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Abstract—We introduce Selfish-LRU, a variant of the LRU
(least recently used) cache replacement policy that improves per-
formance and predictability in preemptive scheduling scenarios.

In multitasking systems with conventional caches, a single
memory access by a preempting task can trigger a chain reaction
leading to a large number of additional cache misses in the
preempted task. Selfish-LRU prevents such chain reactions by
first evicting cache blocks that do not belong to the currently
active task. Simulations confirm that Selfish-LRU reduces the
CRPD (cache-related preemption delay) as well as the overall
number of cache misses. At the same time, it simplifies CRPD
analysis and results in smaller CRPD bounds.

I. INTRODUCTION

Caches are an important part of the memory hierarchy of
current processors. By providing low-latency access to a small
part of the contents of main memory, they bridge the gap
between low-latency cores and high-latency main memories.
Which part of main memory to store in the cache is decided
at runtime by the replacement policy. Even though caches
complicate WCET (worst-case execution time) analysis, their
use is compulsory in many real-time systems as they reduce
execution times even in the worst case.

Preemptive scheduling is a mechanism to execute multiple
tasks on a single-threaded processor, without requiring coop-
eration of the scheduled tasks. It is well-known in real-time
scheduling that many task sets are only schedulable under a
preemptive scheduling regime. This is the case in particular,
when task sets include both high-frequency tasks with short
deadlines and long-running tasks.

Thus, often, both caches and preemption are required to
meet all deadlines of a set of real-time tasks. However,
in contrast to simplifying assumptions in many scheduling
analyses, preemption does not come for free. It takes time
to perform a context switch from one task to another, and
more subtly, the execution time of a task may increase due to
preemptions. The additional execution time of a task that can be
attributed to preemption is known as the preemption delay. The
main contributor to the preemption delay are additional cache
misses in the preempted task, due to memory accesses in the
preempting tasks. The cost incurred by these additional cache

misses is referred to as the CRPD (cache-related preemption
delay).

There are two approaches to account for preemption delays:
1.) By conservatively taking into account the effect of all
possible preemptions in the WCET bound [1]; or 2.) by creating
a richer interface between WCET analysis and schedulability
analysis. The first approach yields extremely pessimistic WCET
bounds. To reduce pessimism, following the second approach,
multiple new schedulability analyses [2] have been proposed
recently. In addition to a bound on the WCET of a non-
preempted execution of a task, such schedulability analyses
require characterizations of the cache behavior of the tasks
that are sufficient to bound the CRPD.

Following Liu et al. [3], one can distinguish two types of
context-switch misses, i.e., cache misses that are a consequence
of preemptions:

1) A cache miss in the preempted task is called a replaced
context-switch miss if the requested memory block was
replaced during the preemption.

2) Context-switch misses may replace additional memory
blocks of the preempted task. Cache misses caused by
accesses to such memory blocks are called reordered
context-switch misses.

Consider a loop that references the memory blocks a, b, c,

and d repeatedly. Then an LRU cache of size four will cycle
through the following four cache states:

M&@dgMM&Hin¢dghh%ﬂiW&&d

Except for the first loop iteration there will be no cache misses.
Now, assume that the execution of the loop is preempted and the
preempting task performs a single memory access to block e
evicting block a and resulting in cache state [e, d, ¢, b]. In the
first loop iteration after the preemption four context-switch
misses occur:
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The miss to « is a replaced miss, tagged with . This triggers
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the subsequent reordered misses to b, ¢, and d, tagged with t,
which were not replaced during the preemption.

Such chain reactions causing reordered context-switch misses
have been overlooked in previous CRPD analyses and in
empirical evaluations of the context-switch cost, as observed
in [4] and [3]. However, based on simulations, Liu et al. [3]
report that reordered misses account for 10% to 28% of all
context-switch misses.

We introduce a new replacement policy for multitasking

systems, Selfish-LRU, a variant of LRU (least-recently used).

In contrast to regular LRU, Selfish-LRU distinguishes cached
memory blocks not only by the recency of their last access,
but also by the task they belong to. Upon a miss, memory
blocks belonging to the active task are prioritized over memory
blocks belonging to inactive tasks.

Reconsider the example from above. In Selfish-LRU, after

the preemption, the replaced miss to a occurs as in LRU.

However, a evicts block e because it belongs to another task:
le,d,c, b]a—>[a, d,c, b]g[b, a,d, c]£>[c, b, a, d}i[d, ¢, b, al

The advantage of Selfish-LRU over LRU is that it completely
eliminates reordered context-switch misses. Thereby, it reduces

the context-switch cost and it simplifies static CRPD analysis.

In this paper, we make the following contributions:

1.) We introduce Selfish-LRU, a novel replacement policy
targeted at preemptive systems that improves upon LRU, the
most predictable replacement policy known to date, in terms
of both performance and predictability.

2.) We show how state-of-the-art static CRPD analyses for
LRU based on useful cache blocks (UCBs), evicting cache
blocks (ECBs), and the notion of Resilience can be adapted
to Selfish-LRU. In particular, the results of ECB analyses
can simply be reinterpreted for Selfish-LRU and Resilience
analysis is simplified. The resulting analyses provably yield
smaller CRPD bounds.

