e., excluding t2 and
is given as follows:

ηexc
l (t1, t2) =

⌈
t2 − Ôl

Tl

⌉
−

⌈
t1 − Ôl

Tl

⌉
(24)

Using these two functions, we define the processor demand
PD within time interval [t1 : t2] that can delay the completion
of a job of task τ̂i released at t2:

PD(t1, t2, i) =
∑
l≤i

ηinc
l (t1, t2) ·Cl +

∑
l>i

ηexc
l (t1, t2) ·Cl (25)

Again, we distinguish between tasks with higher priorities
and tasks with lower priorities to correctly account for the
tie-breaking policy in case of synchronous job arrivals.

Theorem 3. A deadline miss is preceded by a busy period, in
which the processor demand exceeds the available computation
time:

f̂ j
i > d̂ j

i ⇔ ∃t ∈ [0 : r̂ j
i ] : PD(t, r̂ j

i , i) > d̂ j
i − t

Proof. We prove both directions separately.
⇐: We select t so that PD(t, r̂ j

i , i) > d̂ j
i − t. By construction,

PD(t, r̂ j
i , i) is the computational demand of all jobs released

within [t : r̂ j
i ] with job τ̂ j

i being the last to be executed. Hence,
the finishing time f̂ j

i of τ̂ j
i is at least PD(t, r̂ j

i , i) + t, i.e., f̂ j
i ≥

PD(t, r̂ j
i , i) + t and so, we can conclude that f̂ j

i > d̂ j
i .

⇒: We assume that f̂ j
i > d̂ j

i . Let t be the beginning of the
busy period prior to the deadline miss. If PD(t, r̂ j

i , i) ≤ d̂ j
i − t,

there is either an idle time prior to d̂ j
i , or the processor is

not idle prior to t. Both contradict our assumption that t is
the beginning of a busy period. Hence, we can conclude that

PD(t, r̂ j
i , i) > d̂ j

i − t, which finishes our proof. �

Using Theorem 3, we can test for a deadline miss of job τ̂
j
i

as follows:

∀t ∈ [0 : r̂ j
i , i] : PD(t, r̂ j

i , i) ≤ d̂ j
i − t ⇒ f̂ j

i ≤ d̂ j
i (26)

To reduce the number of test, we observe that PD(t1, t2, i) only
changes at the time of a job release, which means that we only
need to validate the schedulability at these points:

Q = {t|∃l, k : t = k · Tl + Ôl ∧ t ≤ L − Di} (27)

Hence, we can validate the schedulability of task τi as follows:

∀t ∈ Q : PD(t, r̂ j
i , i) ≤ d̂ j

i − t ⇒ f̂ j
i ≤ d̂ j

i (28)

The schedulability analysis for job τ̂ j
i is illustrated in Figure 3.

We note that the schedulability test is sufficient but not
necessary. Theorem 2 does not provide an equivalence between
the schedulability of Γ and Γ̂. The schedulability analysis can
falsely deem a schedulable task set unschedulable, but not the
inverse.

3) Schedulability Test: Algorithm 1 shows the complete
schedulability test in pseudo-code. Function computeBusyPer-
iod implements Equation (12) and function computeMinDis-
tance Equation (18) and (19). In the outer loop (line 4 to 19),
the algorithm iterates over all tasks and generates for each
task the pseudo task set Γ̂ (line 7 to 10). In line 12 to 17,
the algorithm checks for each point in Q, if the schedulability
condition (see Equation (28)) is met. The algorithm terminates
either when all tasks are found to be schedulable, or if one
unschedulable task is found.

4) Example: We illustrate Algorithm 1 using the second
task τ2 of the following example task set Γ:



Ci Di Ti Oi

τ1 1 4 4 0
τ2 2 4 4 2
τ3 1 8 9 2

The longest busy period L of Γ is 8. To validate the schedula-
bility of τ2, we construct Γ̂ as follows: The release time r̂ j

2 of
job of r̂ j

2 is set to L and the deadline of that job to L + D2:

r̂ j
2 = L = 8 d̂ j

2 = L + D2 = 8 + 4 = 12

The release times of the jobs r̂k
1 and r̂k

3 are set according to
Equation (20):

r̂k
1 = r̂ j

2 − ∆2,1 = 8 − 2 = 6

r̂k
3 = r̂ j

2 − ∆′2,3 = 8 − 1 = 7

The set Q is then filled with the release times of jobs of all
three tasks within the interval [0 : 8]:

Q = {0, 2, 4, 6, 7, 8}

For each element in Q, we have to validate Equation (28):

t PD(t, τ̂ j
2, 2) d̂ j

2 d̂ j
2 − t PD(t, τ̂ j

2, 2) ≤ d̂ j
2 − t?

