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ABSTRACT
We derive a new estimate for two-electron repulsion integrals (ERIs), when evaluated within a local atomic basis set. It is based on the mul-
tipole expansion and provides a rigorous upper bound of an ERI for well-separated charge distributions. The scheme is generally applicable
in any formalism that uses ERIs. We employ it here to screen for potentially negligible contributions in the calculation of the Fock exchange
matrix. Using Gaussian basis functions, we show that the estimate allows us to accelerate the construction of the exchange matrix by up to a
factor of two without introducing further approximations.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5111054., s

I. INTRODUCTION
In Hartree-Fock calculations with local basis functions, it is

crucial to screen for negligible electron repulsion integral (ERI) con-
tributions in the construction of the Fock exchange matrix, since the
calculation of two-electron integrals is usually the time-determining
step. Taking into account the locality of the basis set, the number of
significant Fock exchange matrix contributions increases as O(N2

),
with N being the number of basis functions that are used to describe
the system. This is evident from the expression for the exchange
matrix1

Kμλ =∑
νκ

Dνκ(μν∣κλ), (1)

the definition of the ERIs

(μν∣κλ) =∬ d3r1d3r2
ϕ∗μ (r1)ϕν(r1)ϕ∗κ (r2)ϕλ(r2)

∣r1 − r2∣
, (2)

and the fact that the local basis functions ϕμ(r) and ϕν(r) show
negligible overlap, if they are spatially separated.

A well-established screening of ERIs uses the Schwarz
inequality

(μν∣κλ) ≤ (μν∣μν)1/2
(κλ∣κλ)1/2, (3)

proposed by Häser and Ahlrichs,2 which represents a rigorous upper
bound and is in addition very convenient to calculate. A drawback

of the Schwarz estimate is, however, that it does not account for the
separation between left (|μν)) and right (|κλ)) charge distributions,
as it is apparent from the factorization in Eq. (3). Consequently, the
Schwarz screening overestimates ERIs, in which left and right charge
distributions are well-separated (WS).

The fast multipole method attracted much attention in the
field of electronic structure theory, when formulated with local basis
functions. The seminal work of White et al.3,4 adapted the fast mul-
tipole method, originally developed for treating point charges,5 to
continuous local charge distributions. The central idea is that the
Coulomb interaction I of two normalized s-type Gaussian functions,
taken to be the left and right charge distributions of an ERI, reads

I =
1
R

erf(
√

αpαq
αp + αq

R), (4)

with the Gaussian exponents αp and αq and the distance R between
the distributions.4 Since the error function rapidly approaches 1
with increasing argument, the interaction of two WS Gaussian func-
tions can be accurately described by the multipole approximation.
Equation (4) allows us to introduce an extent of the Gaussian
distribution as

rext,p = α−1/2
p erfc−1

(ϵo), (5)
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where ϵo represents the overlap threshold that controls the desired
accuracy. Gaussian distributions with a center-to-center distance

R > rext,p + rext,q (6)

are classified as WS. A detailed derivation and discussion of relations
(4)–(6) can be found in the book of Helgaker.6

Unfortunately, a fast multipole scheme cannot be formulated
for the exchange part, as already pointed out by Burant et al.7 Instead
the multipole approximation can be utilized to compute individual
ERIs efficiently, as already reported.8–10 Furthermore, the multipole
approximation was used for the derivation of an integral screening
scheme by Lambrecht and Ochsenfeld.11,12 Although yielding a rig-
orous upper bound estimate, Ochsenfeld et al. recommended a sub-
sequently developed screening scheme.13 The latter appears as much
tighter bound but loses the rigorous upper bound quality. Along the
same lines, Hollman et al.14 presented a distance-dependent screen-
ing for three-center Coulomb integrals occurring in density fitting
approximations. Most recently, further integral estimates were pre-
sented by Thompson and Ochsenfeld15 with the added value of being
applicable to general two-electron operators such as those found
in explicitly correlated theories and in short-range hybrid density
functionals.