3.) We empirically evaluate Selfish-LRU by simulation and
static analysis on SCADE models and a set of tasks from
the Milardalen benchmark suite. The number of cache misses
observed during simulation and the CRPD bounds are reduced
by up to 39% and 63%, respectively.

II. SELFISH-LRU: USEFUL PROPERTIES
AND FORMAL SPECIFICATION

In this section, we provide the intuition behind Selfish-LRU
followed by a formal specification and a discussion of its useful
properties. This concerns only the logical behavior, i.e., when
and which memory blocks are replaced, not how this is realized
in hardware, which will be discussed in the following section.

A. Intuition Behind Selfish-LRU

Caches exploit spatial and temporal locality. The intuition
behind LRU is that, due to temporal locality, a memory block
that has been used more recently than another block is also
more likely to be used again soon. In most scenarios, this
intuition is correct. However, following a context-switch, it can

be wrong. Then, intuitively, memory blocks of the active task
are more likely to be reused than blocks belonging to other
tasks, even though those might have been used more recently.
Selfish-LRU follows this intuition and prioritizes blocks of
the active task; i.e., Selfish-LRU preferably replaces blocks
belonging to inactive tasks upon a cache miss.

B. Formalization of States and Updates

In a set-associative cache, individual cache sets can be seen
as fully-associative caches, and different cache sets are logically
independent. Thus, we limit our description to that of fully-
associative caches.

A fully-associative cache consists of & cache lines, where %
is the associativity of the cache. In a regular cache, a cache
line consists of the tag of the cached memory block, to identify
which block’s data is cached, and the cached data itself. Here,
we are only concerned with which block b € B is cached, and
not with the data stored in the cache line. In Selfish-LRU, in
addition to the tag, we also need to keep track of the ID of
the task ¢ € T that a cache line belongs to. We define the set
of logical Selfish-LRU states as

Q:=((BxT)u{L}H" (1

A cache line is either invalid, denoted by L, or it contains a
memory block b € B belonging to a task ¢ € T. Cache lines
are ordered by the recency of their last access, from most- to
least-recently used.

An access a consists of a memory block b € B and the
ID of the active task ¢t € T In the following, let a = (b, t).
Similarly, for each cache line /;, I; = (b;,t;) or [; = L. Then,
a Selfish-LRU state is updated upon an access a as follows:

up([ly, ..., lk],a) =
[a,ll,...,li_l,li_i_l,...,lk] lbe:b ‘hit’
[, b1y lioqy by, o lg] elsifl; = L ‘miss, invalid’
[a7ll,...,li_1,li+1,...,lk] elsif t; At AVj > i: tj=t
‘miss, other’
[a,ly,. .. lk—1] elsif Vi: t; =t ‘miss, own’

The update distinguishes four cases, described below:

1) ‘Cache hit’: The accessed block b is contained in the
cache. In this case two things happen: The block becomes
the most-recently-used (MRU). The ‘ownership’ of the
block changes if the block previously belonged to a task
other than the active one.

2,3,4) ‘Cache miss’: In any case, the newly inserted element
assumes the MRU position. There are three different kinds
of cache misses:

2) The cache contains invalid lines: These are filled first.

3) The cache contains blocks that do not belong to the
active task: Selfish-LRU replaces the least-recently-used
of these blocks.

4) The cache consists of memory blocks of the active task
only: Then, the least-recently-used block is replaced.
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C. Useful Properties of Selfish-LRU

After providing a formal specification, let us state two useful
properties of Selfish-LRU that can be exploited in WCET and
CRPD analyses.

Property 1 (Non-preempted Execution): If a task is not pre-

empted, it experiences the same cache behavior in Selfish-LRU
as it does in LRU.
This means that known precise and efficient cache analyses [5]
for LRU can be applied to Selfish-LRU during WCET analysis.
LRU is generally considered to be the most predictable
replacement policy in the non-preemptive scenario [6].

While Selfish-LRU cannot prevent replaced context-switch
misses, it does eliminate reordering context-switch misses:

Property 2 (No Reordering Misses): Selfish-LRU

does not exhibit reordering context-switch misses.
To see why this is the case, notice that Selfish-LRU will only
replace a memory block of the active task if no blocks of other
tasks remain in the cache. Thus, whenever a block of the active
task is replaced, this would also have happened if the active
task had run in isolation. As we will see in Section IV, due to
Property 2, Selfish-LRU simplifies two state-of-the-art CRPD
analysis approaches.

Note that any replacement policy that does not distinguish
blocks of different tasks, e.g., PLRU or FIFO, exhibits
reordering context-switch misses.

A further observation is that Selfish-LRU satisfies the
inclusion property [7]. While, this is not relevant for WCET or
CRPD analysis, it implies that the performance of Selfish-LRU
can be efficiently determined for a range of associativities in a
single simulation run:

Property 3 (Inclusion Property): Selfish-LRU is a stack al-
gorithm [7]. Thus, it satisfies the inclusion property.

