
Accounting for Cache Related Pre-emption Delays
in Hierarchical Scheduling

Will Lunniss1, Sebastian Altmeyer2, Giuseppe Lipari3,4, Robert I. Davis1

1Department of Computer
Science, University of York

York, UK
{wl510,rob.davis}@york.ac.uk

2Computer Systems Architecture
Group, University of Amsterdam

Netherlands
altmeyer@uva.nl

3Scuola Superiore
Sant'Anna, IT

g.lipari@sssup.it

4LSV ENS Cachan,
FR

giuseppe.lipari@lsv.e
ns-cachan.fr

ABSTRACT
Hierarchical scheduling provides a means of composing multiple
real-time applications onto a single processor such that the
temporal requirements of each application are met. This has
become a popular technique in industry as it allows applications
from multiple vendors as well as legacy applications to co-exist in
isolation on the same platform. However, performance enhancing
features such as caches mean that one application can interfere
with another by evicting blocks from cache that were in use by
another application, violating the requirement of temporal
isolation. While one solution is to flush the cache after every
application context switch, this can potentially lead to a
degradation in performance. In this paper, we present analysis that
bounds the additional delay due to blocks being evicted from
cache by other applications in a system using hierarchical
scheduling.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-Purpose and
Application-Based Systems - Real-time and embedded systems

Keywords
Cache Related Pre-emption Delays, Hierarchical scheduling,
Fixed priority pre-emptive scheduling, Response time analysis

1. INTRODUCTION
There is a growing need in industry to combine multiple
applications together to build complex embedded real-time
systems. This is driven by the need to re-use legacy applications
that once ran on slower, but dedicated processors. Typically, it is
too costly to go back to the design phase resulting in a need to use
applications as-is. Furthermore, there are often a number of
vendors involved in t -time
systems, each supplying separate applications which must then be
integrated together. Hierarchical scheduling provides a means of
composing multiple applications onto a single processor such that
the temporal requirements of each application are met. Each
application, or component, has a dedicated server. A global
scheduler then allocates processor time to each server, during
which the associated component can use its own local scheduler to
schedule its tasks.

In hard real-time systems, the worst-case execution time (WCET)
of each task must be known offline in order to verify that the
timing requirements will be met at runtime. However, in pre-
emptive multi-tasking systems, caches introduce additional cache
related pre-emption delays (CRPD) caused by the need to re-fetch
cache blocks belonging to the pre-empted task which were evicted
from the cache by the pre-empting task. These CRPD effectively
increase the worst-case execution time of the tasks. It is therefore
important to be able to calculate, and account for, CRPD when
determining if a system is schedulable or not. This is further
complicated when using hierarchical scheduling as servers will

that is they have started but have not yet completed execution.
While a server is suspended, the cache can be polluted by the
tasks belonging to other components. When the global scheduler
then switches back to the first server, tasks belonging to the
associated component may have to reload blocks into cache that
were in use before the global context switch.

Hierarchical scheduling has been studied extensively in the past
15 years. Deng and Liu [15] were the first to propose such a two-
level scheduling approach. Later Feng and Mok [16] proposed the
resource partition model and schedulability analysis based on the
supply bound function. Shin and Lee [25] introduced the concept
of a temporal interface and the periodic resource model, and
refined the analysis of Feng and Mok. Kuo and Li [17] and
Saewong et al. [24] specifically focused on fixed priority
hierarchical scheduling. Lipari and Bini [19] solved the problem
of computing the values of the partition parameters to make an
application schedulable. Davis and Burns [12] proposed a method
to compute the response time of tasks running on a local fixed
priority scheduler. Later, Davis and Burns [11] investigated
selecting optimal server parameters for fixed priority pre-emptive
hierarchical systems.

Hierarchical systems have been used mainly in the avionics
industry. The IMA (Integrated Modular Avionics) [28], [3] is a set
of standard specifications for simplifying the development of
avionics software; among other requirements, it allows different
independent applications to share the same hardware and software
resources [4]. The ARINC 653 standard [4] defines temporal
partitioning for avionics applications. The global scheduler is a
simple Time Division Multiplexing (TDM), in which time is
divided into frames of fixed length, each frame is divided into
slots and each slot is assigned to one application.

Analysis of CRPD uses the concept of useful cache blocks
(UCBs) and evicting cache blocks (ECBs) based on the work by
Lee et al. [18]. Any memory block that is accessed by a task while
executing is classified as an ECB, as accessing that block may
evict a cache block of a pre-empted task. Out of the set of ECBs,
some of them may also be UCBs. A memory block m is classified
as a UCB at program point , if (i) m may be cached at and (ii)

© Owner/Author | ACM 2014. This is the author's version of the work. It is
posted here for your personal use. Not for redistribution. The definitive
Version of Record was published in:

RTNS '14, October 08 - 10 2014, Versailles, France
 http://dx.doi.org/10.1145/2659787.2659797

m may be reused at program point that may be reached from
without eviction of m on this path. In the case of a pre-emption at
program point , only the memory blocks that are (i) in cache and
(ii) will be reused, may cause additional reloads. For a more
thorough expla -

of [2].

Depending on the approach used, the CRPD analysis combines
the UCBs belonging to the pre-empted task(s) with the ECBs of
the pre-empting task(s). Using this information, the total number
of blocks that are evicted, which must then be reloaded after the
pre-emption can be calculated and combined with the cost of
reloading a block to give an upper bound on the CRPD.

