Cache-related preemption delay via useful cache blocks: Survey and redefinition ™

Sebastian Altmeyer ', Claire Maiza Burguiére

Compiler Design Lab, Saarland University, 66041 Saarbriicken, Germany

ABSTRACT

Tasks in an embedded system are scheduled either preemptively or non-preemptively. In case of preemp-
tive scheduling, interferences on the cache of the preempted and preempting task may extend the exe-
cution times. The corresponding delay is referred to as cache-related preemption delay (CRPD). Lee et al.
[6] presented a CRPD analysis using the concept of useful cache block (UCB): a cache block is useful if it
may be in the cache before a program point and may be reused after this point. If a preemption occurs at
that point, the number of additional cache misses is bounded by the number of UCBs. An upper bound on

Keywords:
Context-switch costs
Preemptive scheduling
Cache memory

Static timing analysis
Hard real-time systems

substantially.

1. Introduction

Tasks in an embedded system are scheduled preemptively or
non-preemptively. A non-preemptive schedule offers a better pre-
dictability: the execution of each task can be analyzed separately,
no impact of the execution of one task on the other tasks needs
to be taken into account. Worst-case execution time (WCET) anal-
yses are typically performed in such a setting. However, some task
sets are only schedulable preemptively.

The major disadvantage of preemptive scheduling is the
additional execution time due to preemption, referred to as con-
text-switch costs (CSC). These context-switch costs are mainly
the result of interferences on the cache of the preempted and pre-
empting task. This fraction of the CSC is referred to as cache-
related preemption delay (CRPD): cached memory blocks of a
preempted task may be evicted due to the execution of the pre-
empting task. If such a memory block is reused by the preempted
task after preemption, an additional cache miss occurs. Thus, any
attempt at determining the CRPD must consider the reuse of the
available cache contents of the preempted task (UCB) or the dam-
age done to this cache contents by the preempting task (ECB).

This article is composed of two parts. The first part provides a
survey of the state of the art in the computation of the cache-re-
lated preemption delay—mainly relying on the concept of useful

* This work was supported by ICT Project PREDATOR in the European Commu-
nity’s Seventh Framework Programme under grant Agreement No. 216008, by
Transregional Collaborative Research Center AVACS of the German Research Council
(DFG) and by ARTIST DESIGN NoE.

* Corresponding author.

E-mail addresses: altmeyer@cs.uni-saarland.de (S. Altmeyer), maiza@cs.uni-
saarland.de (C. Maiza Burguiére).

the CRPD of the whole task is thus given by the program point with the largest set of UCBs. In this article,
we provide a survey of the state of the art techniques to bound the CRPD, based on, but not limited to
UCBs. Based on this survey we present an alternative definition of UCBs to improve the CRPD bounds

cache blocks. Based on this survey, we present an alternative def-
inition of useful cache blocks to improve the CRPD bounds sub-
stantially. This alternative approach directly reuses results of the
WOCET analysis instead of analyzing the CRPD in complete isolation.
By this, the number of additional cache misses contributing to the
CRPD bound can be largely decreased.

In the remainder of the introduction, we provide the basic no-
tion of caches and cache analyses, we give an example to explain
the effect of a preemption on the cache, and we discuss the use
of CRPD and WCET in the schedulability analysis.

1.1. Cache memory

Caches are fast but small memories storing frequently used
memory blocks to close the increasing performance gap between
processor and main memory. They are used as data, instruction
or combined caches. An access to a memory block which is already
in the cache is called a cache hit. An access to a memory block that
is not cached, called a cache miss, causes the cache to load or store
the data from/to the main memory.

Caches are divided into cache lines. A cache line is the basic unit
to store parts of the memory. The memory again is divided into
memory blocks of line size | contiguous bytes. The set of all memory
blocks is denoted by M. The cache size s is thus given by the num-
ber of cache lines cl times the line size I. A set of n cache lines forms
one cache set, where n is the associativity of the cache and deter-
mines the number of cache lines a specific memory block may re-
side in. The number of sets c is given by cl/n and the cache-set the
memory block with address b maps to is given by b modc.

Special cases are direct-mapped caches and fully-associative ca-
ches. In the first case, each cache line forms exactly one cache set

708

and there is exactly one position for each memory block (n = 1). In
the second case, all cache lines together form one cache set and all
memory blocks compete for all positions (n = cl). If the associativ-
ity is higher than 1 a replacement policy has to decide in which
cache line of the cache set a memory block is stored, and, in case
all cache lines are occupied, which memory block to remove. The
most common replacement policies are:

First-in first-out (FIFO): The memory blocks are replaced in the
order in which they were cached. This means, in case of a cache
miss, the oldest element is removed; cache hits do not change
the order.

Least recently used (LRU): The memory blocks are replaced in the
reversed order in which they were used. This means, in case of a
cache miss, the least-recently-used element is evicted, in case of
a cache miss, the cached elements are—at least conceptually—
reshuffled to maintain the order.

Pseudo least recently used (PLRU): PLRU approximates LRU at a
lower complexity. It is implemented using a set of pointers always
pointing to the element evicted next.

For an overview of the different replacement policies see Rein-
eke [14].

The main concept behind caches is the exploitation of temporal
and spatial locality. A memory block recently accessed is likely to
be accessed again in the near future (temporal locality). Adjacent
memory blocks are assumed to be accessed together (spatial local-
ity). Although data and instruction caches profit from both phe-
nomena, memory access patterns are vastly different. Instruction
occurrences are stored at specific memory blocks and hence, cache
accesses are bound to program points. This means, a cache block
may only be reused, if the corresponding program point is exe-
cuted again. Hence, the access patterns of the instruction caches
have a very regular structure (following the structure of the control
flow graph). In case of data caches, the accesses do not necessarily
obey such a regular pattern. So, one memory block may be ac-
cessed several times within a sequential code segment with more
than one access in between—which is not possible for the instruc-
tion cache.

1.2. Cache analysis

As a part of a timing analysis, a cache analysis aims to statically
predict the cache behavior during the execution of a task. For this
reason, the analysis classifies memory accesses as cache hits or
cache misses. Due to input-dependent cache behavior and an un-
known initial cache state, the outcome of this classification is not
complete, i.e., not all memory accesses can be classified. To circum-
vent this problem, the concept of may and must information has
been introduced to bound the cache contents from above and be-
low. The may cache contains all memory blocks that may be ca-

l (a}, () {ch AdD)

({a}, (b}, {c}, 0)

!
(a) (b)

Fig. 1. Cache analysis: straight-line code (a) and control flow merge for must cache (b), and for may cache (c). In the figure, letters (a)-|

instructions.

ched at a given program point, i.e.,, where the analysis is unable
to prove that the memory block is not cached. Vice versa, the must
cache at a program point contains all memory blocks the analysis
can prove to be cached. The use of this classification depends on
the target architecture. In case of timing anomalies [9], a cache
hit may lead to a longer execution than a cache miss. Thus, if the
cache analysis is unable to safely classify a memory access, timing
analysis has to take both possibilities into account: a cache hit and
a cache miss. In case of architectures without timing anomalies,
e.g., Arm7 processor, timing analysis considers all accesses to
memory blocks not contained in the must cache as cache misses,
since cache misses always lead to a longer execution time than
cache hits.

Several different cache analyses have been proposed: Refs.
14,5,8,10,20,16], either for direct-mapped or n-way associative
LRU caches, and for instruction or data caches.

In its simplest form, a cache analysis for direct-mapped caches
is implemented as a program analysis keeping an abstract cache
state at each program point. Such an abstract cache state contains
for each cache set s either a set of memory blocks or the empty set
¢ indicating that the content of s could not be predicted. Encoun-
tering an access to a memory block m, the analysis stores m at
the corresponding position in the abstract state (while replacing
the prior content; see Fig. 1(a)). Two abstract cache states are com-
bined by the use of intersection (must cache, Fig. 1(b)) or union
sets (may cache, Fig. 1(c)).

For data caches, a value analysis [3] statically derives effective
addresses of memory accesses (for instruction caches, the memory
accesses are given by the addresses of the instructions, and thus,
are fixed). If the value analysis, however, fails for some accesses,
the precision of the cache analysis suffers. Even if the analysis is
able to give a range for an access, for instance an access to an array
component, the must-cache analysis can often not predict which
block is cached. We denote a memory access for which no effective
address can be statically determined a dynamic memory access.