See the appendix for a proof sketch.

III. IMPLEMENTATION OF SELFISH-LRU

In this section we describe how Selfish-LRU can be imple-
mented. We do so by going through Selfish-LRU requirements
that go beyond those of a conventional system featuring regular
LRU replacement and describe possible adaptations to meet
those requirements.

A. Assignment and Maintenance of Task IDs

One requirement of Selfish-LRU is that each task needs to be
assigned a unique ID, TID for short. This can be accomplished
by adapting the (operating) system primitives offered for task
creation. In addition to handling the usual parameters, e.g.,
code entry point, period, deadline, and priority, the primitive
assigns consecutive TIDs to each newly created task.

The TID of the active task needs to be available to the
cache. This can be accomplished by introducing an additional
hardware register, the TID register. Similarly to other registers,
the content of the TID register needs to be saved upon a
context switch so that it can be restored when switching back
into that context.

Special attention is required concerning the operating system
itself as it needs to run with its own unique TID. Otherwise, the

instructions and data referenced by the operating system would
be cached using the TID of the previously active task. Hence,
the hardware mechanism that saves the instruction pointer
(IP) upon kernel mode entry (or upon interrupts) needs to be
extended to additionally save the TID register. In case the ‘op-
erating system’ is rather small, e.g., when it only comprises an
interrupt handler and a scheduler, it might be sensible to simply
disable caching during that time. In such a case, saving and
restoring the TID register can also be implemented in software.

B. Cache Implementation

In the following, we discuss the implementation of Selfish-
LRU in a physically-tagged, physically-indexed cache, which
is common in embedded systems.

Logically, a cache consists of n cache sets, each of which
consists of k cache lines, each of which comprises the actual
data, some status bits, and a tag to identify the block stored in
that cache line. For Selfish-LRU, each cache line is additionally
assigned a TID that indicates the owner of the data, i.e., the
task that last referenced that data.

As opposed to the logical structure of a cache (‘array of
structs’), the physical implementation (‘struct of arrays’) has
to serve efficiency goals: To enable efficient tag lookups and
comparisons, cache tags are stored separately in tag RAMs, one
tag RAM per cache way. This way, all tags of a cache set can
be accessed simultaneously, which is required to decide quickly
whether a memory access constitutes a hit or a miss, and to
locate the cached data upon a hit. We propose to store the TID
of each cache line together with its tag in the tag RAMs.

Upon each cache access, the active task needs to take the
ownership of the referenced cache line, i.e., the TID of the
cache line needs to be set to the TID stored in the TID register.
In case of a cache miss, there is no overhead in terms of
additional circuit latency as the new tag needs to be written
anyway. In case of a cache hit, compared to LRU, Selfish-LRU
requires an additional write operation to the tag RAM. However,
this write can happen in parallel to the state update of the LRU
policy, which needs to be performed on each access anyway.
The data to be written, i.e., tag and TID, can be assembled in
parallel to the cache lookup.

The overhead of the additional TID storage can be estimated
roughly as follows. The tag size of a cache with 32 bytes line
size and 128 cache sets is 20 bits — assuming a 32 bit address
space. Neglecting status bits, a single cache line therefore
requires 32 - 8 + 20 = 276 bits. The overhead for task sets
comprising less than 256 tasks, i.e., 8 bit per TID, thus
is less than 8/276 ~ 2.9%. Even if that amount could be
completely utilized for the net capacity, the benefit would
likely be marginal.

What remains to be discussed is the implementation of
Selfish-LRU’s replacement decisions. Sudarshan et al. [8]
present different implementations of LRU. While LRU needs
to simply determine the least-recently-used cache line, Selfish-
LRU needs to additionally take the task IDs into account.

Consider an LRU implementation that maintains ages: Each
cache line is assigned an age between 0 and k£ — 1, which is
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updated on each access. Here k denotes the associativity of
the cache. The age of a cache line [ is the number of distinct
cache lines of the same cache set that have been accessed
after the last access to [. So, the age of the most-recently-used
line is 0 and the age of the least-recently-used line is & — 1.
Upon a cache miss, the oldest line is chosen as the victim.
Finding the oldest line can be implemented efficiently by a
circuit for maximum value determination [9]. For Selfish-LRU,
those ages can be augmented by a most-significant bit — before
the oldest line is determined. That bit is set to O if the TID
of the active task coincides with the TID of the cache line.
Otherwise that bit is set to 1. This way, the ‘oldest’ cache line
belongs to other tasks — or, in case there are only cache lines
of the active task, the ‘oldest’ line is indeed the oldest line.
Exactly as demanded by the Selfish-LRU specification.

Last but not least, let us point out similarities to the homonym
problem that occurs in virtual memory systems: A virtual
address is a homonym if it refers to two different physical
addresses in different virtual address spaces. This can cause
inconsistencies of cached data in case of virtually-addressed
caches. One way to avoid this problem is to extend cache tags
by address space IDs, which are almost identical to task IDs.
This confirms that augmenting cache tags is viable.