A number of approaches have been developed for calculating the
CRPD when using fixed priority pre-emptive scheduling under a
flat, single-level system. They include Lee et al. [18] UCB-Only
approach, which considers just the pre-empted task(s), and
Busquets et al. [10] ECB-Only approach which considers just the
pre-empting task. Approaches that consider the pre-empted and
pre-empting task(s) include Tan and Mooney [27] UCB-Union
approach, Altmeyer et al. [1] ECB-Union approach, and an
alternative approach by Staschulat et al. [26]. Finally, there are
advanced multiset based approaches that consider the pre-empted
and pre-empting task(s) by Altmeyer et al. [2], ECB-Union
Multiset, UCB-Union Multiset, and a combined multiset
approach. This analysis has also been recently been adapted to
pre-emptive EDF scheduling by Lunniss et al. [22].

Xu et al. [29] proposed an approach for accounting for cache
effects in multicore virtualization platforms. However, their focus
was on how to include CRPD and cache related migration delays
into a compositional analysis framework, rather than how to
tightly bound the task and component CRPD.

The remainder of the paper is organised as follows. Section 2
introduces the system model, terminology and notation used.
Section 3 covers existing schedulability and CRPD analysis for
flat single-level systems, and schedulability analysis for
hierarchical systems. Section 4 introduces the new analysis for
calculating CRPD due to hierarchical scheduling. Section 5
evaluates the analysis using case study data, and section 6
evaluates it using synthetically generated tasksets. Finally,
section 7 concludes with a summary and outline of future work.

2. SYSTEMMODEL
This section describes the system model, terminology, and
notation used in the rest of the paper.

We assume a single processor system comprising m applications
or components, each with a dedicated server (S1..Sm) that allocates
processor capacity to it. We use
components in the system. G is used to indicate the index of the
component that is being analysed. Each server SG has a budget QG

and a period PG, such that the associated component will receive
QG units of execution time from its server every PG units of time.
Servers are assumed to be scheduled globally using a non-pre-
emptive scheduler, as found in systems that use time partitioning
to divide up access to the processor. While a server has remaining
capacity and is allocated the processor, we assume that the tasks
of the associated component are scheduled pre-emptively
according to their fixed priorities. If there are no tasks to schedule,
we assume that the processor idles until the server exhausts all of
its capacity, or a new task is released.

tasks (1 n) divided between the components. The priority of task

i, is i, where a priority of 1 is the highest and n is the lowest.
Priorities are unique, but are only meaningful within components.
Each component contains a strict subset of the tasks, represented

G. For simplicity, we assume that the tasks are independent
and do not share resources requiring mutually exclusive access,
other than the processor. (We note that global and local resource
sharing has been extensively studied for hierarchical systems [13]
[8] [5]. Resource sharing and its effects on CRPD have also been
studied for single level systems [1] [2]. However, such effects are
beyond the scope of this paper).

Each task, i may produce a potentially infinite stream of jobs that
are separated by a minimum inter-arrival time or period Ti. Each
task has a relative deadline Di, a worst case execution time Ci

(determined for non-pre-emptive execution) and release jitter Ji.
We assume that deadlines are constrained (i.e. Di Ti). We used
the notation hp(i) to mean the set of tasks with priorities higher
than that of task i and hep(i) to mean the set of tasks with higher
or equal priorities. We also use the notation hp(G,i), and hep(G,i),
to restrict hp(i), and hep(i), to just tasks of component G.

Each task i has a set of UCBs, UCBi and a set of ECBs, ECBi

represented by a set of integers. If for example, 1 contains 4
ECBs, where the second and fourth ECBs are also UCBs, these
can be represented using ECB1 = {1,2,3,4} and UCB1 = {2,4}.
Each component G also has a set of UCBs, UCBG and a set of
ECBs, ECBG, that contain respectively all of the UCBs, and all of
the ECBs, of their tasks, i.e. and

.

Each time a cache block is reloaded, a cost is introduced that is
equal to the block reload time (BRT).

We focus on instruction only caches. In the case of data caches,
the analysis would either require a write-through cache or further
extension in order to be applied to write-back caches. We also
assume that tasks do not share any code.

We assume a direct mapped cache, but the analysis can be
extended to set-associative LRU caches as described in
section II. Set- of the technical report on
which this paper is based [21].

3. EXISTING SCHEDULABILITY AND
CRPD ANALYSIS
In this section we briefly recap how CRPD can be calculated in a
flat, single-level system, and how schedulability analysis without
CRPD analysis can be performed for hierarchical systems.
Schedulability tests are used to determine if a taskset is
schedulable, i.e. all the tasks will meet their deadlines given the
worst-case pattern of arrivals and execution. For a given taskset,
the response time Ri for each task i, can be calculated and

Di. If every task in the
taskset meets its deadline, then the taskset is schedulable. In the
case of a single-level system, the equation used to calculate
Ri is [6]:

Equation (1) can be solved using fixed point iteration. Iteration
continues until either in which case the task is
unschedulable, or until in which case the task is
schedulable and has a worst-case response time of . Note the
convergence of (1) may be sped up using the techniques described
in [14].

(1)

To account for the CRPD, a term is introduced into (1).
There are a number of approaches that can be used, and for
explanations of the analysis, see Altmeyer et al. [2]. In this work,
we use the Combined Multiset approach by Altmeyer et al. [2] for
calculating the CRPD at task level. In this approach,
represents the total cost of all pre-emptions due to jobs of task j

executing within the response time of task i. Incorporating
into (1) gives a revised equation for Ri:

3.1 Schedulability Analysis for Hierarchical
Systems
Hierarchical scheduling is a technique that allows multiple
independent components to be scheduled on the same system. A
global scheduler allocates processing resources to each component
via server capacity. Each component can then utilise the server
capacity by scheduling its tasks using a local scheduler.