Finally, there are completely different approaches to evaluate
the exchange matrix more efficiently. They comprise the resolu-
tion of the identity method applied to the exchange,16 also known
as RI-K, or the “chain of sphere” exchange algorithm (COSX).17 A
comparison of RI-K and COSX can be found in Ref. 18.

Our work is structured as follows: First, we derive a general ERI
estimate based on the multipole approximation in Sec. II, before we
analyze the developed screening scheme numerically in Sec. III. In
Sec. IV, we apply it to specific systems and study the performance.
Finally, we conclude in Sec. V.

II. METHODOLOGY
A. Multipole-based estimate for ERIs

For the present formulation, we use the scaled regular and
irregular solid harmonics,6 which are defined by

Olm(r) =
∣r∣l

√

(l + m)!(l −m)!
Clm(θ,ϕ), (7)

Mlm(r) =
√

(l + m)!(l −m)!
∣r∣l+1 Clm(θ,ϕ). (8)

The functions

Clm(θ,ϕ) =

¿

Á
ÁÀ
(l −m)!
(l + m)!

Plm(cos θ)eimϕ (9)

are the spherical harmonics with Racah’s normalization. We follow
the phase convention of Condon and Shortley,19 and the Legendre
polynomials are obtained from Rodrigues’ formula

Plm(x) = (−1)m
(1 − x2

)
m/2

2ll!
dl+m

dxl+m
(x2
− 1)l, (10)

which holds for 0 ≤m ≤ l. Polynomials with negative sign are defined
via

Pl−m(x) = (−1)m
(l −m)!
(l + m)!

Plm(x). (11)

Exploiting the relations introduced, the inverse distance can be
written as6

1
∣R − (a + b)∣

=

∞

∑

l=0

l

∑

m=−l

∞

∑

j=0

j

∑

k=−j
Olm(a)M

∗

j+l,m+k(R)Ojk(b). (12)

The rotation of spherical harmonics can be expressed by the Wigner
D-matrix20

Clm(θ
′,ϕ′) =

l

∑

k=−l
Dl

km(α,β, γ)Clk(θ,ϕ). (13)

The functional arguments of the elements of the Wigner D-matrix
are the three Euler angles α, β, and γ, and θ′ and ϕ′ are the polar
and azimuthal angles in the rotated coordinate system. Note that a
rotation does not mix elements with different l.

Independent of the rotation of the coordinate system, the
following invariant is found:

l

∑

m=−l
∣Clm(θ

′,ϕ′)∣2 =
l

∑

m=−l

l

∑

k=−l

l

∑

k′=−l
Dl∗

km(α,β, γ)

×C∗lk(θ,ϕ)Dl
k′m(α,β, γ)Clk′(θ,ϕ)

=

l

∑

k=−l
∣Clk(θ,ϕ)∣2, (14)

which holds due to the property of the Wigner D-matrices20

l

∑

n=−l
Dl∗

mn(α,β, γ)Dl
m′n(α,β, γ) = δmm′ . (15)

The scaled regular solid harmonics of Eq. (7) transform under
rotation as21

Olm(r
′
) =

l

∑

k=−l

√

(l − k)!(l + k)!
√

(l −m)!(l + m)!
Dl

km(α,β, γ)Olk(r). (16)

In analogy to Eq. (14), we introduce the following rotationally
invariant functions for the scaled regular solid harmonics:

Olm(r) = δ0m
1
l!

¿

Á
ÁÀ

l

∑

m=−l
(l + m)!(l −m)!∣Olm(r)∣2, (17)

which are independent of the orientation of the coordinate system,
i.e., they are functions of r = |r|. Since Olm(r) vanishes by definition
for all m ≠ 0, we suppress this index and write Ol(r) = Ol0(r) in the
following.