1.3. Impact of a preemption on cache content—example

In this part, we demonstrate with an example how a preemp-
tion may affect the cache content and, thus, may cause additional
cache misses. Suppose a sequence of memory accesses as pre-
sented in Fig. 2. There are five accesses (a-e) to five memory blocks
of an instruction and/or data cache. In this example, the cache size
is four lines and each line contains one memory block (direct-
mapped cache). Memory blocks a to d are already cached before
the execution. In case no preemption occurs (left part of Fig. 2),
only one miss is observed to load the last cache block (e). In case
a preemption occurs after the access to block b (right part of
Fig. 2), the preempting task evicts three cache lines (blocks a, b

({a}, (b}, {c}, 0) (ab {f} {chAd}) ({a}, (b}, {c}, 0)

a

({a}, (b}, {c}, 0)
f

({a}, {f}.{c}, 0)

b ({a}, 0, {c}, 0)

(la}, 1D, f}. {ch Ad})

(c)

(f) denote addresses of different

_ Cache _
E V Lia E
' ! 2:b
H N F
DL &d
Cache | \
cTa T ! _ Cache _
. ’ ' ! Volia
Vozb | Lo a
N F : ' 3'_ :\b
Vodd a - Poe JUNS
_______ : 1 4:d ' .
b P s ! i
C ' j
1 L Cace ’
. R P
p * ' '
ce, € i P2 /Cw
e : PR g
! ! H v 4rd]
: 3:c 1 G mmmmm 1 c*
Vo did .
------- - L Cache
| L Lie /
A I
! 'o3ie
| Vo4:d E

non-preempted execution
#cache misses = 1

preempted execution
#cache misses = 2

Fig. 2. A sequence of memory accesses (a—e) with and without preemption and the
corresponding cache states. Each miss is marked by .

and c). After the preemption, the preempted task needs to reload
cache block ¢ which is evicted and would be reused otherwise.
Cache block d has not been evicted by the execution of the pre-
empting task. Loading the last cache block of the sequence (e) is
not a cache miss due to the preemption as it was not in the cache
before. So, in case of preemption, one additional miss occurs. The
preemption cost has to account for this miss penalty.

1.4. CRPD and WCET

Within schedulability analysis, the CRPD is always added to the
WOCET. Hence, it is sufficient to guarantee that n x CRPD + WCET,
where n is the maximal number of preemptions, bounds the actual
execution time under preemption—instead of providing a bound
on the CRPD in isolation. The idea of a weaker guarantee was al-
ready present in the initial work by Lee et al. [6]—but only for dy-
namic memory accesses to the data cache. So, it was not
thoroughly applied to the concept of UCB. Note that this weaker
guarantee is the basis for the concept of DC-UCB as presented in
the second part of this paper.

2. State of the art
2.1. Bounding the CRPD

In this section we focus on the derivation of upper bounds on
the CRPD. We explain the concept of useful cache blocks (UCB)
and of evicting cache blocks (ECB). Furthermore, we show how
they can be used separately or combined to derive this bound.
We first focus on the CRPD computation for direct-mapped caches.
Then, for set-associative caches, we show that this computation
needs to be carefully applied to the LRU policy and can not be
adapted to the FIFO and PLRU policies. Note that all definitions
and all formulas to bound the CRPD given in this section are valid
for instruction and data caches. However, a CRPD analysis is only

709

feasible for processors without timing anomalies. In such a case,
the number of additional misses times the cache reload time pro-
vides a safe bound on the additional execution time.

2.1.1. Bounding the CRPD for direct-mapped caches

The cache-related preemption delay denotes the additional exe-
cution time due to cache misses caused by preemption. As shown
in the example in Fig. 2, such cache misses occur, when the pre-
empting task evicts cache blocks of the preempted task that other-
wise would be reused later. Upper bounds on the CRPD can be
derived from two directions:

1. bounding the worst-case effect on the preempted task: the
worst-case number of cache blocks for which an access after a
preemption point may cause an additional miss, i.e., blocks that
are cached before preemption and reused afterwards;

2. or bounding the effect of the preempting task: the number of
distinct memory blocks accessed during the execution of the
preempting task—potentially evicting cache blocks of the pre-
empted task.

Depending on the structure of the tasks, results of both analyses
may widely differ.

2.1.1.1. Analysis of the preempted task. For the analysis of the effect
on the preempted task, Lee et al. [6] introduced the concept of use-
ful cache block:

Definition 1 (Useful cache block (UCB)). A memory block m is
called a useful cache block at program point P, if

(@) m may be cached at P and
(b) m may be reused at program point Q that may be reached
from P without eviction of m on this path.

In the case of preemption at program point P, only the memory
blocks that (a) are cached and (b) will be reused, may cause addi-
tional reloads. Hence, the number of UCBs at program point P gives
an upper bound on the number of additional reloads due to a pre-
emption at P. A global bound on the CRPD of the whole task is
determined by the program point with the highest number of
UCBs. The following formula gives an upper bound on the CRPD
for direct-mapped caches when UCBs are used to derive this upper
bound (where ¢ denotes the number of cache sets):

CRPDycp = CRT - [{si|Fm € UCB : m modc = s;}| (1)

The CRPDycp is bounded by the cache reload time (CRT), i.e., the
time needed to load a cache block, times the number of sets, which
at least one UCB maps to (see [6]). Note that the CRPD bounds de-
note the additional delay for one preemption. In case of several pre-
emptions, the CRPD bound must be added to the WCET as often as
preemption might occur.

2.1.1.2. Analysis of the preempting task. The worst-case impact of
the preempting task is given by the number of cache blocks this
task may evict during preemption. Obviously, each memory block
possibly-cached during the execution of the preempting task may
evict a cache block of the preempted one:

Definition 2 (Evicting cache blocks (ECB)). A memory block of the
preempting task is called an evicting cache block, if it may be
accessed during the execution of the preempting task.

Accessing an evicting cache block (ECB) in the preempting task
may evict a cache block of the preempted task. Tomiyama and Dutt
[19] proposed to use only the number of ECBs to bound the CRPD.

710

The following formula gives an upper bound on the CRPD for di-
rect-mapped caches when ECBs are used to derive this upper
bound:

CRPDgcg = CRT - |{si|Zm € ECB : m modc = s;}| (2)

The CRPD is bounded by the cache reload time times the number of
sets, which at least one ECB maps to (see [19]). Note that in case of
nested preemption the set ECB in the formula is the union of all ECB
sets of the preempting tasks, see [19,15].

2.1.1.3. Analysis of preempting task and preempted task. Negi et al.
[11] and Tan and Mooney [17] proposed to combine the number
of ECBs and UCBs to improve the CRPD bounds; only useful cache
blocks that are actually evicted by an evicting cache block may
contribute to the CRPD. The following formula gives a precise
upper bound on the CRPD for direct-mapped caches using UCBs
and ECBs:

CRPDycpgecs = CRT - |{s;|3m € UCB : m modc = s; A Im’
€ ECB: m' modc = s;}| (3)

The CRPDycgecs is bounded by the cache reload time times the num-
ber of sets, which at least one UCB and one ECB map to (see [11,17]).

The derivation of the sets of UCBs for direct-mapped caches,
corresponding to the definition presented in this section, is de-
tailed in Section 2.2.1. The derivation of the sets of ECBs is pre-
sented in Section 2.2.4. As explained in Section 2.1.2, for set-
associative caches, the derivation of an upper bound on the CRPD,
based on UCBs and/or ECBs, is not always possible.

2.1.2. Bounding the CRPD for set-associative instruction caches

The definitions of UCBs and ECBs are not restricted to some
types of cache architectures, but are expected to apply for set-asso-
ciative caches with any replacement policy. Of course, whether a
block is useful or not depends on the particular cache architecture,
i.e., its associativity and replacement policy. In addition, for set-
associative caches, the CRPD computation based on UCBs and on
ECBs differs from one replacement policy to another.

2.1.2.1. CRPD for LRU set-associative caches. An upper bound on the
CRPD for LRU set-associative caches has been computed using only
the number of UCBs [7] or using a combination of the number of
UCBs and the number of ECBs [17]. In the first case, Lee et al. [7]
compute the bound on the CRPD in the same manner as for di-
rect-mapped caches, by only taking into account the number of
useful cache blocks. The difference comes from the fact that they
compute it for each cache set independently and the overall sum
gives the global bound on the number of misses due to preemption.
The following formula gives an upper bound on the CRPD for LRU
caches by using solely the UCBs:

C
CRPDjcy = CRT -) " [UCB(s)| 4)
s=1
where UCB(s) denotes the set of UCBs mapping to cache set s.

Tan and Mooney [17] applied the idea to use the preempting
task(s) in the analysis of set-associative caches. They compute for
each cache set the number of evicting cache blocks (ECB(s)).
According to their approach, the cache-related preemption delay
for each program point is given by the formula:

[9
CRPDjx = > CRPDyix (5) (5)
s=1
where
CRPD;RY (s) = CRT - min(|UCB(s)|, [ECB(s)|, n) (6)

where UCB(s) and ECB(s) denote the sets of UCBs and ECBs, respec-
tively, mapping to cache set s and n is the number of ways (associa-
tivity). Note that depending on the UCB analysis, the number of
UCBs may exceed the associativity.

The computation of the overall CRPD bound of the whole task is
given by the maximum local CRPD—as for direct-mapped caches.
Again, a CRPD bound is only valid for a single preemption. In case
of multiple preemption the CRPD bound has to be added to the
WCET as often as preemption occurs.

However, we noticed that this minimum function may underes-
timate the number of additional misses.

Observation 1. In the case of LRU-replacement policy, the number
of ECBs can not be used as a safe upper bound on the number of
additional misses due to preemptions.

Let us use the CFG of Fig. 3. The basic block contains instructions
stored in four memory blocks (a-d). These memory blocks are
mapped to the same cache set.