0 10 12 12 X
2 8 12 10 X
4 7 12 8 X
6 5 12 6 X
7 4 12 5 X
8 2 12 4 X

Using Theorem 2 and 3, we can conclude that no job of task
τ2 will ever miss deadline when scheduled according to FIFO
with the chosen offsets.

Algorithm 1 FIFO Schedulability Test
1: i = 1
2: isSchedulable = true
3: L = computeBusyPeriod
4: while i ≤ n ∧ isSchedulable do
5: r̂ j

i = L
6: Ôi = r j

i mod Ti

7: for all l do
8: ˆdisti,l = computeMinDistance(i, l)
9: Ôl = r j

i −
ˆdisti,l mod Ti

10: end for
11: Q = {t|∃l, k : t = k · Tl + Ôl ∧ t ≤ L}
12: for all t ∈ Q do
13: if PD(t, r̂ j

i , i) − t > d̂ j
i then isSchedulable = false

14: end if
15: if ¬isSchedulable then break
16: end if
17: end for
18: i = i + 1
19: end while
20: return isSchedulable

C. Offset Optimization

We have so far assumed immutable offsets provided a priori.
This assumption may hold, for instance, when precedence
constraints are implicitly realized via offset relationships.
Often, however, offsets can be considered mutable and offset
optimization can provide a means to either improve system
performance or even to establish schedulability in the first
place. We note that systems with mutable offsets are referred
to as offset free systems [13].

In recent years, several offset optimization techniques have
been developed, such as for instance [13, 15, 20]. The tech-
niques were typically tailored towards a particular scheduling
policy (FPPS with offsets [13, 15]) or towards a dedicated
application domain (e.g., automotive runnables [20] or avionics
networks [19]) and are thus not immediately applicable to
FIFO scheduling. Yet, the evaluation in [15] indicates that ran-
domization provides sub-optimal yet satisfactory results. With
randomization we refer to a completely random distribution
of all task offsets. The feasibility of such a random offset
assignment will be validated until either a fixed number of
assignments has been unsuccessfully validated, in which case
the task set is considered unschedulable, or until a feasible
offset assignment has been found. As future work, we intend
to evaluate the existing offset optimization techniques towards
their usability for FIFO scheduling, and/or to develop an offset
optimization specifically tailored towards it. Both research
topics, however, are out-of-scope of this paper.

We note that offset optimization does not violate event order
determinism: exactly one pre-defined event order is permissible
at runtime, only which of the permissible event orders will be
selected is decided statically at design-time.

IV. Performance of FIFO scheduling

In this section, we evaluate the behavior of FIFO scheduling
with respect to
• its ability to lead to feasible schedules compared to other

scheduling polices,
• the precision and analysis time of the schedulability test

presented in Section III, and
• the predictability of FIFO scheduling.
We acknowledge that the performance of scheduling polices

is highly sensitive to the choice of parameters. This is
in particular true for non-preemptive policies. To achieve
transparency and to ease the reproduction of the results, the
source code of the programs used in our experiments, including
the schedulability test, is available online2. This source code
enables the reproduction of the experiments presented in this
section, as well as evaluation for different parameter settings.

A. Experimental Setup

To evaluate the performance of FIFO scheduling in terms of
schedulable task sets, we have randomly generated 10000 task
sets for each task set utilization from 0.025 to 0.975 in steps of
0.025, We have found that the dominant parameters in case of

2https://github.com/SebastianAltmeyer/FIFO-Scheduling-Analysis



FIFO are (i) the period range, (ii) the type of periods and (iii)
the granularity. The period range, or to be precise, the difference
between smallest and largest period is a common performance
indicator for non-preemptive scheduling policies [25]. With
granularity of a task set, we refer to the greatest common
divisor of all periods and offsets. We have conducted three sets
of experiments, one for each of the following period types:
• Random: task periods Ti were randomly chosen in the

range [1000: 100.000]ms,
• Loosely-harmonic: the task periods Ti were set to x ·

1000ms with x randomly chosen in the range [1 : 100],
• Harmonic: task periods Ti were set to 2x · 1000ms with x

randomly chosen in the range [0 : 7].
Random-period and harmonic-period tasks are on the opposite
sides of the spectrum with respect to period randomness,
while loosely-harmonic tasks are representative of the common
situation in practice where tasks are a multiple of a time
quantity larger that the intrinsic granularity of time, such as 5
or 10ms.