Exploiting Eq. (17), an upper bound of Eq. (12) can be found as

1
∣R − (a + b)∣

≤

∞

∑

l=0
Ol(a)

∞

∑

j=0

(l + j)!
Rl+j+1 Oj(b) (18)

by using the maximum possible value of Ml0(R) at θ = 0 and
ϕ = 0. The equality holds, if R, a, and b are all aligned in parallel
and if the vectors a and b both point in the opposite direction of R.
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For all other alignments of the three vectors, the right-hand side is
an upper bound of the left-hand side of the equation.

The ERI can be expressed as

(μν∣κλ) =
∞

∑

l=0

l

∑

m=−l
Ωa

lm

∞

∑

j=0

j

∑

k=−j
Ml+j,m+k(R)Ω

b
jk + ϵ, (19)

with the multipole moment of the left charge distribution

Ωa
lm = ∫ d3rϕ∗μ (r)ϕν(r)Olm(r) (20)

and an analogous expression for the moment of the right charge
distribution Ωb

jk. Here, a and b are the centers of multipole expan-
sion of the left and right charge distributions, respectively, and the
vector R is the connection vector between these two expansion cen-
ters. As mentioned before, the multipole approximation holds only
for nonoverlapping distributions. Equation (19) defines the overlap
error ϵ as the deviation of the exact value of the ERI from the result,
obtained with the multipole approximation summed up to infinite
order of angular momentum quantum number l.

Along the lines leading to Ol(r), we define the m-independent
multipole moment or “multipole norm”

Ω
a
l =

1
l!

¿

Á
ÁÀ

l

∑

m=−l
(l + m)!(l −m)!∣Ωa

lm∣
2 (21)

and thereby obtain the following inequality for the ERI:

∣(μν∣κλ)∣ ≤
∞

∑

l=0

∞

∑

j=0
Ω

a
l
(l + j)!
Rl+j+1 Ω

b
j + ϵ. (22)

No manageable expression for estimating the size of the ERI has
been obtained yet due to the infinite sums over angular momentum
quantum numbers l and j in Eq. (22) and the a priori unknown form
of the expressions Ω

a
l . We seek to fulfill an inequality of the form

Ω
a
l ≤ Ω

a rle,a

l!
. (23)

If the parameters Ω
a

and re,a are chosen such that the inequality is
fulfilled for every order l = 0, . . .,∞, Eq. (22) simplifies to

∣(μν∣κλ)∣ ≤ Ω
a
Ω

b ∞
∑

l=0

∞

∑

j=0

rle,a

l!
(l + j)!
Rl+j+1

rje,b

j!
+ ϵ

= Ω
a
Ω

b 1
R − re,a − re,b

+ ϵ. (24)

A tighter bound may be obtained by writing the first terms of
Eq. (24) explicitly as

∣(μν∣κλ)∣ ≤ Ω
a
0

1
R

Ω
b
0 + Ω

a
1

1
R2 Ω

b
0 + Ω

a
0

1
R2 Ω

b
1 + Ω

a
Ω

b

×

⎛

⎝

∞

∑

l=2

rle,a

Rl+1 +
∞

∑

j=2

rje,b

Rj+1 +
∞

∑

l=1

∞

∑

j=1

rle,a

l!
(l + j)!
Rl+j+1

rje,b

j!
⎞

⎠

+ ϵ

= Ω
a
0

1
R

Ω
b
0 + Ω

a
1

1
R2 Ω

b
0 + Ω

a
0

1
R2 Ω

b
1

+ Ω
a
Ω

b (re,a + re,b)
2

R2
(R − re,a − re,b)

+ ϵ, (25)

where the parameters Ω
a

and re,a are again required to fulfill
Eq. (23) for l = 0, . . .,∞, and an analogous relation defines the pair
Ω

b
, re,b.

With Eqs. (24) and (25), compact expressions for ERI esti-
mates have been derived, which are fast to calculate. They repre-
sent a central result of our work, and we will henceforth refer to
Eq. (24) as zeroth-order multipole estimate (0-OME) and to Eq. (25)
as first-order multipole estimate (1-OME).