Therefore, the set contains all these blocks at the end of the exe-
cution of this basic block: this 4-way cache set is completely filled.
As this basic block forms the body of a loop, these memory blocks
are useful. Suppose a preemption occurs between the end point of
the basic block and its next execution. Suppose in addition that the
preempting task uses a memory block that maps to the same set
(memory block x). In that case, this block evicts one useful cache
block: Using the minimum function, only one additional miss is ta-
ken into account for this memory set (min(4,1,4) = 1). Block a is
evicted because it is the least recently used. After preemption, this
block is reloaded: it evicts block b. The reload of block b will evict
the next one (c). Finally all blocks are evicted and reloaded. The
preempting task uses only one block mapped to this set. However,
it causes four additional misses (as many as the number of ways).
In this example, the number of UCBs and the number of ways
(associativity) are upper bounds on the number of misses, but
the minimum function gives an underestimation of the number
of additional misses.

Instead of using the formula by Tan and Mooney [17], the re-
sults from the CRPD computation via UCB and via ECB can be com-
bined in a straight-forward manner:

C
CRP DbRcLIJ;ECB = Z CRP DbRCLl]SECB (s) (7)

s=1
where
0 if ECB(s) =0

8
CRT - min(JUCB(s)|,n) otherwise ®

CRPD{-FC%ECB ()= {

Memory ~ Without With
N Accesses Preemption Preemption
\> a
b L deba [xdcb]
a
Y l la,d,c,b] la,x,d, c]*
d b
4 [b,a,d,c] [b,a,x,d]*
c
j 1 le.b,a,d] [c,b,a,x]*
d
| ldcbal [dcbal*

Fig. 3. Evolution of the cache content in case of LRU replacement. The first column
shows the sequence of memory accesses. The second column is the cache-set
content (4-way). The last column is the cache-set content after preemption. Each
miss is marked by =. Blocks a, b, ¢ and d are useful before this memory access
sequence.

Again, UCB(s) and ECB(s) denote the sets of UCBs and ECBs, respec-
tively, mapping to cache set s. This function refines the CRPD in case
no ECB maps to a set s and in case the number of UCBs in a set s is
higher than the associativity. Note that the CRPD is always bounded
by the associativity and the number of UCBs. Staschulat and Ernst
[16] derive the sets of UCBs and ECBs for LRU set-associative caches.
They use the same equation as for the direct-mapped cache to de-
rive the upper bound on the CRPD. However, the intersection of
UCB and ECB (as used for direct-mapped caches) may underesti-
mate the CRPD in case of set-associative caches, as shown above.

Note that recently a further improvement on the CRPD bound
for LRU based on UCB and ECB has been presented by Altmeyer
et al. [1].

2.1.2.2. CRPD for FIFO or PLRU. Often, related articles implicitly as-
sume LRU-replacement policy in case of set-associative caches.
The extension to FIFO and PLRU is then claimed to be straight-for-
ward. However, as the following observation states, UCB and ECB
approaches are unsuitable for these replacement policies in
general.

Observation 2. In case of FIFO or PLRU replacement, neither the
number of UCBs nor the number of ECBs nor the associativity are
safe upper bounds on the number of additional misses due to
preemption.

Fig. 4 shows that the number of additional misses may be high-
er than the number of UCBs and even the associativity. It depicts a
sequence of accesses to a 2-way set-associative FIFO cache. The
preemption occurs before the presented sequence: blocks a and b
are useful, both are evicted and the final content of this set after
preemption is [y,x]. The number of misses in the first case is 2
and 5 in case of preemption. The number of additional misses (3)
is greater than the number of UCBs (2), the number of ECBs (2)
and the associativity (2). So, these numbers can not be used as
an upper bound on the number of additional misses when the FIFO
replacement strategy is used.

A similar counter example for PLRU replacement strategy can
be found in [2]. In contrast to LRU, for FIFO and PLRU, the difference
in the number of misses along the same sequence of memory
accesses but starting with two different cache states cannot be
bounded by a constant (see the concept of sensitivity in [14]). In
case of a preemption the cache state is modified at one execution
point of the preempted task by the execution of the preempting

Memory Without With
Accesses Preemption Preemption
l [b,a] [y.x]
a
1 [b,al [a,y]*
e
1 le, b]* [e,al*
b
i le, D] [b, e]*
c
1 [c,e]* [c, D]*
e
| [c,e] le, c]*
2 misses 5 misses

Fig. 4. Evolution of the cache content in case of FIFO replacement. The first column
shows the sequence of memory accesses. The second column is the cache-set
content (2-way). The last column is the cache-set content after preemption. Each
miss is marked by *. Blocks a and b are useful before this memory access sequence.

711

task. Thus, for both strategies, neither the number of UCBs, nor
the number of ECBs can be used to compute an upper bound on
the CRPD: UCB and ECB derivation are not suitable for these
replacement strategies.

2.2. Data-flow analysis

In this section, we describe how to derive the set of useful cache
blocks needed for the CRPD computation. We start with the origi-
nal analysis for direct-mapped instruction caches as introduced by
Lee et al. [6], followed by improvements by Negi et al. [11] and Sta-
schulat and Ernst [15]. The extensions to set-associative and data
caches are presented at the end of this section.

The UCB analysis and all of its extensions are implemented as
data-flow analyses. Programs under examination are represented
as control flow graphs (CFG). Nodes of the CFGs are basic blocks:
maximal sequences of instructions with exactly one entry and
one exit point. Therefore, if one instruction of a basic block is exe-
cuted, so are all others. The edges of the CFG represent the possible
control flows.

Definition 3 (Control flow graph). An analyzed program P is
represented as a control flow graph CFG = (V,E,s,e) where V =
{B1,...,Bn} denotes the set of basic blocks B; of P and E € V x V the
corresponding edges connecting them. The start node is denoted
by s and the end node by e, respectively.

2.2.1. UCB for direct-mapped instruction caches

Since a task may be preempted at any position, the set of useful
cache blocks has to be computed at each instruction in the control
flow graph. However, in the case of instruction caches, it is suffi-
cient to derive the set of UCBs only at the basic block level (see [6]).

Theorem 1. The set of UCBs does not change within a basic block and,
by this, the number of UCBs is constant within a basic block.

The theorem follows directly from the possible access pattern
for instruction caches and the coupling of instruction occurrences
(and hence, memory accesses) to program points (see Section
1.2). To have different sets of UCBs at different instructions of a ba-
sic block B, a memory block must be evicted and reused within B—
which is not possible in case of instruction caches. Hence, the set of
UCBs is the same for all instructions of a basic block. Note that we
simplify the cache in a way such that each memory block contains
exactly one instruction. This simplification can be found implicitly
in the related work, too. In case a memory block contains several
instructions, the number of UCBs must be increased by one to ac-
count for the additional cache miss to reload the currently used
memory block. The simplification, however, does not influence
the correctness of the theorem.

As a consequence of the theorem, the set of UCBs only needs to
be computed on the basic block level in case of instruction caches.

2.2.1.1. Reaching memory blocks/live memory blocks. The computa-
tion of the set of UCBs uses two data-flow analyses: The first one
to compute all memory blocks where the condition “m may be ca-
ched at P” (condition a) of Definition 1) holds and the second one
for condition “m may be reused at program point Q that may be
reached from P without eviction of m on this path” (condition b)
of Definition 1). The intersection of both sets finally delivers the
set of UCBs. Note that the first analysis resembles a may cache
analysis as described in Section 1.2. However, since CRPD and
WCET are computed separately, two different analyses may be
used.

The reaching memory blocks (RMB) at program point P are all ca-
ched memory blocks at P. The live memory blocks (LMB) at program

712

point P are all memory blocks that may be used on some path start-
ing at P without being evicted on this path. The analysis of both
sets are strongly related to the well-known program analyses
for live variables and reaching definitions (see [12]). Both
can be implemented as fixed-point iterations on the control flow
graph.

In the following, we will describe the RMB and LMB analyses
based on Lee et al. [6]. However, we do not stick to their notation,
but use a simplified one in order to ease the comparison of the dif-
ferent methods. The set of memory blocks is denoted by M and the
cache contents of a cache set is a subset of M. Hence, the set of all
cache-set states is the powerset of M, denoted by 2". The contents
of the whole cache, and thus, the domain for the analyses is then
given by the cartesian product of c sets of cache-set states:

(o

Dpee :=2M x 2M x 2M ... x 2M

Note that for direct-mapped caches, each cache set contains exactly
one memory block. However, the analysis can only compute an
approximation of the actual cache content and thus, maintains a
set of memory blocks for each cache set.

The combine-operator of this domain, invoked to merge flow
information coming from different control flow paths, is defined
as the pointwise union on the components of its operands:

(C1,Cay...,CHU(C,,Ch....,Cl) = (CUC,, CUC,....CcuCl)

» ¢ ’ ’

where C; € 2" is the set of possibly-cached elements at cache set i.