IV. CRPD ANALYSIS FOR SELFISH-LRU

First note that static LRU cache analysis as part of WCET
analysis does not have to be adapted to Selfish-LRU: as stated in
Property 1, in non-preempted executions, Selfish-LRU behaves
precisely like LRU.

CRPD analyses, on the other hand, either can be simplified,
or can be used to deliver improved bounds on the preemption
delay, as discussed below.

There are two main approaches to statically bound the CRPD:

1.) By analyzing the preempted task [10], [11], [12], [13],
[14]: Additional misses can only occur for useful cache blocks
(UCBs), i.e., blocks that may be cached and that may be reused
later, resulting in cache hits. Static analyses have been proposed
to safely approximate the set of UCBs.

2.) By analyzing the preempting task [15], [11], [12],
[13]: The preempting task may only cause additional cache
misses in those cache sets that it modifies. Thus, analyses to
compute bounds on the number of evicting cache blocks (ECBs)
have been developed. However, for set-associative caches, the
approaches based on ECBs have so far been either imprecise [4]
or unsound [12], as shown in [4].

Recently, Altmeyer et al. [16] introduced the notion of
resilience of cached blocks. The resilience of a useful cache
block is the amount of ‘disturbance’ by a preempting task
that the block may endure before becoming useless to the
preempted task. Resilience analysis computes lower bounds on
the resilience of each useful cache block. These lower bounds
can then be combined with upper bounds on the evicting
cache blocks to determine a set of useful cache blocks that are
guaranteed to remain useful after the preemption.

LRU is by far the best understood replacement policy in
terms of CRPD analysis. In fact, Burguiere et al. demonstrated

that neither the number of ECBs nor the number of UCBs can
be used to safely bound the CRPD [4]. Thus, the approaches
described above apply to LRU only. Apart from the approach
sketched in [4] no CRPD analyses for policies other than LRU,
such as FIFO or PLRU, are known.

It is also important to mention that sound approaches
to bounding the CRPD exist only for timing compositional
architectures [17], [18], in which the cost of any additional
cache miss can be bounded by a constant number of execution
cycles. This issue is orthogonal to the choice of replacement
policy and thus applies to LRU and Selfish-LRU alike.

A. Bounding the CRPD using UCBs

As for LRU, the number of useful cache blocks (UCBs) of
the preempted task, as defined by Lee et al. [19], is a bound
on the number of additional cache misses for Selfish-LRU.
The same holds for definitely-cached useful cache blocks (DC-
UCB) as defined in [14]. The following formula denotes an
upper bound on the CRPD based on useful cache blocks, where
BRT is the block reload time, n is the number of cache sets,
and UCB(s) the set of UCBs in cache set s:

n
CRPD{%Y = CRPD\, = BRT- Y _ [UCB(s)|.

s=1

2

Note that this bound (and all the following bounds) is (are)
computed for each program point of the task. A CRPD bound
for the entire task is then given by the maximum CRPD bound
over all program points.

B. Bounding the CRPD using ECBs

In contrast to bounds based on UCBs, Selfish-LRU improves
the CRPD bound that can be derived from the set of evicting
cache blocks (ECBs) of the preempting task. Somewhat
obviously, the number of ECBs bounds the number of replaced
context-switch misses. In case of LRU, as discussed in the
introduction, a single replaced miss may trigger k£ — 1 reordered
misses, where £ is the associativity of the cache. For LRU,
the following formula therefore captures the best bound on the
CRPD based on ECBs:

n .
0 if|ECB(s)|=0
CRPD!™ = BRT -
res Z {k otherwise

3)

s=1

For Selfish-LRU, as stated in Property 2, no reordered context-
switch misses are possible. Thus, we get the following improved
bound:

n
CRPD}% = BRT - ) _ [ECB(s)|.

s=1

)

As an immediate consequence, we also get an improved
CRPD bound based on the ECBs of the preempting task and
the UCBs of the preempted task:

CRPDA,, = BRT - > " min(|[ECB(s)|, [UCB(s)[).  (5)

s=1
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C. Bounding the CRPD using Resilience

The possibility of reordered context-switch misses compli-
cates the computation of the resilience of useful cache blocks in
case of LRU. See Altmeyer et al. [16] for a detailed description.
As only replaced context-switch misses are possible in case
of Selfish-LRU, resilience analysis is greatly simplified. The
resilience of a useful cache block is determined by its age, i.e.,
its logical position in the cache. For example, the resilience of
the most-recently-used block (age 0) is k£ — 1, as the block will
still be cached after accessing additional k — 1 distinct memory
blocks mapping to the same cache set. At the other extreme,
the resilience of the least-recently-used block (age & — 1) is 0.
In general, the resilience of a block of age a is k —a — 1. This
holds, with the exception of shared memory blocks, i.e., blocks
that are possibly accessed by other tasks. If such blocks are
accessed by the preempting task, then they can be replaced
immediately after resumption of the preempted task, as they
now belong to a different task. The resilience of such blocks
can be conservatively approximated by O.