The remaining parameters were set as follows:
• the granularity was set to 100ms,
• the task set size was 10,
• task utilizations Ui were generated using UUnifast[7],
• task execution times Ci were set Ci = Ti · Ui,
• deadlines were implicit, i.e.Di = Ti,
• task offsets were randomly chosen in the range [0 : Ti].
The schedulability of each task set has been assessed using

the following approaches:
• Fixed-priority pre-emptive scheduling FPPS without off-

sets (red line),
• Fixed-priority non-preemptive scheduling FPNS without

offsets (green line, filled circle),
• FIFO with strictly period task releases, resp. with initial

random offset (pink line, empty square) and optimized
offsets (dark blue line, triangle),

• FIFO with aperiodic releases (light blue line, filled square).
Optimized offsets means here that we have tried up to 1000
random offset assignments for each task set before concluding
that the task was unschedulable.

In addition to the analytical schedulability tests presented
in Section III, we have performed simulation to twice the
hyperperiod to evaluate the feasibility of FIFO with offsets
(black line, empty circle) for harmonic and loosely-harmonic
periods. For random periods, simulation is computationally
infeasible due to the length of the hyperperiod.

It should be noted that when it can be performed, simulation
provides an exact schedulability test for FIFO scheduling with
offsets and thus can be used to evaluate the accuracy of the
schedulability test in Section III. Simulation is however not
usable with FPNS with offsets which is not sustainable in the
execution times and thus can exhibit scheduling anomalies. We
have not yet found in the litterature a feasibility test for FPNS
with offsets for the exact same system model (i.e., not using
the transaction model that is for instance used in the CAN
network schedulability analysis [27]).

B. Schedulability under FIFO

The number of task sets that are schedulable with the
different policies under study out of 10000 randomly generated
task sets are shown in Figure 4 for random periods, in Figure 5
for loosely-harmonic periods and in Figure 6 for harmonic
periods.
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Fig. 4. Evaluation of the base configuration, random periods.
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Fig. 5. Evaluation of the base configuration, loosely-harmonic periods.
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As expected, FIFO with aperiodic task releases performs
poorly and is only able to schedule task sets at a low
processor utilization, irrespective of period types. In contrast,
the performance of the schedulability test for FIFO with strictly
period task releases (with and without offset optimization)
strongly depends on the type of periods. For random periods,
FIFO with offsets performs only slightly better than aperiodic
FIFO scheduling. Due to the high variability of the periods, the
minimal distances between two job releases of different tasks
decreases and the analysis has to assume unfavorable release-
scenarios for the pseudo tasks sets Γ̂. For loosely-harmonic
and harmonic periods, adding offsets to FIFO scheduling
significantly increases the number of schedulable task sets.
Especially for harmonic periods, FIFO with offsets can profit
from the very regular periods and is able to compete with FPNS
(without offsets). Furthermore, we observe that the regularity of
the periods also improves the precision of the analysis; in case
of harmonic (Figure 6) and loosely-harmonic periods (Figure 5),
the analysis is able to deem a similar number of tasks as the,
more much more computationally intensive, simulation, and
only fails to compete at high processor load. For instance, as
can be seen in Figure 5, results with simulation and analysis
remain identical up to 0.65 load.

C. Weighted schedulability measure

To further evaluate the sensitivity of the scheduling policies
in terms of (i) number of tasks, (ii) period factor, and (iii)
granularity, we use the weighted schedulability measure [6].
The weighted schedulability measure condenses an otherwise
three-dimensional graph to two dimensions. It takes the average
of the schedulability ratio weighted by the utilization U. Let
S (Γ, p) be the result of the schedulability test for task set Γ

and parameter p. S (Γ, p) = 1 indicates that the task set is
schedulable, otherwise S (Γ, p) = 0. The weighted measure is
defined as follows:

W(p) =

∑
∀Γ U · S (Γ, p)∑

∀Γ U
, (29)

The weighted schedulability measure (for 1000 task sets per
utilization) for a varying number of tasks is shown here for
random task sets in Figure 7, for loosely-harmonic task sets in
Figure 8, and for loosely-harmonic task sets in Figure 8. FPNS
profits from an increasing number of tasks. Non-preemptive
scheduling is highly dependent on the difference between
shortest and longest task, which tends to decrease as the number
of task increase. FIFO, even though also non-preemptive, can
not profit from an increasing number of tasks. The positive
effect of the decrease in the difference between the tasks’
execution times is diminished by the higher pessimism of the
schedulability analysis; Indeed, the higher the number of tasks,
the more pessimistic the schedulability test due to cumulated
conservative assumptions. Consequently, the weighted measure
for FIFO scheduling (in all cases) remains largely constant
starting from a task set size of 8 onwards. It is also noteworthy
that the offset optimization scheme by randomization is only
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Fig. 7. Weighted schedulability measure, varying number of tasks, random
periods.
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Fig. 8. Weighted schedulability measure, varying number of tasks, loosely-
harmonic periods.
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Fig. 9. Weighted schedulability measure, varying number of tasks, harmonic
periods.
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Fig. 10. Weighted schedulability measure, varying period factor (Ti ∈