Obviously the multipole expansion and thus the 0-OME or 1-
OME cannot account for the overlap of the charge distributions.
Any possible influence of the overlap on the estimate will be assessed
numerically in Sec. III B.

B. Characterization of charge distributions
For practical reasons, a prescription how to find the val-

ues Ω
v

and re,v with v = a, b for a particular Gaussian prod-
uct is still to be found, which ensures that the inequality (23)
holds for all l = 0, . . ., ∞. We start the analysis for a product of
two primitive Gaussian basis functions ϕμ(r) and ϕν(r) with angu-
lar momenta lμ and lν, respectively. When choosing the center of
expansion identical to the position given by the Gaussian product
theorem

v =
αμAμ + ανAν

αμ + αν
, (26)

the highest nonzero multipole moment is lmax = lμ + lν, where Aμ
and Aν are the position vectors of the primitive Gaussians and αμ
and αν are their exponents. This becomes evident by following the
recurrence schemes for the multipole moments, given in the works
of Sierka et al.22 and of Pérez-Jordá and Yang.23 Since only a finite
number of Ω

v
l exist, it is thus trivial to find appropriate values Ω

v

and re,v in the case of charge distributions arising from primitive
Gaussian functions.

The situation is more complex for charge distributions aris-
ing from contracted Gaussians. The product of two contracted basis
functions consisting of N and M primitive basis functions, respec-
tively, contains N × M primitive distributions. Although all of
these charge distributions have a finite number of nonzero mul-
tipole moments, their centers of expansion vi with i = 1, . . .,
N × M differ [apart from the trivial case, if ϕμ(r) and ϕν(r)
are located at a common center]. However, it is convenient to
evaluate the multipole moments at a common center v. Hence,
the multipole moments arising from the charge distributions of
primitive Gaussians with centers vi are shifted using the shift
operator3

Ωv
lm =

l

∑

j=0

j

∑

k=−j
Ol−j,m−k(vi − v)Ω

vi
jk. (27)

According to this relation, for any nonzero shift, multipole moments
of all orders l appear in the expansion. Nevertheless, due to the
known structure of Olm(vi − v) [see Eq. (7)], Eq. (23) can be fulfilled
also for all orders l > lμ + lν, by choosing

re,v ≥ max
i
∣vi − v∣, (28)

where i denotes the primitive charge distributions. Further details
on how to choose the parameters Ω

v
and re,v are given in Sec. III.
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III. DETAILED ANALYSIS
In this section, we present how the proposed integral esti-

mate is used in an actual Hartree-Fock implementation. We work
here with the RIPER24 module of the TURBOMOLE code25 and
its recent extension to perform Hartree-Fock calculations for peri-
odic systems.26 We show in Subsection III A how to evaluate the
quantities appearing in the screening formulas (23)–(25). A numer-
ical validation of the fact that the ERI estimate is an upper bound
to the true ERI is then given in Sec. III B, both exemplarily for
two prototypical integrals and in terms of a statistical analysis of
all integrals appearing in a test calculation of a deoxyribonucleic
acid (DNA) molecule. In Sec. III C, we finally explain how we
can further optimize the ERI screening algorithm for the construc-
tion of the Fock exchange by preselection of integrals. Through-
out this work, charge distributions will be considered to be WS
in terms of the relations for extent and separation in Eqs. (5) and
(6), using an overlap threshold of ϵo = 10−4. Furthermore, we will
specify almost all quantities in terms of atomic units (a.u.). We will
hence indicate units only if they differ from a.u. and suppress them
otherwise.

A. Characterization of charge distributions
The evaluation of the 0-OME or 1-OME in Eqs. (24) and (25)

requires a characterization of charge distributions |μν) and |κλ) in
terms of Ω

a
, re,a and Ω

b
, re,b in order to use the inequality in Eq. (23).