3.1.1 Supply Bound Function
In hierarchical systems, components do not have dedicated access
to the processor, but must instead share it with other components.
The supply bound function [25], or specifically, the inverse of it,
can be used to determine the maximum amount of time needed by
a specific server to supply some capacity c. Figure 1 shows an
example for server SG with QG = 5 and PG = 8. Here we assume
the worst case scenario, i.e. a task is activated just after the

at which tasks can receive some supply is at 2(PG QG) = 6.

We define the inverse supply bound function, isbf, for component
G as [23]:

Integrating (3) into equation (1) gives the response time of i

under server SG taking into account the shared access to the
processor as:

4. CRPD ANALYSIS FOR
HIERARCHICAL SYSTEMS
In this section, we describe how CRPD analysis can be extended
for use in hierarchical systems and integrated into the
schedulability analysis for it. We do so by extending the concepts
of ECB-Only, UCB-Only, UCB-Union and UCB-Union Multiset
analysis introduced in [10], [18], [27] and [2] respectively to
hierarchical systems. This analysis assumes a non-pre-emptive
global scheduler (i.e. the capacity of a server is supplied without
pre-emption, but may be supplied starting at any time during the

-emptive fixed priority local scheduler.

We will explain a number of different methods, building up in
complexity.

The analysis needs to capture the cost of reloading any UCBs into
cache that were evicted by tasks belonging to other components.
This can be achieved by combining the intra-component CRPD
due to pre-emptions between tasks within the same component,
(2), with the modified response time analysis for non-dedicated

Figure 1. General case of a server where QG = 5 and PG = 8
showing it can take up to 6 time units before a task receives

supply

processor access, (4), with a new term, :

Here, represents the CRPD on task i in component G caused
by tasks in the other components running while the server (SG) for
component G is suspended.

We use to denote the maximum number of times server
SG can be both suspended and resumed during the response time
of task i:

We use the term disruptive execution to describe an execution of
server SZ while server SG is suspended that results in tasks from
component Z evicting cache blocks that tasks in component G
might have loaded and need to reload. Note that if server SZ runs
more than once while server SG is suspended, its tasks cannot
evict the same blocks twice and as such, the number of disruptive
executions is bounded by the number of times that server SG can
be both suspended and resumed. Specifically, we are interested in
how many disruptive executions a server can have that impact a
particular task i. We use XZ to denote the maximum number of
such disruptive executions.

4.1 ECB-Only
A simple approach to calculate component CPRD is to consider
the maximum effect of the other components by assuming that
every block evicted by the tasks in the other components has to be
reloaded. There are two different ways to calculate this cost.

4.1.1 ECB-Only-All
The first option is to assume that every time server SG is
suspended, all of the other servers run and their tasks evict all the
cache blocks that they use. We therefore take the union of all
ECBs belonging to the other components to get the number of
blocks that could be evicted. We then sum them up times,
where upper bounds the number of times server SG could
be both suspended and resumed during the response time of task
i. If Z is a specific component, then we can calculate the CRPD
impacting task i of component G due to the other components in
the system as:

(5)

(2)

(6)

(7)
(4)

(3)

4.1.2 ECB-Only-Counted
The above approach works well when the global scheduler uses a
TDM schedule such that each server has the same period and/or
components share a large number of ECBs. If some servers run
less frequently than server SG, then the number of times that their
ECBs can evict blocks may be over counted. One solution to this
problem is to consider each component separately by calculating
the number of disruptive executions that server SZ can have on
task i in component G during the response time of task i,

. We can then calculate an alternative bound for the
CRPD incurred by task i of component G due to the other
components in the system as:

Note that the ECB-Only-All and ECB-Only-Counted approaches
are incomparable.

4.2 UCB-Only
Alternatively, we can focus on the tasks in component G, hence
calculating which UCBs could be evicted if the entire cache was
flushed by the other components in the system. However, task i

may have been pre-empted by higher priority tasks so we must
bound the pre-emption cost by the maximum number of UCBs
over all tasks in component G that may pre-empt task i, and task
i itself, i.e. .

We then multiply the number of UCBs (10) by the number of
times that server SG can be both suspended and resumed during
the response time of task i.

This approach is incomparable with the ECB-Only-All and ECB-
Only-Counted approaches.

4.3 UCB-ECB
While it is a safe to only consider the ECBs of the tasks in the
other components, or the UCBs of the tasks in the component of
interest, these approaches are clearly pessimistic. We can tighten
the analysis by considering both.

4.3.1 UCB-ECB-All
We build upon the ECB-Only-All and UCB-Only methods. For
task i and all tasks that could pre-empt it in component G, we can
calculate which UCBs could be evicted by the tasks in the other
components, (10). We then take the union of all ECBs belonging
to the other components to get the number of blocks that could
potentially be evicted. We then calculate the intersection between
the two unions to give an upper bound on the number of UCBs
evicted by the ECBs of the tasks in the other components.

This is then multiplied by the number of times that the server SG

could be both suspended and resumed during the response time of
task i to give:

By construction, the UCB-ECB-All approach dominates the ECB-
Only-All and UCB-Only approaches.

4.3.2 UCB-ECB-Counted
Alternatively, we can consider each component in isolation by
building upon the ECB-Only-Counted and UCB-Only approaches.
For task i and all tasks that could pre-empt it in component G, we
start by calculating an upper bound on the number of blocks that
could be evicted by component Z:

We then multiply this number of blocks by the number of
disruptive executions that server SZ can have during the response
time of task i, and sum this up for all components to give:

By construction, the UCB-ECB-Counted approach dominates the
ECB-Only-Counted approach, but is incomparable with the UCB-
Only approach.