Must cache analysis [5], a static cache analysis based on
abstract interpretation, computes upper bounds on the ages of
memory blocks at all program points. It has been shown to be
precise and to scale to large programs, and is in regular use in
the commercial AIT WCET analyzer by ABSINT. Given an
upper bound on the age a of memory block b one can compute
a lower bounds res(b) on the block’s resilience. Shared data
needs to either be specified by users or detected statically.

Together with information about the number of evicting
cache blocks, |[ECB(s)|, of the preempting task, resilience
bounds allow to determine a subset of the useful cache blocks,
UCB(s), of the preempted task that must remain useful, and
can thus not contribute to the CRPD [16]:

CRPD} —
blecks that may have te be releaded
n
BRT- Y| UCB(s)\ {b € B| res(b) > |ECB(s)|}’.
——

s=1

may be useful must remain useful

Again, one can use DC-UCB(s) in place of UCB(s). Nested
and multiple preemptions can be accounted for as described
in Altmeyer et al. [16].

V. RELATED WORK

Lately, multiple efforts have been undertaken to develop mi-
croarchitectures that reconcile predictability with performance.
Work along these lines includes classifications of existing
microarchitectures in terms of their predictability [17], [20],
studies of the predictability of caches [6], and proposals of
new microarchitectural techniques, such as novel multithreaded
architectures that eliminate interference between threads [21],
[22], [23], [24], [25] and DRAM controllers that allow multiple
tasks to share DRAM devices in a predictable and composable
fashion [26], [27]. In the following, we review work specifically
concerning the interplay between multitasking and the memory
hierarchy.

Initially meant to reduce power consumption of an embedded
device [28], today, scratchpads are advocated as means to
increase a system’s predictability. Similar to caches, scratchpads
are small but fast memories located close to the processor. How-
ever, contrary to the dynamic behavior of caches, the decision
which data to store in a scratchpad is taken statically. Hence,
scratchpads are not transparent to a system designer (in contrast
to caches) and result in non-uniform access latencies across the
address space (like caches). The static nature of scratchpads
hinders an efficient use in highly dynamic preemptive systems.
Scratchpads have so far been used preferably in static non-
preemptive systems. Only very recently, new implementations
were proposed that allow efficient use of scratchpads in
preemptive systems [29]. In the approach by Whitham and
Audsley [29] called Carousel, similar to the handling of
callee-save registers in function calls, the preempting task
is responsible for restoring the state of the scratchpad it
encountered at the point of preemption. Thus, the amount
of data that needs to be saved and restored is proportional
to the amount of scratchpad memory the preempting task
intends to use. This corresponds to CRPD analyses based on
ECBs, considering only the preempting task, which can be
inefficient. The advantage of performing the save and restore
operations in single DMA operations, as done in Carousel, is
that transferring a large chunk of data at once can be more
efficient than performing the same transfer in many small
pieces as it would be done by a cache that is gradually refilled.

Cache partitioning [30], [31] and cache locking [32], [33]
are techniques to reduce or even completely avoid cache-related
preemption delay. In cache partitioning, each task is assigned
a dedicated part of the cache to guarantee that a preempting
task cannot evict cache blocks of other tasks. Partitioning can
be implemented either in hardware, by means of a memory
management unit, or in software, with the help of adapted
compilers. The latter often results in substantial changes to
the code and data layout so as to assert that each task only
accesses its own partition [30]. In cache locking [33], cache
lines are locked, so that a preempting task cannot evict their
data. In static cache locking, data is loaded into the cache
and locked for the entire task execution while dynamic cache
locking only locks data during some predefined code regions.
Both techniques trade inter-task for intra-task cache conflicts,
i.e., they pay for the reduced cache-related preemption delay
with a possible increase of the worst-case execution times.

Tan and Mooney [34] present a WCRT analysis for their
previously proposed prioritized cache. Such a cache maintains
a priority level for each cache way. A task 7" can only allocate
a cache line in a cache way w if its own priority prio(T) is
greater than or equal to the priority of the cache way prio(w).
If it does so, the priority of the cache way rises to that of the
allocating task; prio(w) := prio(T). After a while, blocks
of high-priority tasks therefore occupy the cache, even if
they run only shortly and seldom. Low-priority tasks may
as a consequence starve for cache space. With Selfish-LRU in
contrast, each task can profit from the whole cache capacity.
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TABLE I
BRIEF SUMMARY OF THE BENCHMARKS. M: MALARDALEN, S: EXAMPLES
FROM THE SCADE SUITE, O: OWN SCADE MODELS. |[ECB|: BOUND ON
NUMBER OF EVICTING CACHE BLOCKS.