The analysis of reaching memory blocks is defined as a forward
analysis. Hence, the abstract cache state at the entry of basic block
B is determined by the combination of all abstract cache states of
its predecessors:

RMB;,(B) = | |

predecessor B'

RMB,(B)

The update of the abstract cache state at B resembles the cache
behavior during the execution of B. This means that the memory
block at cache set i is replaced by the last memory block m that is
accessed within B and maps to cache set i. If there is no such mem-
ory block, the abstract cache state at cache set i remains unchanged:

RMB,+(B) = last_acc(RMB,(B))
where

last_acc((Cq,Ca,. ..
last_acc.(C.))

,C¢)) = ((last_accy(Cy), last_accy(Cy), . . .,

and

{m} if m is the last memory block in
B that maps to cache set i

C; if there is no such memory block

last_acc;(C;) =

The analysis of live memory blocks is a backward analysis—it can be
seen as the reverse of the former one. Hence, the abstract cache
state after basic block B is determined by the combination of all ab-
stract cache states of its successors (instead of predecessors):

|| LMBw(B)

successor B'

LMBoy(B) =

The update of the abstract cache state at B resembles the cache
behavior during the execution of B in reverse order. This means that
the memory block at cache set i is replaced by the first—instead of
the last—memory block m within B that maps to cache set i. If there
is no such memory block, the abstract cache state at cache set i re-
mains unchanged:

LMB;,(B) = first_acc(LMBoy.(B))

where

first_acc((Cq,Cy, ..
first_accc(C,))

., Co)) = ((first_accy (Cy), first_accy (C), . . .,

and

{m} if mis the first memory block in
B that maps to cache set i
C; if there is no such memory block

first_acc;(C;) =

In both cases (RMB and LMB), the fixed-point iteration based on
the above equation starts with initially empty cache states, i.e., a c-
tuple of empty sets (0,0,....,0). Fig. 5 shows a control flow graph,
and the resulting sets of RMBs, LMBs and UCBs are shown in Table
1. The number in the upper-right corner of the boxes denote the
indices i of the corresponding basic blocks. Remember that a mem-
ory block is useful when it is contained in both the RMB;, and the
LMB;, sets.

2.2.1.2. Set of cache states. Lee’s (non-relational) domain is given as
a tuple of sets; for each cache set i, a set of UCBs possibly residing
at i is given. Since not all combinations of elements in these sets

Fig. 5. Example control flow graph.

Table 1
Resulting RMB, LMB and UCB sets for the CFG shown in Fig. 5; a and e map to cache
set 1, b and fto set 2, c and g to set 3 and d to set 4.

i RMB(B;) LMB(B;)
in

1 (0,0,0,0) ({a}, {b},{c}, {d})
2 ({a,e}, {f},{c}, {d}) ({e}, {b}. {c},{d})
3 ({a,e},{b},{c}.{d}) ({e}, {f},{c.g}.{d})
4 ({e}. {b}. {c}. {d}) (e}, {f}, {c}. {d})

5 ({a,e}, {b},{c}, {d}) (0.0,{g},0)

out

1 ({a},0,0,0) ({e}, {b}. {c},{d})
2 ({a,e}, {b}, {c},{d}) ({e}, {f}.{c.g}.{d})
3 ({e}.{b},{c}.{d}) ({e}, {f}.{c.g}.{d})
4 (e} {f} {c}, {d}) ({e}, {b}.{c}.{d})
5 ({a,e}, {b},{g}, {d}) (0,0.9,0)

i UCBs(B;)

1 (0,0,0,0)

2 ({e},0.{c}.{d})

3 ({e}. 0, {c}.{d})

4 ({e},0.{c}.{d})

5 (0,0,0,0)

({e}, 0,{c},0) ({a}, b}, 0. {d})

~N U

({a, e}, {b}, {c}. {d})

713

{(e, T,c, T)} {(a,b, T,d)}

~Nou L

{(e, T,c, T),(a,b, T,d)}

Fig. 6. Overapproximation due to Lee's domain (left part) and improved domain by Negi (right part).

actually occur, the domain over-approximates the actual number
of UCBs (see left part of Fig. 6). Negi et al. [11] therefore introduce
a new analysis based on a relational domain to derive more precise
information about the set of UCBs. They represent the abstract
cache states in the following manner. The abstract cache content
of cache set i is given by C}' € My := MU{T}.If C = T, cache set
i is either empty or the analysis was unable to predict the content
of cache set i. The domain of the entire cache state is given by the
cartesian product of the domains of the cache-set states, i.e.,

c

CSZZMTXMTXMTX--~XMT

However, several distinct cache states may occur at one program
point during program execution. So, the domain of the analysis is
given as the powerset of the domain of the cache states CS:
DNegi := 2%, The combine-operator of the new domain is set-union.

The difference between Lee’s and Negi’s representations can be
seen in Fig. 6. The number of UCBs of the incoming sets is 2 on the
left and 3 on the right path. In Lee’s approach, pairwise union for
each cache set is applied. The maximal number of UCBs in the
resulting set is 4, i.e., each cache set may contain one UCB. In Negi’s
approach, the incoming cache states are kept separate. So, the
maximal number of UCBs is 3.

2.2.1.3. Trade-off precision/run-time. Negi’s representation of the
cache content enhances Lee’s original approach. However, the
complexity of computing the set of UCBs is much higher. Staschu-
lat and Ernst [16] propose a tradeoff between complexity and
tightness. The aim is to obtain a scalable precision by limiting
the number of cache states thus reducing the complexity: They
propose to merge cache states which are almost equal. This is done
by modifying the RMB;, computation proposed by Negi et al. [11]:

RMB,;,,(B) = bound,(RMB,,¢(B"))

predecessor B'

CStates

where bound;,(CStates) reduces the number of total cache states of
CStates to z. The reducing function bound, chooses two cache states
of minimal distance and merges them: this is repeated until the
number of states in CStates equals z. The two elements with the
minimum distance are replaced by the merged cache state. The dis-
tance metric is a function that delivers the difference of two cache
states. For example, Staschulat and Ernst [16] use the number of
cache sets with different cache contents as the distance between
two cache states.

2.2.2. Set-associative instruction caches

Embedded systems often use set-associative caches. Lee et al.
[6] extended their UCB analysis to handle them. Furthermore, they
assume the LRU replacement policy—although this is not stated
explicitly in the paper.

A cache set of an n-way set-associative LRU cache contains up to
n cache blocks. One state of a cache set can be described by a n-tu-
ple of memory blocks:

n

—_—
S=MxMx---xM

All possible states of cache set i are given by a set of such n-tuples
(Cf € 2%). The domain of the UCB analysis for set-associative caches
is then given by the cartesian product of ¢ sets of cache-set states:

c

D=2x2x2x...x2°

Again, the UCB analysis uses the sets of reaching memory blocks
(RMB) and live memory blocks (LMB) and the computation of these
sets resembles the cache behavior. According to Lee’s convention,
the leftmost memory block in the tuple is the oldest, the rightmost
memory block the youngest cached element. If one memory block
mp mapping to cache set i is accessed within basic block B, mj is set
to the rightmost position and all other elements are shifted one to
the left. To explain this computation, we assume that the memory
blocks m; to my4 are cached in set i, i.e., Cf = {(mg, m3, my, my)}. The
access of block m then changes the cache content to
{(ms3,my, my, mg)}.

In general, the number of memory blocks mapping to cache set i
within basic block B determines how far former elements are
shifted to the left and how many new memory blocks are inserted
on the right of cache contents C;. Note that for the computation of
LMB, the cache behavior is simulated in reverse execution order.

As Staschulat and Ernst [16] noted, the computation of LMB and
RMB described above contains a flaw: the same memory block may
be contained up to n times in the abstract state. An element is in-
serted into C; no matter if it is already contained or not. To correct
the former computation, Staschulat and Ernst proposed to mimic
the LRU-replacement policy in detail. If none of the accessed ele-
ments are contained in C}, the RMB/LMB sets are computed as
above. In case a memory block mp accessed within B is already con-
tained in C,-S, this element is put into the rightmost position, and
only elements from the rightmost up to mjp’s former position are
shifted to the left.

2.2.3. Data caches

UCB computation for data caches has been limited to statically
addressed data (see [6,17]). Lee et al. assume cache analysis to be
unable to handle dynamic memory accesses,’ which causes these
accesses to be treated as cache misses. Therefore they do not con-
tribute additional costs to the CRPD—as explained in Section 1.4. As
far as we know, the only work taking into account dynamic
addressing in the context of CRPD analysis has been done by Rama-
prasad and Mueller [13]. Their approach, however, does not use the
concept of UCBs. Instead, they employ access patterns to compute
the CRPD. Note that the set of UCBs for data caches (static address-
ing) has to be computed for each instruction. As already discussed
in Section 1.1, data accesses do not occur isomorphic to the control
flow graph. Hence, the set of UCBs may change at the instruction
level and not only at the basic block level.