4.4 UCB-ECB-Multiset
The UCB-ECB approaches are pessimistic in that they assume
that each component can, directly or indirectly, evict UCBs of
each task in component G up to times
during the response time of task i. While this is potentially true
when k = i, it can be a pessimistic assumption in the case of
intermediate tasks which may have much shorter response times.
The UCB-ECB-Multiset approaches (described below) remove
this source of pessimism by upper bounding the number of times
intermediate task can run during the response time
of i and then multiplying this value by the number of times that
the server SG can be both suspended and resumed during the
response time of task k, i.e. .

4.4.1 UCB-ECB-Multiset-All
First we form a multiset that contains the UCBs of task k repeated

times for each task .

Then we form a second multiset that contains copies of
the ECBs of all of the other components in the system. This

blocks that may subsequently need to be reloaded at most
times within the response time of task i.

(11)

(8)

(9)

(10)

(12)

(13)

(14)

(15)

(16)

(17)

The total CRPD incurred by task i, in component G due to the
other components in the system is then given by the size of the
multiset intersection of (16) and (17).

4.4.2 UCB-ECB-Multiset-Counted
For the UCB-ECB-Multiset-Counted approach, we keep equation
(16) for calculating the set of UCBs; however, we form a second
multiset that contains copies of the ECBs of each
other component Z in the system. This multiset reflects the fact
that tasks of each server SZ can evict blocks at most
times within the response time of task i.

The total CRPD incurred by task i, in component G due to the
other components in the system is then given by the size of the
multiset intersection of (16) and (19).

4.4.3 UCB-ECB-Multiset-Open
In open hierarchical systems, the other components may not be
known a priori as they can be introduced into a system
dynamically. Additionally, even in closed systems, full
information about the other components in the system may not be
available until the final stages of system integration. In both of
these cases, only the UCB-Only approach can be used as it
requires no knowledge of the other components. We therefore
present a variation called UCB-ECB-Multiset-Open that improves
on UCB-Only while bounding the maximum component CRPD
that could be caused by other unknown components. This
approach draws on the benefits of the Multiset approaches by
counting the number of intermediate pre-emptions, while also
recognising the fact that the cache utilisation of the other
components can often be greater than the size of the cache, and as
such, the precise number of ECBs does not matter.

For the UCB-ECB-Multiset-Open approach, we keep equation
(16) for calculating the set of UCBs. Further, we form a second
multiset that contains copies of all cache blocks. This
multiset reflects the fact that server SG can be both suspended and
resumed, and the entire contents of the cache evicted at most

times within the response time of task i.

Where N is the number of cache sets.

The total CRPD incurred by task i, in component G due to the
other unknown components in the system is then given by the size
of the multiset intersection of (16) and (21).

Oecb
iG

ucb
iG

G
i MM ,,BRT

4.5 Comparison of Approaches
We have presented a number of approaches that calculate the
CRPD due to global context switches (server switching) in a
hierarchical system. Figure 2 shows a Venn diagram representing
the relationships between the different approaches. The larger the
area, the more tasksets the approach deems schedulable. The
diagram highlights the incomparability between the All and

Counted approaches. The diagram also highlights dominance.
For example, UCB-ECB-Multiset-All dominates UCB-ECB-
Multiset-Open and UCB-ECB-All, and UCB-All dominates ECB-
Only-All.

Figure 2. Venn diagram showing the relationship between the
different approaches.

We now give worked examples illustrating both incomparability
and dominance relationships between the different approaches.
Consider the following example with three components, G, A and
B, where component G has one task, Let BRT=1, ,

, . and
. In this example, components A and G

run at the same rate, while component B runs at a tenth of the rate
of component G.

ECB-Only-All considers the ECBs of component B assuming that
component B runs at the same rate as component G:

By comparison ECB-Only-Counted considers components A and
B individually, and accounts for the ECBs of component B based
on the number of disruptive executions that it may have.

Below, we present a more detailed worked example for all
approaches where the ECB-Only-All approach outperforms the
ECB-Only-Counted approach, which confirms the
incomparability of the All and Counted approaches.

Figure 3 shows an example schedule for four components, G, A, B
and C, where component G has two tasks. Let BRT=1, ,

22REG and and the number of disruptive
executions be:

1, 1RSX GA , , and

, 2, 2RSX GB , .

The following examples show how some of the approaches
calculate the component CRPD for task 2 of component G.

(18)

(21)

(20)

(19)

(22)

ECB-Only-All calculates:

ECB-Only-Counted:

UCB-Only:

All of those approaches overestimated the CRPD, although
UCB-Only achieves a much tighter bound than the ECB-
Only-All and ECB-Only-Counted approaches. The bound
can be tightened by using the more sophisticated
approaches, for example, UCB-ECB-Multiset-Counted:

}10,10,9,9,8,8,8,8,,7,7,7,7,6,6,6,6

,5,5,5,5,5,5,4,4,4,4,4,4,3,3,3,3,2,2,2,2{

}10,9,8,7,6,5,4{}10,9,8,7,6,5,4{}5,4,3,2{

}5,4,3,2{}8,7,6,5,4,3,2{}8,7,6,5,4,3,2{2,
Cecb

GM

For the tightest bound in this specific case, the UCB-ECB-
Multiset-All approach does the best:

10,10,9,9,8,8,7,7,6,6,5,5,4,4,3,3,2,2

10,9,8,7,6,5,4,3,2

10,9,8,7,6,5,45,4,3,28,7,6,5,4,3,2

2

2
2,

Aecb
GM

Assuming there are 12 cache sets in total1, the UCB-ECB-
Multiset-Open approach gives:

1 Although we used 12 cache sets in this example, we note that the result
obtained is in fact independent of the total number of cache sets.