Source, Name Size [byte] |ECB| Brief description

M, adpcm 25,275 >256  Adaptive pulse code mod-
ulation

M, compress 13,498 170  Data compression algo-
rithm

M, edn 10,963 >256  Finite impulse response
filter

M, statemate 52,513 >256  Statechart implementation
of a car window lift con-
trol

S, cruisecontrol 46,275 107  Part of a cruise control
system

S, flightcontrol 157,054 >256  Flight control system

S, pilot 58,948 94  Navigation system

S, stopwatch 32,066 150  Implementation of a stop-
watch

O, lift 50,911 122 Elevator simulation

O, robodog 79,227 >256  Robotics system

VI. EXPERIMENTAL EVALUATION

In this section we present empirical evidence concerning the
runtime performance and the provable performance of Selfish-
LRU systems. Our evaluation target was to compare a Selfish-
LRU system to an otherwise identical LRU system. In addition,
we compare Selfish-LRU to a way-based partitioning approach.

A. Setup and Benchmarks

To determine the runtime performance, we implemented the
LRU and Selfish-LRU replacement policies in the MPARM!
simulation framework, specifically the ARMv7 processor
model. On top of this simulator, we employed the RTEMS?
operating system, which implements rate-monotonic preemptive
scheduling. The simulation routine counts the number of cache
misses on a per-task basis, so that cache accesses of the
preempted task and the preempting task can be separated.
We determine the number of context-switch misses by taking
the difference between the overall number of cache misses of a
task when preempted and the overall number of cache misses
of the same task when executed without preemption.

To determine the provable performance, we implemented
CRPD analyses based on UCBs, ECBs, and Resilience for both
LRU and Selfish-LRU in the ARMv7 version of the commercial
AIT WCET analyzer by ABSINT. This allows us to derive safe
bounds on the context-switch misses based on the analysis of
the preempting task, the preempted task and a combination of
the two.

To evaluate way-based partitioning approach, we determine
the runtime of each task for all possible partition sizes p,
ie., p€ {1,...,associativity — 1} when executed in isolation.
The obtained values allow us to determine the optimal cache
partitioning for a given set of tasks. Again, the simulation

http://www-micrel.deis.unibo.it/sitonew/research/mparm.html
2http://www.rtems.com

results are obtained using the MPARM simulator, whereas the
analysis results are determined using the AIT WCET analyzer.

As benchmarks, we selected (a) four of the largest programs
containing loops from the Milardalen WCET benchmark suite?;
(b) four SCADE models that come along with the SCADE
distribution; and (c) two SCADE models developed as part
of an embedded systems course. A brief description of the
benchmarks is given in Table I.

Due to the relatively small size of the benchmarks used,
we chose appropriate cache configurations with associativity
k € {4,8} and a number of cache sets n € {32,64,128}. All
caches feature a line size of 16 bytes and their total capacity C'
varies between 2 and 8 KiB.

B. LRU versus Selfish-LRU

In this section, we discuss the simulation and analysis results
for caches with LRU and Selfish-LRU replacement policy.

a) Simulation Results: Figure 1 shows the effect of a
single preemption by one of the smallest tasks, pilot. In
each case, the number of additional misses under Selfish-LRU
is lower than that of LRU. At twice the cache size, shown in
Figure 2, most tasks fit into the cache together and the number
of context-switch misses drops.

Of course, one cannot expect that Selfish-LRU improves all
situations: When the preempting task has more ECBs, e.g., edn,
the number of context-switch misses increases, see Figure 3.
This increase is mainly due to more replaced misses; the
percentage of reordering misses, which can be prevented by
Selfish-LRU, is lower. When evicting the whole cache, e.g.,
with a preemption by flightcontrol, LRU and Selfish-
LRU behave the same and are therefore not shown in a graph.

b) Analysis Results: As opposed to the simulation, where
the context-switch misses for a limited set of different scenarios
are measured, the analysis has to derive conservative upper
bounds valid for all possible cases, i.e., all possible preemption
points within the preempted task and also all possible execution
traces of the preempting task. This, together with pessimism
introduced by static analysis, explains the differences between
the simulation and the analysis results. Consider Figure 6 for
instance: The analysis determined an upper bound of 256 ECBs
for edn, which are sufficient to evict the whole cache. Based
on this information, it is impossible for any subsequent analysis
to show an improvement of Selfish-LRU over LRU. Regarding
Figure 3, either the simulations did not exhibit the worst-case
behavior or the true number of ECBs is less than 256.

The task pilot has 94 ECBs. As Selfish-LRU prevents any
reordering misses, 94 is thus an upper bound on the number
of context-switch/replaced misses. This is confirmed by the
analysis: see Figures 4 and 5. Often, a better bound than 94
can be obtained taking into account the resilience of a task’s
useful cache blocks, which is higher than in the case of LRU.