2.2.4. Evicting cache block analysis

For the sake of completeness, we sketch a prototypical ECB
analysis. Note that, in contrast to the UCB analysis, the ECB analysis
is applied to the preempting task and not to the preempted task.
The set of evicting cache blocks (ECBs) is determined as the set
of memory blocks possibly-cached during the execution of the pre-
empting task [19]. It can be computed using the analysis of reach-
ing memory blocks or the analysis of live memory blocks. Both
analyses collect all cached memory blocks of the task. Thus, the fi-

1 Remember that a dynamic memory access denotes a memory access for which no
effective address can be derived statically.

714

nal set of ECBs is given by the set of all elements contained in the
RMB at the end node e (or by the set of elements contained in the
LMB at the first node s)—no matter which cache state representa-
tion was used to compute them.

2.3. Summary

Starting with Lee et al. [6], in over 10 years of research the com-
putation of the bounds on the CRPD was successively improved.
Two different approaches can be identified: analyzing the pre-
empted task [6] and analyzing the preempting task [19]. Both ap-
proaches have been combined [11,17] and a more precise notion of
abstract cache states [11,16] was introduced to improve the
bounds on the CRPD.

For the analysis of set-associative caches, already Lee’s original
paper contained the basic ideas, which were corrected by Staschu-
lat and Ernst [16]. The corresponding CRPD bound, however, is only
valid for the LRU-replacement policy and not for FIFO or PLRU—as
we have shown in Section 2.1.2.2.

Lee’s UCB analysis for data caches only takes into account stat-
ically fixed data accesses—because their timing analysis treats all
other accesses as cache misses. Thus, the derived bound does not
bound the number of additional cache misses due to preemption,
but only the number of additional cache misses due to preemption
not taken into account by the timing analysis. Nevertheless, the com-
puted bound is still sound. As we will see in the next part, the same
idea can be applied to the whole UCB analysis in order to improve
the CRPD bounds.

3. Redefinition of useful cache blocks

In this part, we enhance the computation of the bound on the
CRPD by introducing a new notion of useful cache block. The no-
tion of evicting cache block is not modified and can be used in
combination with the new approach.

3.1. Definitely-cached useful cache block

An over-approximation of the cache contents (memory blocks
that may be in cache) is used by former UCB analyses to derive a
safe upper bound on the CRPD. This over-approximation of the
cache contents is referred to as may cache. As presented in Section
1.2, the WCET analysis also uses an over-approximation of the
cache contents to predict the number of cache misses. Remember
that determining cache misses is sufficient for processors without
timing anomalies.

Furthermore, WCET analysis uses an under-approximation of
the cache content to predict the number of cache hits (memory
blocks that must be in cache also referred to as must cache). Thus,
only blocks contained in the may cache and the must cache are
counted as cache hits. All blocks not contained in the must cache
are counted as cache misses—even if they are in the may cache.
For each access to these blocks, the cache reload time is added to
the bound on the worst-case execution time (WCET).

Some of these blocks, contained in the may cache but not in the
must cache, are useful and considered a miss by the UCB analysis.
Thus, during schedulability analysis, these accesses are counted
twice as a miss: as part of the CRPD bound and as part as the WCET
bound. So, treating timing analysis and CRPD analysis separately,
the over-approximation on both sides accumulates and introduces
a high degree of pessimism.

In this section we introduce the notion of definitely-cached UCB
excluding those misses that are counted twice. Then, we show the
soundness of the DC-UCB approach: the bound on the CRPD com-

puted using DC-UCB is safe when used in combination with a
bound on the WCET.

3.1.1. Bounding the number of additional misses

For schedulability analysis, a bound on the CRPD is always used
in combination with a bound on the WCET. Thus, we can remove
from the set of UCBs all accesses already counted as a miss by
the timing analysis. This is given by the notion of definitely-cached
UCB.

Definition 4 (Definitely-cached UCB (DC-UCB)). A memory block m
is called a definitely-cached UCB at program point P, if

(@) m must be cached at P, and,
(b) m may be reused at program point Q that may be reached
from P and must be cached along the path to its reuse.

The DC-UCB analysis gives, for a given program point, an upper
bound on the set of additional misses not taken into account in the
WCET analysis when used in combination. The set of DC-UCBs
might not give an upper bound on the CRPD. However, this bound
is safe when combined with the bound on the WCET delivered by
timing analysis: the over-approximation of the execution-time
bound subsumes the possible under-approximation of the CRPD.

Note that Lee et al. [7] implicitly use the notion of DC-UCB in
UCB analysis of data caches: they focus only on static addressing
of data accesses because dynamic ones are considered as cache
misses by their timing analysis. Hence, the computed bound only
denotes the additional cache misses due to preemption.

3.1.1.1. Soundness. The combination of over-approximation in the
timing analysis and in the conventional notion of useful cache
blocks counts some potential cache reloads twice. The adapted def-
inition excludes these reloads: So, they are only counted as part of
the execution-time bound. The context-switch costs, thus, may be
an under-approximation of the real costs but are a sound over-
approximation when combined with the results of the timing
analysis.

This can be seen by comparing (i) the overall number of cache
misses that might occur during task execution with (ii) the number
of cache misses the analyses (timing analysis and DC-UCB analysis)
take into account. If our approach accounts for at least the number
of actual cache misses, i.e., the number of cache misses that occur
during the execution of the task, it can be considered to derive a
safe over-approximation. Remember that using (DC-)UCBs to com-
pute context-switch costs is restricted to processors not exhibiting
timing anomalies. Hence, it is sufficient to prove that the number
of misses is safely bounded in order to prove the correctness of
the DC-UCB analysis.

Consider the set A of memory accesses that occur during the
non-preemptive execution of a task. These accesses are either
cache hits H or cache misses M. By construction, the must-cache
analysis classifies a subset of these accesses as cache hits,
Humuse € H. All other accesses are taken into account as cache
misses, Myyse = A \ Hpyse. Hence: HUM = A = Hyyst U Mypyse. The
set of additional cache misses due to preemption is denoted by
P C H. By definition, the set P’ obtained by our analysis is an
over-approximation of P restricted to elements of the set Hpys:
P’ O P N Hyuse. By removing this set P’ from the set of cache hits
classified by the must cache, we get: Hpus \ P’ C Hpuse \ (PN
Himust) = Hiuse \ P. Since Hpuse € H, the set of cache hits classified
by our method is a subset of the actual set of cache hits, we get:
Hpmuse \ P’ CH \ P. This shows that our approach under-approxi-
mates the set of cache hits under preemption: The number (i) of
actual cache misses, given by (M U P), is a subset of the number

[} Accesses accounted as cache-misses (M5 U P’)

Fig. 7. Set of cache hits, H, set of cache misses, M, set of cache hits approximated by
must cache, Hpust, Set of cache misses due to preemption, P, and set of cache misses,
P’, derived by our analysis. The dotted part in the second graph denotes all accesses
taken into account as cache misses by our approach.

(ii) of cache misses taken into account by our analysis, given by
(Mimuse U P").

By this, we showed that our approach safely bounds the cache-
related preemption delay when combined with an upper bound on
the WCET. Fig. 7 illustrates the different sets and their relation.

3.1.2. Bounding the CRPD

Remember that we bound the CRPD taking into account the
WCET analysis. Remember also that the CRPD bounds denote the
additional delay for one preemption. In case of several preemp-
tions, the CRPD bound must be added to the WCET as often as pre-
emption might occur. Since neither the ECB definition, nor the
computation of the bound on the CRPD based only on ECBs are
modified by the new approach, we can simply replace UCB by
DC-UCB in all former CRPD formulas given in Section 2.1.2.

Note that for FIFO and PLRU caches, DC-UCB does not help to
bound the CRPD: as we showed it in Section 2.1.2, for these poli-
cies, the number of additional misses is not bounded by a constant.

3.2. Data-flow analysis

To derive the set of DC-UCBs, we present a data-flow analysis
that builds upon the results of a general cache analysis as it is typ-
ically used for WCET analysis. Such a cache analysis only must be
able to safely classify accesses into hits, misses or unknown. While
UCB analysis of instruction caches is derived at a basic block level,

715

all DC-UCB analyses (data and instruction caches) are derived at an
instruction level due to the incorporation of the results of the cache
analysis; the cache analysis delivers the information, “is cached or
not” per instruction. Therefore, for DC-UCB analysis, the following
notations are used:

We denote instruction j of basic block i with B{ We use the par-
tial function AccessD(Bj) to denote the memory block of a possible
data access during execution of instruction B. In case no data
memory is accessed, AccessD(B{:) is not defined. Furthermore, we
use Access; (B’,f) as the address of the instruction. Note that we omit
the index D, I in case no distinctions need to be made or when it is
determined by the context.

3.2.1. DC-UCB analysis

Remember that a memory block m is called a definitely-cached
UCB at program point P if (a) m must be cached before the preemp-
tion point and (b) m may be reused at program point Q that may be
reached from P and must be cached along the path to its reuse. As
we take into account the cache analysis derived as part of the
WCET analysis, only one data-flow analysis—to check for condition
(b)—is needed to derive the set of DC-UCBs: This data-flow analysis
uses the result of the must analysis at each program point, which
checks for condition (a).