5. CASE STUDY
In this section we compare the different approaches for calculating
CRPD in hierarchical scheduling using tasksets based on a case
study. The case study uses PapaBench2 which is a real-time
embedded benchmark based on the software of a GNU-license
UAV, called Paparazzi. WCETs, UCBs, and ECBs were
calculated for the set of tasks using aiT3 based on an ARM
processor clocked at 100MHz with a 2KB direct-mapped
instruction cache. The cache was setup with a line size of 8 Bytes,
giving 256 cache sets, 4 Byte instruc This
configuration was chosen so as to give representative results when
using the relatively small benchmarks that were available to us.
WCETs, periods, UCBs, and ECBs for each task based on the
target system are provided in Table 1. We made the following
assumptions in our evaluation to handle the interrupt tasks:

Interrupts have a higher priority than the servers and
normal tasks.
Interrupts cannot pre-empt each other.
Interrupts can occur at any time.
All interrupts have the same deadline which must be
greater than or equal to the sum of their execution times
in order for them to be schedulable.
The cache is disabled whenever an interrupt is executing
and enabled again after it completes.

Based on these assumptions, we integrated interrupts into the
model by replacing the server capacity QG in equation (3) by QG -
IG, where IG is the maximum execution time of all interrupts in an
interval of length QG. This effectively assumes that the worst case
arrival of interrupts could occur in any component.

We assigned a deadline of 2 ms to all of the interrupt tasks, and
implicit deadlines i.e. Di = Ti, to the normal tasks. We then
calculated the total utilisation for the system and then scaled Ti

and Di up for all tasks in order to reduce the total utilisation to the
target utilisation for the system. We used the number of UCBs and
ECBs obtained via analysis, placing the UCBs in a group at a
random location in each task. We then generated 1000 systems
each containing a different arrangement of tasks in each
component, using the following technique. We split the normal
tasks at random into 3 components with four tasks in two
components and five in the other, and then assigned task priorities
according to Deadline Monotonic priority assignment. Next we set

minimum task period). Finally we organised tasks in each
component in memory in a sequential order based on their

2 http://www.irit.fr/recherches/ARCHI/MARCH/rubrique.php3?id_rubriqu
e=97
3 http://www.absint.com/ait/

Figure 3. Example schedule and UCB/ECB data to demonstrate how the different approaches work.

priority, and then ordered components in memory sequentially
based on their index.

5.1 Success Ratio
For each system, the total task utilization across all tasks not
including pre-emption cost was varied from 0.025 to 1 in steps of

capacity to the minimum possible value, (i.e. the utilisation of all
of its tasks). We then performed a binary search between this
minimum and the maximum, (i.e. 1 minus the minimum
utilisation of all of the other components) until we found the
server capacity required to make the component schedulable. As
the servers all had equal periods, provided all components were

100%, then the system was deemed schedulable at that specific
utilisation level. In addition to evaluating each of the presented
approaches, we also calculated schedulability based on no
component pre-emption costs, but still including task level CRPD.
For every approach, the intra-component CRPD (between tasks in
the same component) was calculated using the combined multiset
approach as it is the most effective approach available [2].

Figure 4. Percentage of schedulable tasksets at each utilisation
level for the case study tasksets

The results for the case study are shown in Figure 4, note that the
graphs in this paper are best viewed online in colour. Although we
generated 1000 systems, they were all very similar as they are
made up of the same set of tasks. Focusing on the different
approaches, ECB-Only-Counted and ECB-Only-All perform the
worst as they only consider the other components in the system.
Next was UCB-ECB-Counted which though it considers all
components, accounts for the other components pessimistically in
most cases. The remainder of the approaches all performed very
similarly. We note that No-Component-Pre-emption-Cost reveals
that the component pre-emption cost is very small for the
PapaBench tasks, due to a number of factors including the nearly
harmonic periods, small range of task periods, and relatively low
number of ECBs for many tasks.

6. EVALUATION
In this section we compare the different approaches for calculating
CRPD in hierarchical scheduling using synthetically generated
tasksets in order to explore a wider range of parameters and
therefore give some insight into how the different approaches
perform in a variety of cases.

Table 1. Execution times, periods and number of UCBs and
ECBs for the tasks from PapaBench

Task UCBs ECBs WCET Period
FLY-BY-WIRE
I1 interrupt_radio 2 10 0.210 ms 25 ms
I2 interrupt_servo 1 6 0.167 ms 50 ms
I3 interrupt_spi 2 10 0.256 ms 25 ms
T1 check_failsafe 10 132 1.240 ms 50 ms
T2 check_mega128_values 10 130 5.039 ms 50 ms
T3 send_data_to_autopilot 10 114 2.283 ms 25 ms
T4 servo_transmit 2 10 2.059 ms 50 ms
T5 test_ppm 30 255 12.579 ms 25 ms
AUTOPILOT
I4 interrupt_modem 2 10 0.303 ms 100 ms
I5 interrupt_spi_1 1 10 0.251 ms 50 ms
I6 interrupt_spi_2 1 4 0.151 ms 50 ms
I7 interrupt_gps 3 26 0.283 ms 250 ms
T5 altitude_control 20 66 1.478 ms 250 ms
T6 climb_control 1 210 5.429 ms 250 ms
T7 link_fbw_send 1 10 0.233 ms 50 ms
T8 navigation 10 256 4.432 ms 250 ms
T9 radio_control 0 256 15.681 ms 25 ms
T10 receive_gps_data 22 194 5.987 ms 250 ms
T11 reporting 2 256 12.222 ms 100 ms
T12 stabilization 11 194 5.681 ms 50 ms

To generate the components and tasksets, we generated n (default
of 24) tasks using the UUnifast algorithm [9] to calculate the
utilisation, Ui of each task so that the utilisations added up to the
desired utilisation level. Periods Ti, were generated at random
between 10ms and 1000ms according to a log-uniform
distribution. Ci was then calculated via Ci = Ui Ti, and implicit
deadlines were set, i.e. Di = Ti. We used the UUnifast algorithm to
obtain the number of ECBs for each task so that the ECBs added
up to the desired cache utilisation (default of 10). Here, cache
utilisation describes the ratio of the total size of the tasks to the
size of the cache. A cache utilisation of 1 means that the tasks fit
exactly in the cache, whereas a cache utilisation of 10 means the
total size of the tasks is 10 times the size of the cache. The number
of UCBs was chosen at random between 0 and 30% of the number
of ECBs on a per task basis, and the UCBs were placed in a single
group at a random location in each task.