Overall, the analysis mostly confirms the results of the simu-
lations. LRU and Selfish-LRU behave the same if no cache lines
or if all cache lines are evicted during preemption. For preempt-
ing tasks of small or medium size, Selfish-LRU improves upon

3http//www.mrtc.mdh.se/projects/weet/benchmarks.html
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Fig. 1. Measured number of context-switch misses for each benchmark when
preempted by pilot. k =4, n = 32, and thus C' = 2 KiB.
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Fig. 2. Measured number of context-switch misses for each benchmark when
preempted by pilot. k =8, n = 32, and thus C' = 4 KiB.
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Fig. 3. Measured number of context-switch misses for each benchmark when
preempted by edn. k =4, n = 32, and thus C' = 2 KiB.
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Fig. 7. Observed misses during the execution of different task sets.
k =4, n =128, and thus C' = 8 KiB.
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Fig. 4. Bounds on the number of context-switch misses when preempted by
pilot. k =4, n = 32, and thus C' = 2 KiB determined by static analysis.
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Fig. 5. Bounds on the number of context-switch misses when preempted by
pilot. k=8, n =32, and thus C' = 4 KiB determined by static analysis.
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edn. k =4, n = 32, and thus C' = 2 KiB determined by static analysis.
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Fig. 8. Observed misses during the execution of different task sets.
k =8, n = 64, and thus C' = 8 KiB.
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Fig. 9. Partitioning vs. Selfish-LRU. Simulation and analysis results for each
benchmark when preempted by edn. k = 8, n = 32, and thus C' = 4 KiB.

LRU (see Figure 4), especially for larger caches (see Figure 5).
In those scenarios, reordering misses constitute a large portion
of all context-switch misses for LRU, which are eliminated in
Selfish-LRU. Note that preemption by small tasks or interrupts
with high priority is common to many real-time systems.

c¢) Complex Scenarios: Other, more complex scenarios
are considered in Figure 7 and 8. They show the results for
five task sets, each comprising 5 tasks taken from our set of
benchmarks described in Table I. Each task set was subjected
to the scheduling decisions of RTEMS, which include multiple
preemptions per job as well as nested preemptions. The periods
of the tasks vary between 15 and 150 time units and their phases,
i.e., starting times relative to period, range from O to 50 time
units. Compared to the single-preemption scenarios, these tasks
sets are larger. Hence we benchmarked cache configurations
with associativities 4 and 8, number of sets in {32, 64, 128},
and a line size of 16 bytes. The bars show the total number of
misses incurred during five hyperperiods for LRU and Selfish-
LRU, respectively.

For the smaller cache configurations, the difference between
LRU and Selfish-LRU is only marginal: Due to multiple and
nested preemptions, the cached memory blocks of a preempted
task are often completely replaced by memory blocks of the
preempting tasks. Therefore, Selfish-LRU cannot improve much
over LRU in these scenarios.

However, for larger caches, the cached memory blocks are
not replaced completely on (multiple and nested) preemptions.
The overall performance improves significantly using the
Selfish-LRU replacement policy, as depicted in Figure 7
and Figure 8. This confirms the utility of Selfish-LRU in
preemptively scheduled systems.

C. Selfish-LRU versus Partitioning

As discussed in the related work section, cache partitioning
eliminates inter-task interference at the expense of increased
intra-task interference. In this section, we evaluate in which
situations partitioning outperforms Selfish-LRU and vice versa.
We consider way-based partitioning realized in hardware, as it
is easy to analyze and does not require modifications to the
software, which could influence the results in one direction
or the other. As one increases the number of tasks sharing a
partitioned cache, an individual task’s partition becomes smaller
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Fig. 10. Partitioning vs. Selfish-LRU. Simulation and analysis results for each
benchmark when preempted by pilot. k = 8, n = 32, and thus C' = 4 KiB.

and its intra-task interference increases. We bias the analysis
in favor of partitioning by only considering simple scenarios
consisting of two tasks, one low and one high priority task.
Let timea(p) and timeg(p) denote the execution time
of task A and B, respectively, given p cache ways of a k-
way associative cache. Then timel%5t(n), as defined below,
determines the time required to execute the lower priority task
A once and the higher priority task B n times using the best
possible partition p of the cache:
min

timeL ot (n) =
A (n) L

) {timea(p) + n - timeg(k —p)}.
In the unpartitioned case with Selfish-LRU replacement, the
time to execute the same scenario is determined as follows:

time$'g P (n) := timea(k)+n-(timep (A)+CRPD 4 p(k)).

For increasing values of n the influence of the first sum-
mand in both time’(n) and timeGT P (n) decreases and
partitioning may become more and more beneficial.

For each pair of tasks A, B we determine the minimal n for
which timei’ag(n) < tinzeg%PD(7l). In Figures 9 and 10 we
show this minimal n for execution times and preemption delays
determined by simulation as well as by analysis. Due to space
limitations, we limit the exposition to the—in terms of evicting
cache blocks—smallest and the largest preempting tasks edn
and pilot. Note the logarithmic scale on the vertical axis. We
employ a fairly high associativity of 8, as higher associativities
increase the flexibility of the partitioning scheme. Cases where
partitioning does not outperform Selfish-LRU for any n, or only
for n > 10000, are indicated by > 10000 in the figures. Note
that the static analysis results are not necessarily upper bounds
to the respective simulation results. Analysis imprecisions
may influence the results in both directions: the larger the
overestimation of the CRPD, the smaller n; on the other hand,
varying overestimations of the execution times for different
associativities may result in a larger n.