To determine the set of definitely-cached UCBs, we use a back-
ward program analysis on the control flow graph. A memory block
m is added to the set of DC-UCBs of instruction B’ if m is element of
the must cache at B’ and if instruction BJ accesses m. The domain of
our analysis is the powerset domain on the set of memory blocks
M: D = 2™. The following two equations determine the flow infor-
mation before (DC-UCB;;) and after (DC-UCB,,) instruction B):

DC-UCB;(B]) = gen(B}) U (DC-UCBoy (B)) \ kill(B})) (9)

DC-UCBo(B) = | J DC-UCB(B}) (10)
successor B,

where the gen/kill sets are defined as follows:

gen(B) {éAccess(B’,f)} ioft;\;f::iss(f’) € Must_Cache(B)) (11)

kill(B}) = M \ Must_Cache(B}) (12)

The direction of the analysis is backward. Eq. (10) combines the
flow information of all successors of instruction B{ Eq. (9) repre-
sents the update of the flow information due to the execution of
the instruction. First, all memory blocks not contained in the must

B/ | Must-Cache DC-UCBs;, UCBs;,
B | (T.T,T.T) (T,T.T.T) (T,T,T,T)
B, | (,T,T,T) (T, T.T) (ab,cd)
B) | (a.b,T.T) (aT,T,T) (ab,cd)
Bé (a,b,c,T) (a, T,c,T) (a,b,c,d)
B}t (a,b,c,d) (a, T,c, T) (a,b,c,d)
Bé (a,T,c,T) (a,T,T,T) (a,b,c,d)

Fig. 8. Example control flow graph and corresponding must cache, DC-UCBs and UCBs.

716

Table 2
Equations of DC-UCB analysis for CFG of Fig. 8.
B DC-UCB;, (B)) DC-UCBoy(B)
Bl DC-UCBoy(B}) N0 DC-UCB;, (B)
B} DC-UCBou: (B}) N {a} DC-UCB;, (B2)
B3 DC-UCBoyu(B3) N {a, b} DC-UCB;, (B}) U DC-UCBy, (BY)
B! DC-UCBoy (B}) M {a, b, c} DC-UCB;, (B}) U DC-UCB;, (B})
B} {c} U (DC-UCBou (B}) N {a,b,c,d}) DC-UCB;,(B})
B! {a} U (DC-UCBoy (BY) N {a,c}) 0

cache at B{ are removed from the set of DC-UCBs (12)—only a mem-
ory block that is element of the must cache all along the way to its
reuse is considered useful by our definition. Then, the accessed
memory block of instruction B! is added in case it is contained in
the must cache at the instruction (11).

Using these equations, the set of UCBs can be computed via
fixed-point iteration [12]. The initial values at instruction B’l: are de-
fined as follows: DC-UCB;,(B}) = gen(B)) and DC-UCBy(Bl) = 0.
Note that Eq. (9) obeys a distributive structure to ensure that the
fixed-point iteration will derive the smallest solution to the set
of equations. In terms of program analyses, this means that the
minimal fixed-point solution (MFP) equals the meet-over-all-paths
solution (MOP). Note that in the later discussion, we use a simpli-
fied version of Eq. (9):

DC-UCB;,(B!) = gen(B}) U (DC-UCBoy(B}) N Must_Cache(B))) (13)

Consider the control flow graph given in Fig. 8. The numbers in
the upper-right corner of the boxes denote the different basic
blocks. The letters within basic blocks denote the memory blocks
accessed by the instructions. The table shows the content of the
must cache assuming a direct-mapped data cache of size 4 and
the obtained DC-UCBs. Table 2 lists the equations our analysis uses
and Table 3 the steps and the resulting sets of the fixed-point iter-
ation. Note that we use the simplified Eq. (13). Memory block a is
cached before and reused at instruction Bi. So a is a DC-UCB before
Bl and contained in the initial state of DC-UCB;,(Bl) (Table 3,
it = 0). The same holds for memory block ¢ and instruction Bj. In
the next step of the computation (it = 1), a is furthermore consid-
ered a DC-UCB at B!'s predecessors B2 and B}, and c at B}’s predeces-
sor B;. The equations provided in Table 2 are iteratively applied
until a fixed-point on the set of DC-UCBs is reached. Note that all
prior UCB analyses employ two program analyses, one to check
for condition (a) memory block may be cached at position P, the
other for condition (b) memory block may be reused. If we adhere
to this structure, we can see the cache analysis as presented in
the Section 1.2 as one program analysis (a)—the analysis which
we presented above as the other one (b).

3.2.2. LRU caches

Although the DC-UCB analysis was introduced using a direct-
mapped cache, the analysis is valid in the same manner for set-
associative or fully-associative LRU caches. The DC-UCB analysis
only relies on the information about the currently accessed mem-
ory blocks and on an under-approximation of the cache content,
i.e., the must cache. It simply restricts the live memory blocks to
blocks contained in the must cache. The structure of the cache
(as well as the replacement policy and cache-set mapping) is com-
pletely masked by the set Must_Cache(BJ,f), which is obtained by the
cache analysis as part of the WCET analysis. Therefore, if the WCET
analysis is able to handle LRU caches, so is the DC-UCB analysis. In
contrast the initial UCB analysis for set-associative caches, where
each cache set is modeled explicitly, all DC-UCBs are kept in one
global DC-UCB set.

3.2.3. Data caches/dynamic memory accesses

If the addresses of the memory accesses are known statically,
the same DC-UCB analysis as for instruction caches can be applied.
For some data accesses, however, the value analysis [3] is unable to
derive precise addresses statically. Consider an array access within
a loop, for instance. The actual address of the access changes each
iteration. The value analysis, thus, derives a range bounding the ad-
dress of the access instead of a single value. We call such a memory
access a dynamic memory access. In addition to Access(Bﬁ) which
denotes the address of the access, Range(B{) denotes the length of
it. In case no range is needed, Range(B{) = 1. As for the cache anal-
ysis, the DC-UCB analysis has to assume results of a sound and safe
value analysis given. The actual implementation does not matter.

To handle imprecise information about the addresses of mem-
ory accesses—and to enable a general DC-UCB analysis for data ca-
ches?>—we have to adapt the analysis as follows. The domain is given
by a multiset: D = 2™" where I denotes the length of the range gi-
ven in the number of memory blocks. An access whose effective ad-
dress is bounded by a memory range is only considered a cache hit if
the whole range is definitely cached. Therefore, the access is also
only considered a definitely-cached UCB in this case (14). Elements
are removed from the set of DC-UCBs only if no memory block is def-
initely cached (15). Otherwise, if one memory block is cached and
this memory block is removed due to preemption, it may cause an
additional cache miss. The corresponding kill/gen sets are specified
as follows:

‘ {(Access(B), Range(B}))} if Vﬁiga"ge(y")(Access(B’;) +1)
gen(B) = § ¢ Must_Cache(B))
0 otherwise
(14)

kill(B)) = {(Access(By'), Range(}f))|vt§""ge(3?>(Access(B’,f‘) +1)
¢ Must_Cache(B))}
(15)

An example of how the extension of the analysis works is
shown in Fig. 9. Assume that a,b and c are sequentially ordered
memory blocks. Since the entire range of memory blocks the last
instruction may access are cached, the timing analysis considers
the data access of this instruction a cache hit. For the same reason,
the definitely-cached UCB analysis adds (a,3) to the set of DC-
UCBs. Only before the execution of the first and after execution
of the last instruction, (a, 3) is not a definitely-cached UCB; at every
other position, a cache block evicted due to preemption may cause
an additional cache miss at the last memory access.

3.2.4. Evaluation

In this section, we evaluate the precision of our approach.
Hence, we compare our results with the number of UCBs using
the initial approach by Lee et al. [7] to see the improvement solely
based on the adapted notion.

The evaluation setting is the following. The target architecture
is an Arm7 processor® with direct-mapped instruction caches of size
(a) 1 kB, line size 8 byte and (b) 8 kB, line size 8 byte. The Arm7 fea-
tures an instruction size of 4 byte. The test cases are taken from the
Malardalen WCET benchmark suite.* Table 4 shows the tasks, the
number of instructions of each task, the WCET and ratios of task size
to cache size. We compiled these tests using a gcc cross-compiler.

2 If the value analysis can not even derive a memory range for an access, timing
analysis treats this memory access as a cache miss. It therefore does not contribute to
the bound on the CRPD.

3 <http:/jwww.arm.com/products/CPUs/familiesjARM7Family.html>.

4 <http://www.mrtc.mdh.se/projects/wcet/benchmarks.html>.