[100: 100 ∗ 10 f ]), random periods.
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Fig. 11. Weighted schedulability measure, varying period factor (Ti = x ·1000,
x ∈ [1 : 10 f ]), loosely-harmonic periods.

marginally efficient (e.g., 5% more schedulable tasks sets than
without optimization with 14 tasks).

The evaluation of varying period ranges for loosely-harmonic
task sets is shown in Figure 10 to 12. All approaches except
for FPPS are similarly affected by an increase in the period
ranges due to the long task problem [25].

The evaluation of varying time granularities, defined as the
greatest common divisor of all periods and offsets is given in
Figure 13 for random periods. Only the results for random
periods may profit from an increases in the granularity. For
harmonic and loosely-harmonic period, the periods are already
regular and changing the offsets has only a limited effect.
We observe that the performance of all scheduling policies
improve when the granularity increases, with a small peak at
a granularity of 500ms. The minimal period is set to 1000ms,
which means that setting the granularity to 500 leads to more
regular periods than for instance a granularity of 600. In fact,
by increasing the granularity, we gradually move from random
periods to loosely-harmonic periods. The weighted measures
for harmonic and loosely-harmonic periods remain largely
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Fig. 12. Weighted schedulability measure, varying period factor (Ti = 2x ·1000,
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Fig. 13. Weighted schedulability measure, varying granularity, random periods.

constant (see Figure 14 and 15).

D. Predictability concerns

FIFO with strictly periodic task releases exhibits a unique
execution sequence, or event order, which strongly eases
verification and validation. To further evaluate the predictability
concerns, we have derived the number of distinct event order
for two of the dominant non-preemptive scheduling policies,
EDFnp and FPNS, both with offsets and strictly period task
releases. The task activation pattern is thus the same for all
three policies and event orders can only differ in the order of
task executions, but not task release. Also, we do not record the
timing of an event, but only the order of events. For each task
set utilization, we have generated 100 task sets and performed
1000 simulations to twice the hyperperiod per task set and
scheduling policy. To vary the execution times of the tasks, we
have randomly selected a value C′i ∈ [Ci/2: Ci] with a uniform
distribution. The results are shown in Figure 16 for loosely-
harmonic periods and in Figure 17 for harmonic periods. As
already discussed by Buttazzo in [8], FPNS shows a higher
variability than EDFnp, despite the static priorities of FPNS.
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Fig. 15. Weighted schedulability measure, varying granularity, harmonic
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Fig. 16. Number of different event orders, harmonic periods
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Fig. 17. Number of different event orders, loosely-harmonic periods

Also, quite surprisingly, harmonic periods lead to an order
of magnitude higher number of event orders, both for EDFnp

and FPNS, compared to loosely-harmonic periods. In case of
loosely-harmonic periods, task releases are stretched over a
longer period of time compared to harmonic period, which
reduces the freedom to re-order task executions.

V. Conclusion & FutureWork

In this paper, we provided a schedulability test for FIFO with
and without offsets and made the case that FIFO scheduling,
with strictly periodic tasks and offsets, is a competitive
scheduling policy when predictability and simplicity matter.
FIFO is non-preemptive by construction and provides no means
to account for task priorities. Consequently, FIFO is in general
not able to schedule a competitive number of task sets at
high processor utilizations as for instance FPNS, let alone
pre-emptive scheduling policies.

Adding offsets and enforcing strictly periodic task releases
provides two significant advantages to FIFO: (i) The perfor-
mance issues are mitigated and a higher number of task sets
are schedulable, even at high utilization rates, and especially
for task sets with harmonic or loosely-harmonic periods and (ii)
a unique execution order, defined by the order of job arrivals
is enforced which greatly simplifies validation and testing. We
have shown that FIFO with offsets is unique in the second
property amongst all work-conserving algorithms. It is thus a
good fit for our CPAL design flow which aims at automating
system synthesis and hiding away from the designer the
complexity of the underlying runtime environments, lowering
thus the barriers to designing and modeling provably-safe
real-time systems. In future works, we plan to consider and
evaluate the scheduling overheads of FIFO, but also of the
other scheduling policies, and design an offset optimization
strategy tailored to FIFO.
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