We then split the tasks at random into 3 components with equal
numbers of tasks in each, and assigned task priorities according to
Deadline Monotonic priority assignment. Next we set the period

each component in memory in a sequential order based on their
priority, and then ordered components in memory sequentially
based on their index. We generated 1000 systems using this
technique. It took approximately 5-10 seconds to analyse a single
taskset under all approaches over the range of utilisation levels for
the base line configuration using a single core of a 2.8GHz AMD
Opteron 6386 SE.

6.1 Success Ratio
We determined the schedulability of the synthetic tasksets using
the same approach described in the first paragraph of section 5.1.

Figure 5. Percentage of schedulable tasksets at each utilisation
level for the synthetic tasksets

The results for the baseline evaluation are shown in Figure 5. The
ECB-Only-Counted approach is least effective as it only considers
the other components and does so individually. ECB-Only-All
was next, followed by UCB-ECB-Counted. UCB-ECB-Multiset-
Counted performed similarly to UCB-Only and UCB-ECB-All,
crossing over at a utilisation of 0.725 highlighting their
incomparability. Although UCB-ECB-All dominates UCB-Only,
it can only improve over UCB-Only when the cache utilisation of
the other components is sufficiently low that they cannot evict all
cache blocks. Finally, the UCB-ECB-Multiset-All and UCB-ECB-
Multiset-Open approaches performed the best. Despite only
considering the properties of the component under analysis, the
UCB-ECB-Multiset-Open approach also proved highly effective.
The reason for this is that once the size of the other components
that can run while a given component is suspended is equal to or
greater than the size of the cache then UCB-ECB-Multiset-All and
UCB-ECB-Multiset-Open become equivalent.

6.2 Weighted Schedulability
Evaluating all combinations of different parameters is not
possible. Therefore, the majority of our evaluations focused on
varying one parameter at a time. To present the results, weighted
schedulability measures [7] are used. The benefit of using a
weighted schedulability measure is that it reduces a 3-dimensional
plot to 2 dimensions. Individual results are weighted by taskset
utilisation to reflect the higher value placed on a being able to
schedule higher utilisation tasksets.

To investigate the effect of key cache and taskset configurations
we varied the following parameters:

Number of components (default of 3)
Server period (default of 5ms)
Cache Utilisation (default of 10)
Total number of tasks (default of 24)
Range of task periods (default of [10, 1000]ms)

We used 100 systems for each utilisation level from 0.025 to 1.0
in steps of 0.025 for the weighted schedulability experiments. The
results and explanations for varying the cache utilisation, number
of tasks, and range of task periods are available in the appendix of
the technical report [21] on which this paper is based.

6.2.1 Number of Components
To investigate the effects of splitting the overall set of tasks into
components, we fixed the total number of tasks in the system at
24, and then varied the number of components from 1 (24 tasks in
one component) to 24 (1 task per component), see Figure 6.
Components were allocated an equal number of tasks where
possible, otherwise tasks were allocated to each component in turn
until all tasks where allocated. We note that with one component,
the UCB-Only and UCB-ECB-Multiset-Open approaches
calculate a non-zero component CRPD because they assume that
every time the single component is suspended, its UCBs are
evicted, even though there is only one component running in the
system. At two components, the ECB-Only-All and ECB-Only-
Counted approaches are equal. Above two components, the ECB-
Only-All, ECB-Only-Counted and UCB-ECB-Counted get rapidly
worse as they over-count blocks. All other approaches improve as
the number of components is increased above 2 up to 8
components. This is because as the number of components
increases, the amount of intra-component CRPD from tasks in the
same component decreases. While the higher number of
components does lead to increased inter-component CRPD, due to
higher number of server context switches, it is not enough to
cancel out the gains from reduced intra-component CRPD. This is
because the increasing number of components, which are
scheduled non-pre-emptively, is reducing the overall amount of
pre-emption in the system. However, above 8 components,
schedulability decreases as the inter-component CRPD and server
delays become the dominant factors. We also note that at two
components, UCB-Only, UCB-ECB-All and UCB-ECB-Counted
perform the same; as do the Multiset approaches. This is because

- - equivalent when there is
only one other component.

6.2.2 System Size
We investigated the effects of introducing components into a
system by varying the system size from 1 to 10, see Figure 7,
where each increase introduces a new component which brings
along with it 5 tasks taking up approximately twice the size of the
cache. When there is one component, all approaches except for
UCB-Only and UCB-ECB-Multiset-Open give the same result as
No-Component-Pre-emption-Cost. As expected, as more
components are introduced into the system, system schedulability
decreases for all approaches including No-Component-Pre-
emption-Cost. This is because each component includes additional
intra-component CRPD, in addition to the inter-component CRPD
that it causes when introduced. Notably, the ECB-Only-All
approach outperforms UCB-ECB-Counted above a system size of
2, UCB-Only and UCB-ECB-All outperform UCB-ECB-Multiset-
Counted above a system size of 4, highlighting their

- -
variations are the same when there are only two components in the
system.