717

Table 3
Fixed-point iteration to derive the set of DC-UCBs for CFG of Fig. 8.
it DC-UCB, DC-UCB ¢
B} B} B3 B} B} B! B} B} B3 B} B} B!
0 {} {3 (3 {} {c} {a} {} {3 {} {3 {3 {1
1 {} {1 {a} {a.c} {c} {a} {} {1 {a} {a,c} {} {}
2 {(} {a} {a} {a.c} {c} {a} (} {a} {a.c} {a.c} {c} {}
3 3 {a} {a} {a.c} {a.c} {a} {a} {a} {a.c} {a,c} {a,c} {}
Memory accesses Must-Cache DC-UCBs 3.2.4.1. Discussion. The results show that our analysis (DC-UCB)
strongly outperforms the former approach (UCB). Depending on
! 0 0 the structure and the size of the task, the improvement of the max-
a imal number of UCBs ranges from at least 18% (minmax) up to 97%
! {a} {(a,3)} (qurt, cache size = 4 kB, 8 kB). In case the cache is small compared
b to the task size (see Table 4), the number of UCBs is often bounded
l {a, b} {(a,3)} by the number of cache sets (cache size 1KkB, qurt, select, sqrt).
¢ Thus, the difference to the number of definitely-cached UCBs is
! la.b,c} {(a.3)} smaller and improvements are less obvious.
a-c . .
l {a,b,c) 0 Task minmax contains no loop and the useful cache blocks occur

Fig. 9. Data cache DC-UCB analysis handling memory ranges; a sequence of
memory accesses, cache content and sets of DC-UCBs.

To tighten the bound on the worst-case execution time, a tech-
nique called virtual inlining and loop unrolling, cf. [18], is applied.
This technique artificially increases the control flow graph to dis-
tinguish between different loop iterations and function calls. It
especially improves the must-cache analysis, i.e., more memory
accesses will be classified as cache hits. For all test cases, we also
employed virtual unrolling and virtual inlining in order to derive
realistic results. Note that by improving the precision of the must
cache, we increase the sets of DC-UCBs and so, we can only de-
crease the improvement we obtain.

Fig. 10 shows the results for the different cache sizes. The aver-
age size of the (DC-)UCB sets per instruction (columns 2/8 and 3/9)
can be seen as an indicator of the CRPD in case preemption is re-
stricted to a given set of preemption points. Column 4/10 show
the average improvement, i.e., the sum over the improvements of
each instruction divided by the number of instructions. Columns
5/11 and 6/12 show the maximal number of (DC-)UCBs for the gi-
ven task and the last column the improvement. The maximal num-
ber of (DC-)UCBs multiplied by the cache reload cost constitutes an
overall upper bound on the CRPD of the whole task (when
combined with an upper bound of the WCET). Columns 7/13
show the relative improvement of our new approach, i.e.,
(JUCB| — |DC-UCBJ)/|UCB].

The overall impact of the improvement to the schedulability of
a task set is more complex to determine. Of course, one could sim-
ply compare the CRPD to the WCET. These results, however, are not
very useful: (a) the WCET strongly depends on the loop bounds,
whereas the CRPD is nearly independent of them and (b) a task
with a high WCET is likely to be preempted several times, whereas
a task with a short WCET is probably not preempted at all. Hence,
we assume a simple schedule in the following way: each of the
tasks of Table 4 is scheduled with an artificial higher-priority task
with a period of 10,000 cycles. So, each task is preempted up to
[WCET/10,000] times. We restrict these comparisons to the first
cache configuration (8 kB, line size 8 byte) and a cache reload time
of four cycles. Also the WCETSs are derived for such a cache using
the timing analysis tool aiT.> The results are shown in Fig. 11. The
WCET of each task is set to 100%. The two bars show CRPD in relation
to the WCET, the first one based on the CRPD computation using
UCBs, the second one using DC-UCBs.

5 <http:/jwww.absint.com>.

in a function invoked twice. Therefore, the number of (DC-)UCBs in
both analyses is rather small and both approaches differ only
slightly. Also for loop3, DC-UCB only slightly improves the results.
Again, the number of UCBs is already small, this time because the
task contains a large sequence of very small non-nested loops. Best
improvements are observed for programs that containing large
loops (sqrt, qurt, crc), recursive structures, or repeated invocation
of routines. In these cases, the cache can work quite effectively
which means that several cache blocks will be reused and memory
accesses result in cache hits. Lee et al. over-approximates—in his
notion of UCBs—the sets of these memory accesses. However, since
the must cache can only classify a subset of them as cache hits,
only a strongly reduced set is considered as definitely-cached
UCBs. Of course, the improvement could even be more impressive,
if we would have used a worse must-cache analysis. But due to vir-
tual loop unrolling and virtual inlining, we used a very precise
must-cache analysis to derive realistic results.

A cache block typically contains more than one instruction. So,
even for straight-line code sequences without loops, the sets of
UCBs and DC-UCBs are not completely empty. Since all programs
contain such fragments with instructions executed at most once,
the average number of (DC-)UCBs per instruction® is reduced. Thus,
the average improvement per instruction (Column 4/11, Fig. 10) is
always lower than the improvement on the maximal number. Nev-
ertheless, values up to 80% are still possible. This indicates a large
refinement of the CRPD also in case preemption is deferred to a fixed
set of preemption points.

To sum up, the difference between both notions can be ex-
plained due to difference between the sets of possibly-cached
and definitely-cached memory blocks. To derive a general safe
upper bound on the cache-related preemption delay the set of pos-
sibly-cached memory blocks must be considered. However, since
the CRPD is always used in combination with the bound on the
worst-case execution time, it is sufficient to consider the set of def-
initely-cached memory blocks. So, the DC-UCB analysis only ac-
counts for cache misses that are not taken into account by the
timing analysis.

The overall impact of our improvement can be seen in Fig. 11. In
most cases, CRPDycg is at least 20% of the WCET, whereas only in
one case the CRPDpc.ycp exceeds this limit. Therefore our improve-
ment may have an immense impact on the overall schedulability
test.

6 Although the UCB analysis operates on the basic block level, the set of UCBs can
be mapped again to the instructions.

718

Table 4
Number of instructions and ratios of task sizes to cache sizes.
Task bs bsort100 crc fac fibcall fir insertsort loop3 matmul minmax ns qsort- qurt select sqrt
exam
#Instructions 69 123 288 48 47 209 81 1633 200 138 127 340 967 302 953
WCET 445 1,567,222 290,782 1252 1351 29,160 6573 13,449 742,585 504 43319 221,46 214,318 17,088 39,962
Ratio 1 kB 0.27 048 1.12 0.19 0.18 0.81 0.31 6.38 0.78 0.54 0.50 1.33 3.78 1.18 3.73
Ratio 4 kB 0.07 0.12 0.28 0.05 0.05 0.2 0.08 1.59 0.2 0.13 0.12 0.33 0.94 0.29 0.93
Ratio 8 kB 0.03 0.06 0.14 0.02 0.02 0.10 0.04 0.80 0.10 0.07 0.06 0.17 0.47 0.15 0.47
Cache size: 1kB, Line size: 8 Byte Cache size: 8kB, Line size: 8 Byte
average upper bound average upper bound
UCB | DC-UCB | diff || UCB | DC-UCB | diff || UCB | DC-UCB | diff || UCB | DC-UCB | diff
bs 13.6 14 52% 24 5 79% || 18.9 1.9 54% 35 8 77%
bsort100 18.9 1.9 54% 35 8 77% 11.3 1.6 61% 20 5 75%
cre 98.7 2.5 84% 124 14 89% || 115.0 2.5 84% 134 14 90%
fac 10.8 1.2 51% 19 4 79% 10.8 1.2 51% 19 4 79%
fibcall 5.1 1.6 41% 12 5 58% 5.1 1.6 41% 12 5 58%
fir 472 1.9 58% 79 9 89% 47.8 1.9 58% 79 9 89%
insertsort 7.8 2.1 31% 19 10 47% 7.8 2.1 31% 19 10 47%
loop3 3.7 1.5 39% 6 4 33% 3.7 1.5 39% 6 4 33%
matmult 27.3 5.6 56% 40 23 42% 27.6 5.6 56% 40 23 42%
minmax 1.8 1.1 9% 11 9 18% 1.8 1.1 9% 11 9 18%
ns 12.1 2.1 34% 30 13 57% 12.9 2.4 35% 31 13 58%
gsort-exam || 101.7 1.9 78% | 128 15 88% | 127.1 1.9 78% || 160 15 91%
qurt 97.2 1.4 75% 128 14 89% || 340.8 1.4 76% 449 14 97%
select 94.6 1.8 72% 128 15 88% || 102.0 1.8 73% 138 15 89%
sqrt 72.7 1.2 59% 128 14 89% || 204.1 1.2 60% 361 14 96%
bs -F:—‘ bs 'F
bsort100 == bsort100 -F:’
o] o -fp—
fac =) fac '
fibcall < - fibcall
fir F fir _F'_‘
insertsort ﬂ ' insertsort 11
loop3 -F loop3 -‘
matmult = matmult &
minmax e’ minmax -i
O — ws 4
gsort-exam qgsort-exam -5
qurt - quIt
select e select -P:?Z'
sqrt - sqrt f— 3
— T e e e e e B
A A BT ° D %%%% %%

Cache-size: 1kB, Line-size: 8 Byte

Max UCBs

Cache-size: 8kB, Line-size: 8 Byte
Max DC-UCBs mmmm

Average #UCBs mmmmm Average #DC-UCBs ¢

Fig. 10. DC-UCB analysis vs. UCB analysis.

The DC-UCB analysis has the same complexity as the cache
analysis; the memory consumption is less since the DC-UCB sets
are at most as large as the cache states maintained by the cache
analysis. Hence, the run-time of both analyses (Must-Cache and
UCB analysis) are very similar.