In some scenarios, partitioning outperforms Selfish-LRU
even for n = 1. This happens, if the cache can be partitioned
without incurring any additional intra-task interference in task
A or in task B, i.e., if both A’s and B’s reuse is limited to
young data. In such cases, the CRPD may still be non-zero if
the preempting task B accesses a lot of data in each cache set.
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As an example consider streaming applications, which may
access large amounts of data without any reuse.

There are also scenarios in which Selfish-LRU outperforms
partitioning for any n. This is the case if the preempting task
B profits greatly from each additional cache way, while the
CRPD is low. In our setting, each task is assigned at least one
way, thus limiting the preempting task’s share to 7 cache ways.
As an example, consider the case that cruisecontrol is
preempted in Figure 9 and 10.

In many cases in between the two extremes, n is greater
than 100. As a ratio of more than 100 between the periods
of two tasks occurs only rarely in realistic systems, Selfish-
LRU is preferable to partitioning in such cases. Consider, e.g.,
stopwatch and robodog in Figure 10.

Interestingly, the values determined using simulation and
static analysis differ greatly, and little correlation is visible.
Overall, the simulation results favor Selfish-LRU over parti-
tioning more strongly than the static analysis results, indicating
that CRPD bounds as they combine approximations of both
the preempting and the preempted task are still less precise
than WCET bounds.

D. Summary

We conclude that Selfish-LRU outperforms LRU in scenarios
where some but not all useful cache contents get evicted. This
has been confirmed by both simulation and static analysis.

Concerning partitioning we conclude that even in scenarios
consisting of two tasks only, Selfish-LRU is often preferable
to partitioning. For larger task sets performance achieved
with partitioning will suffer even more. As Selfish-LRU and
partitioning have advantages in quite different scenarios, it
might be valuable to combine both approaches. It can for
instance be useful to limit the number of cache ways a particular
task may use to bound the damage a preempting task may
incur on other tasks. E.g. in case of a streaming application
that would not benefit from additional cache ways anyway.

VII. CONCLUSIONS AND FUTURE WORK

We have introduced Selfish-LRU, a variant of LRU, to
improve both performance and predictability in multitasking
systems. While Selfish-LRU behaves the same as LRU in non-
preemptive scenarios, it reduces the number of cache misses
in preemptive scenarios by preventing reordering context-
switch misses. Our experimental evaluation demonstrates both
improved observed and predicted performance. While we
have introduced and analyzed Selfish-LRU in the context of
embedded real-time systems, it may be of interest in other
domains as well: Liu et al. [3] have shown that reordering
misses constitute a significant share of all context-switch misses
in general-purpose systems.

In many cases, CRPD bounds computed by static analysis
are close to the CRPD observed in simulations. In some cases,
however, CRPD bounds appear to be very imprecise both
for LRU and Selfish-LRU. It may be worthwhile to further
investigate the sources of overestimation in such cases. To this
end, we plan to extend the simulator to record information

about the actual numbers of useful and evicting cache blocks,
and to force preemptions at particular program points rather
than points in time.
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APPENDIX
A. Potential Variants and Refinements of Selfish-LRU

For simplicity, our description of Selfish-LRU does not
distinguish between reads and writes. However, a variant of
Selfish-LRU following a no-write allocate write policy is
equally feasible.

Selfish-LRU, as described in Section II, prioritizes memory
blocks of the active task over those of other tasks. One might in-
troduce different priorities to distinguish different inactive tasks.
Contrary to the first intuition, we believe that it might be valu-
able to assign higher priorities to memory blocks of lower pri-
orities tasks. However, this remains to be evaluated empirically.

Memory instructions that force memory accesses to bypass
the cache can be used to improve cache performance. When
such instructions are available, the compiler needs to decide
where to bypass the cache. Within an individual task the costs
and benefits of an additional memory access in terms of cache
hits and misses can be approximated statically. In preemptive
scenarios, however, this previously required precise knowledge
of the set of coscheduled tasks. With Selfish-LRU, an additional
memory access in the preempted task may yield at most one
additional cache miss in other tasks. This enables the compiler
to make an informed decision about bypassing a particular
memory access, in a multitasking scenario without knowledge
of the schedule or the coscheduled tasks.

B. Selfish-LRU is a Stack Algorithm: Proof Sketch

As observed by Mattson et al. [7], a sufficient condition for
a policy to be a stack algorithm is that at any point in time,
there is a total ordering on all previously referenced memory
blocks that is independent of the cache size, such that, upon a
miss, the policy replaces the greatest (according to the total
ordering) memory block among the current cache contents.

In Selfish-LRU, this total ordering is defined as follows. Let
to be the active task, and for any = € B, let age(x) denote the
number of memory accesses since the last access to x. Then:

(a,l,tl) < (ag,tg) = (tl =14, Nta 7’é ta)
V (t1 =ta Aage(ar) < age(as)).

This defines a total ordering on all previously referenced
blocks, as for all a,b that have been referenced before

age(a) # age(b).
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