6.2.3 Server Period
The server period is a critical parameter when composing a
hierarchical system. The results for varying the server period from
1ms to 20ms, with a fixed range of task periods from 10 to
1000ms are shown in Figure 8. When the component pre-emption
costs are ignored, having a small server period ensures that short
deadline tasks meet their time constraints. However, switching
between components clearly has a cost associated with it making
it desirable to switch as infrequently as possible. As the server
period increases, schedulability increases due to a smaller number
of server context switches, and hence component CRPD, up until

around 7ms for the best performance. At this point, although the
component CRPD continues to decrease, short deadline tasks start
to miss their deadlines due to the delay in server capacity being
supplied unless server capacities are greatly inflated, and hence
the overall schedulability of the system decreases.

7. CONCLUSION
Hierarchical scheduling provides a means of composing

multiple real-time applications onto a single processor such that
the temporal requirements of each application are met. The main
contribution of this paper is a number of approaches for
calculating cache related pre-emption delay (CRPD) in
hierarchical systems with a global non-pre-emptive scheduler and
a local pre-emptive fixed priority scheduler. This is important
because hierarchical scheduling has proved popular in industry as
a way of composing applications from multiple vendors as well as
re-using legacy code. However, unless the cache is partitioned,
these isolated applications can interfere with each other, and so
inter-component CRPD must be accounted for, even if the cache
is flushed after each global context switch.

We presented a number of approaches to calculate inter-
component CRPD in a hierarchical system with varying levels of
sophistication. We also showed that when taking inter-component
CRPD into account, minimising server periods does not maximise
schedulability. Instead, the server period must be carefully
selected to minimise inter-component CRPD while still ensuring
short deadline tasks meet their time constraints.

While it was not the best approach in all cases, we found the
UCB-ECB-Multiset-Open approach, which does not require any
information about the other components in the system to be
highly effective. This is a useful result as the approach does not
require a closed system i.e. it can be used when no knowledge of
the other components is available and/or cache flushing is used
between the execution of different components to ensure isolation
and composability.

The UCB-ECB-Multiset-All approach dominates the UCB-ECB-
Multiset-Open approach and therefore, if information about other
components is available, it can be used to calculate tighter bounds
in cases where not all cache blocks will be evicted by the other
components. However, this requires a small enough cache
utilisation such that the union of the other components ECBs is
less than the size of the cache.

Previous works by Lipari and Bini [19] and Davis and Burns [11]
have investigated how to select sever parameters. In future, we
intend to extend this work to find optimal server parameter
settings taking into account inter-component CRPD. Lunniss et al.
[20] showed how the layout of tasks can be optimised to reduce
CRPD. We also intend to extend this work to layout components
and their tasks in order to reduce both intra- and inter-component
CRPD so as to maximise system schedulability. Finally, we intend
to apply the approaches to a real system, in order to show how the
different techniques compare using results obtained via
measurement.

ACKNOWLEDGEMENTS
This work was partially funded by the UK EPSRC through the
Engineering Doctorate Centre in Large-Scale Complex IT
Systems (EP/F501374/1), the UK EPSRC funded MCC
(EP/K011626/1), the European Community's ARTEMIS
Programme and UK Technology Strategy Board, under
ARTEMIS grant agreement 295371-2 CRAFTERS, COST Action
IC1202: Timing Analysis On Code-Level (TACLe), and the

European Community's Seventh Framework Programme FP7
under grant -

Figure 6. Varying the number of components from 1 to 16,
while keeping the number of tasks in the system fixed.

Figure 7. Varying the system size from 1 to 10. An increase of
1 in the system size relates to introducing another component
adding 5 more tasks and increasing the cache utilisation by 2.

Figure 8. Varying the server period from 1ms to 20ms (fixed
task period range of 10ms to 1000ms)

REFERENCES
[1] Altmeyer, S., Davis, R.I., and Maiza, C. Cache Related Pre-

emption Delay Aware Response Time Analysis for Fixed
Priority Pre-emptive Systems. In Proceedings of the 32nd
IEEE Real-Time Systems Symposium (RTSS) (Vienna, Austria
2011), 261-271.

[2] Altmeyer, S., Davis, R.I., and Maiza, C. Improved Cache
Related Pre-emption Delay Aware Response Time Analysis
for Fixed Priority Pre-emptive Systems. Real-Time Systems,
48, 5 (September 2012), 499-512.

[3] ARINC. ARINC 651: Design Guidance for Integrated
Modular Avionics. Airlines Electronic Engineering
Committee (AEEC), 1991.

[4] ARINC. ARINC 653: Avionics Application Software
Standard Interface (Draft 15). Airlines Electronic
Engineering Committee (AEEC), 1996.

[5] Åsberg, M., Behnam, M., and Nolte, T. An Experimental
Evaluation of Synchronization Protocal Mechanisms in the
Domain of Hierarchical Fixed-Priority Scheduling. In
Proceedings of the 21st International Conference on Real-
Time and Network Systems (RTNS) (Sophia Antipolis, France
2013).

[6] Audsley, N. C., Burns, A., Richardson, M., and Wellings,
A.J. Applying new Scheduling Theory to Static Priority
Preemptive Scheduling. Software Engineering Journal, 8, 5
(1993), 284-292.

[7] Bastoni, A., Brandenburg, B., and Anderson, J. Cache-
Related Preemption and Migration Delays: Empirical
Approximation and Impact on Schedulability. In Proceedings
of OSPERT (Brussels, Belgium 2010), 33-44.