4. Conclusion

In case of preemptive scheduling, the schedulability analysis
has to take into account the context-switch costs for each preemp-
tion. These costs are composed of two parts: a constant part
depending on the pipeline and on the scheduler invocation and a
dynamic part depending on cache interferences. The dynamic part
of the context-switch cost is referred to as cache-related preemp-
tion delay (CRPD) and represents additional reloads in the cache
memory due to preemption.

As presented in the first part of the paper, the CRPD can be
bounded by estimating the worst-case effect on the preempted

task (useful cache block, UCB) or by estimating the worst-case ef-
fect of the preempting task (evicting cache block, ECB). The UCB
derivation has been initially introduced for direct-mapped instruc-
tion caches, but was soon enhanced to handle set-associative and
data caches. As we have shown furthermore, in case of set-associa-
tive caches with FIFO/PLRU policies, the CRPD can not be bounded
by using these notions; the number of reloads due to preemption
can not be bounded by a constant.

The initial UCB definition use an over-approximation of the
cache content to derive a safe over-approximation of the sets of
UCBs. In combination with the over-approximation of the timing
analysis, several cache reloads may be counted twice (as part of
the CRPD and as part of the WCET).

So, in the second part of the article, we presented the notion of
definitely-cached UCB (DC-UCB). Instead of using an over-approx-
imation of the cache content, our approach uses an under-approx-
imation; we require a useful cache block to be definitely cached.
Hence, the number of additional misses due to preemption (not ta-
ken into account as misses in the WCET analysis) is given by the

WCET | CRPD UCB | CRPD DC-UCB | # preemptions

bs 445 96 20 1

bsort100 1567222 21980 5652 157

cre 290782 16320 1630 30

fac 1252 76 16 1

fibcall 1351 48 20 1

fir 29160 948 108 3

insertsort 6573 76 40 1

loop3 13449 192 128 2

matmult 742585 1200 6900 75

minmax 504 44 36 1

ns 43319 620 260 5

qsort-exam 22146 1920 180 3

qurt 214076 39512 1232 22

select 17088 1104 120 2

sqrt 39962 5776 224 4
30 q
25 |- -
20 -

crc
fac
loop3 AI’J

c w o @
] T T T
-F
fibcall ==
fir g ==
matmult -FI
ns 7
qurt -h:’
select -h—l
sqrt -:l
L 1 1 1

bsort100 1+

insertsort +
minmax

gsort-exam

CRPD UCB ——CRPD DC-UCE s

Fig. 11. Overall impact of the DC-UCB analysis to the schedulability test. The Y-axis
denotes the percentage of the CRPD compared to the WCET.

size of DC-UCBs sets. The data-flow analysis, needed to derive the
set of DC-UCBs, uses the must-cache analysis, which is part of the
WOCET analysis. The comparison of the number of UCBs and DC-
UCBs shows the huge improvement on the CRPD bound. As the
comparison of WCET and CRPD shows in addition, this refinement
has a strong impact on the schedulability analysis for preemptive
systems.

As future work, we investigate the improvement by combining
DC-UCBs with ECBs. In addition, we plan to compute a lower bound
on the CRPD using the notion of useful cache block. Such informa-
tion may be useful for schedulability analysis, too.

Acknowledgements

We thank Professor Reinhard Wilhelm and Dr. Jan Reineke for
support writing this paper. Furthermore, we thank the reviewer
for a thorough review and helpful comments.

References

[1] Altmeyer, S., Maiza, C., Reineke, J., 2010. Resilience analysis: tightening the
crpd bound for set-associative caches. In: LCTES'10: Proceedings of the ACM
SIGPLAN/SIGBED 2010 Conference on Languages, Compilers, and Tools for
Embedded Systems. ACM, New York, NY, USA, pp. 153-162.

Burguiére, C., Reineke, J., Altmeyer, S., 2009. Cache-related preemption delay
computation for set-associative caches: pitfalls and solutions. In: Proceedings
of the Workshop on WCET Analysis (WCET'09).

P. Cousot, R. Cousot, Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints, in:
Conference Record of the 4th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, ACM Press, New York, NY, 1977, pp.
238-252.

C. Ferdinand, F. Martin, R. Wilhelm, M. Alt, Cache behavior prediction by
abstract interpretation, Science of Computer Programming 35 (2/3) (1999)
163-189.

[2

[3

[4

719

[5] S. Kim, S.L. Min, R. Ha, Efficient worst case timing analysis of data caching, in:
[EEE Real-Time Technology and Applications Symposium (RTAS'96), IEEE,
1996, pp. 230-240.

[6] C.-G. Lee,]. Hahn, S.L. Min, R. Ha, S. Hong, C.Y. Park, M. Lee, C.S. Kim, Analysis of
cache-related preemption delay in fixed-priority preemptive scheduling, in:
Proceedings of the 17th IEEE Real-Time Systems Symposium (RTSS'96), IEEE
Computer Society, Washington, DC, USA, 1996, p. 264.

[7] C.-G. Lee, J. Hahn, Y.-M. Seo, S.L. Min, R. Ha, S. Hong, C.Y. Park, M. Lee, C.S. Kim,
Analysis of cache-related preemption delay in fixed-priority preemptive
scheduling, IEEE Transactions on Computers 47 (6) (1998) 700-713.

[8] S.-S. Lim, Y.H. Bae, G.T. Jang, B.-D. Rhee, S.L. Min, C.Y. Park, H. Shin, K. Park, S.-
M. Moon, C.S. Kim, An accurate worst-case timing analysis for RISC processors,
IEEE Transactions on Software Engineering 21 (7) (1995) 593-604.

[9] T. Lundqvist, P. Stenstrom, Timing anomalies in dynamically scheduled
microprocessors, in: Proceedings of the 20th IEEE Real-Time Systems
Symposium (RTSS'99), IEEE Computer Society, Washington, DC, USA, 1999, p.
12.

[10] F. Mueller, Timing analysis for instruction caches, Real-Time Systems 18
(2000) 209-239.

[11] H.S. Negi, T. Mitra, A. Roychoudhury, Accurate estimation of cache-related
preemption delay, in: Proceedings of the 1st ACM International Conference on
Hardware/Software Codesign and System Synthesis (CODES +ISSS'03), ACM,
New York, NY, USA, 2003, pp. 201-206.

[12] F. Nielson, H.R. Nielson, C. Hankin, Principles of Program Analysis, Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 1999.

[13] H. Ramaprasad, F. Mueller, Bounding preemption delay within data cache
reference patterns for real-time tasks, in: Proceedings of the 12th IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS’06), IEEE
Computer Society, Washington, DC, 2006, pp. 71-80.

[14] Reineke, J., 2008. Caches in WCET Analysis. Ph.D. Thesis, Universitdt des
Saarlandes, Saarbriicken.

[15] J. Staschulat, R. Ernst, Scalable precision cache analysis for preemptive
scheduling, in: Proceedings of the 2005 ACM Conference on Languages,
Compilers, and Tools for Embedded Systems (LCTES'05), ACM, New York, NY,
USA, 2005, pp. 157-165.

[16]]. Staschulat, R. Ernst, Scalable precision cache analysis for real-time software,
Transactions on Embedded Computing Systems 6 (4) (2007) 25.

[17] Tan, Y., Mooney, V., 2004. Integrated intra- and inter-task cache analysis for
preemptive multi-tasking real-time systems. In: Proceedings of the 8th
International Workshop SCOPES 2004. Lecture Notes on Computer Science
(LNCS), vol. 3199. Press, pp. 182-199.

[18] Theiling, H., 2002. ILP-based interprocedural path analysis. In: Proceedings of
the EMSOFT 2002, Second Workshop on Embedded Software.

[19] H. Tomiyama, N.D. Dutt, Program path analysis to bound cache-related
preemption delay in preemptive real-time systems, in: Proceedings of the 8th
ACM International Workshop on Hardware/Software Codesign (CODES'00),
ACM, New York, NY, USA, 2000, pp. 67-71.

[20] R.T. White, C.A. Healy, D.B. Whalley, F. Mueller, M.G. Harmon, Timing analysis
for data caches and set-associative caches, in: Proceedings of the 3rd IEEE
Real-Time Technology and Applications Symposium (RTAS'97), IEEE Computer
Society, Washington, DC, USA, 1997, p. 192.

Sebastian Altmeyer received his M.Sc. in Computer
Science at the Saarland University, Germany in 2006. He
is currently a Ph.D. student and research asisstent in the
team of Prof. R. Wilhelm, Department of Computer
Science, Saarland University, Germany. His research
interests include embedded systems, timing and
scheduling analysis and abstract interpretation.

Claire Maiza Burguiére received her Ph.D. degree in
Computer Science from the University of Toulouse,
France in 2008. She is currently a postdoc in the team of
Prof. R. Wilhelm, Department of Computer Science,
Saarland University, Germany. Her research interests
include timing analysis, abstract interpretation, cache
analysis, WCET and CRPD analysis, architecture of real-
time systems and predictability of multi-core architec-
ture.