[8] Behnam, M., Shin, I., Nolte, T., and Nolin, M. SIRAP: A
Synchronization Protocol for Hierarchical Resource Sharing
Real-Time Open Systems. In Proceedings of the 7th ACM &
IEEE International Conference on Embedded Software
(EMSOFT) (2007), 279-288.

[9] Bini, E. and Buttazzo, G. Measuring the Performance of
Schedulability Tests. Real-Time Systems, 30, 1 (2005), 129-
154.

[10] Busquets-Mataix, J. V., Serrano, J. J., Ors, R., Gil, P., and
Wellings, A. Adding Instruction Cache Effect to
Schedulability Analysis of Preemptive Real-Time Systems. In
Proceedings of the 2nd IEEE Real-Time Technology and
Applications Symposium (RTAS) (1996), 204-212.

[11]Davis, R. I. and Burns, A. An Investigation into Server
Parameter Selection for Hierarchical Fixed Priority Pre-
emptive Systems. In Proceedings 16th International
Conference on Real-Time and Network Systems (RTNS)
(Renne, France 2008), 19-28.

[12]Davis, R. I. and Burns, A. Hierarchical Fixed Priority Pre-
emptive Scheduling. In Proceedings of the 26th IEEE Real-
Time Systems Symposium (RTSS) (2005).

[13]Davis, R. I. and Burns, A. Resource Sharing in Hierarchical
Fixed Priority Pre-Emptive Systems. In Proceedings of the
27th IEEE Real-Time Systems Symposium (RTSS) (Rio de
Janeiro, Brazil 2006), 257-270.

[14]Davis, R. I., Zabos, A., and Burns, A. Efficient Exact
Schedulability Tests for Fixed Priority Real-Time Systems.
IEEE Transactions on Computers, 57, 9 (September 2008),
1261-1276.

[15]Deng, Z. and Liu, J. W. S. Scheduling Real-Time
Applications in Open Environment. In Proceedings of the

IEEE Real-Time Systems Symposium (RTSS) (San Francisco,
USA 1997).

[16] Feng, X. and Mok, A. K. A Model of Hierarchical Real-Time
Virtual Resources. In Proceedings of the 23rd IEEE Real-
Time Systems Symposium (RTSS) (Austin, TX, USA 2002),
26-35.

[17] Kuo, T-W. and Li, C-H. A Fixed Priority Driven Open
Environment for Real-Time Applications. In Proceedings of
the 19th IEEE Real-Time Systems Symposium (RTSS)
(Madrid, Spain 1998).

[18] Lee, C., Hahn, J., Seo, Y. et al. Analysis of Cache-related
Preemption Delay in Fixed-priority Preemptive Scheduling.
IEEE Transactions on Computers, 47, 6 (June 1998), 700-
713.

[19] Lipari, G. and Bini, E. A Methodology for Designing
Hierarchical Scheduling Systems. Journal of Embedded
Computing, 1, 2 (December 2005), 257-269.

[20] Lunniss, W., Altmeyer, S., and Davis, R. I. Optimising Task
Layout to Increase Schedulability via Reduced Cache Related
Pre-emption Delays. In In proceedings of the International
Conference on Real-Time Networks and Systems (RTNS)
(Pont à Mousson, France 2012), 161-170.

[21] Lunniss, W., Altmeyer, S., Lipari, G., and Davis, R. I.
Accounting for Cache Related Pre-emption Delays in
Hierarchical Scheduling. Technical Report YCS-2014-491
Available from http://www-users.cs.york.ac.uk/~wlunniss/,
University of York, York, 2014.

[22] Lunniss, W., Altmeyer, S., Maiza, C., and Davis, R. I.
Intergrating Cache Related Pre-emption Delay Analysis into
EDF Scheduling. In Proceedings 19th IEEE Converence on
Real-Time and Embedded Technology and Applications
(RTAS) (Philadelphia, USA 2013), 75-84.

[23] Richter, K. Compositional Scheduling Analysis Using
Standard Event Models. PhD Dissertation, Technical
University Carolo-Wilhelmina of Braunschweig, 2005.

[24] Saewong, S., Rajkumar, R., Lehoczky, J., and Klein, M.
Analysis of Hierarchical Fixed Priority Scheduling. In
Proceedings of the 14th Euromicro Conference on Real-Time
Systems (ECRTS) (Vienna, Austria 2002), 173-181.

[25] Shin, I. and Lee, I. Periodic Resource Model for
Compositional Real-Time Guarantees. In Proceedings of the
24th IEEE Real-Time Systems Symposium (RTSS) (Cancun,
Mexico 2003), 2-13.

[26] Staschulat, J., Schliecker, S., and Ernst, R. Scheduling
Analysis of Real-Time Systems with Precise Modeling of
Cache Related Preemption Delay. In In Proceedings 17th
Euromicro Conference on Real-Time Systems (ECRTS)
(Balearic Islands, Spain 2005), 41-48.

[27] Tan, Y. and Mooney, V. Timing Analysis for Preemptive
Multitasking Real-Time Systems with Caches. ACM
Transactions on Embedded Computing Systems (TECS), 6, 1
(February 2007).

[28]Watkins, C. B. and Walter, R. Transitioning from Federated
Avionics Architectures to Integrated Modular Avionics. In
Proceedings of the 26th IEE/AIAA Digital Avionics Systems
Conference (DASC) (2007).

[29] Xu, M., Phan, L. T.X., Lee, I., Sokolsky, O., Xi, S., Lu, C.,
and Gill, C. Cache-Aware Compositional Analysis of Real-
Time Multicore Virtualization Platforms. In Proceedings of
the 34th IEEE Real-Time Systems Symposium (RTSS)
(Vancouver, Canada 2013).