Let us therefore start with the discussion on how to determine these
parameters.

If a charge distribution ϕμ(r)ϕν(r) shows a non-negligible
Schwarz estimate, we define a center a. In our implementation,
we determine this position through the Gaussian product theorem,
applied to the primitive Gaussians with the smallest exponents. Sim-
ilarly, the extent parameter rext,μν for the charge distribution |μν) is
determined from Eq. (5) with αμν being the sum of the smallest prim-
itive exponents. Ω

a
and re,a need to be chosen such that Eq. (23) is

fulfilled for all l = 0, . . ., ∞. In order to guarantee this, re,a must
not be smaller than stated in Eq. (28). Finally, the quantities Ωa

l are
calculated for all l = 0, . . ., lμ + lν through Eq. (21). We start our
algorithm by setting Ω

a
= Ω

a
0 in order to fulfill inequality (23) for

l = 0. Now, we check the inequality for all orders l ≤ lμ + lν. If the
inequality is not fulfilled, either re,a or Ω

a
have to be increased. In

order to obtain well balanced values for re,a and Ω
a
, we first gradu-

ally increase the value of re,a, but only up to re,a = rext,μν/2. Should
this not be sufficient, we increase Ω

a
until Eq. (23) is fulfilled for all

of the l desired. We exemplify the procedure for pairs |ps) and |dp)
in Table I.

B. Numerical validation of 0-OME and 1-OME
Let us now validate numerically that the developed 0-OME and

1-OME yield upper bounds to ERIs. Exact values and results of dif-
ferent estimates are shown in Fig. 1 for two ERIs with increasing sep-
aration R between left and right charge distributions. The Schwarz
estimate yields the same value for all separations. On the other hand,
the exact integral value and the multipole estimate exhibit an alge-
braic decay with increasing separation. In the examples considered,

TABLE I. Characterization of charge distributions through Ωa, re,a in order to fulfill the
inequality in Eq. (23). ∣ps) is formed from a single p-type function with exponent 0.1
and a contracted s-type function with the exponents 10, 5, and 1, which are separated
by a distance of 2. The biggest shift of a charge distribution of primitive Gaussians is
found to be 0.16. Our procedure ultimately yields Ωa

= 2.32 × 10−1, as can be seen
in the row for l = 0, and re,a = 0.23 < rext,ps/2 = 2.6. ∣dp) contains a d-function with
exponent 1 and a p-function with exponent 0.3, which are both located on the same
atom. Our algorithm determines Ωa

= 5.71 × 10−1 and re,a = rext,dp/2 = 1.2. The

respective value of Ωa
can be found in the row for l = 0.

∣ps) ∣dp)

Order l Ω
a
l Ω

arle,a/l! Ω
a
l Ω

arle,a/l!

0 2.32× 10−1 2.32× 10−1 0 5.71× 10−1

1 5.39× 10−2 5.39× 10−2 5.79 × 10−1 6.88× 10−1

2 1.26× 10−3 6.20× 10−3 0 4.15× 10−1

3 7.28× 10−5 4.81× 10−4 1.67 × 10−1 1.67× 10−1

4 3.08× 10−6 2.79× 10−5 0 5.04× 10−2

5 1.03× 10−7 1.29× 10−6 0 1.21× 10−2

6 2.80× 10−8 4.99× 10−8 0 2.44× 10−3

7 6.52× 10−11 1.65× 10−9 0 4.21× 10−4

the multipole estimate is clearly outperforming the Schwarz estimate
for separations larger than 4.

Whereas the 0-OME and the 1-OME clearly differ for the ERI
shown in Fig. 1(a), both estimates are indistinguishable in Fig. 1(b).
This is due to the fact that the studied (dp∣ps) integral in Fig. 1(a)
contains no monopole-monopole interaction (see Table I for the
composition of the different moments), which is exploited by the
1-OME but not by the 0-OME. By construction, the 0-OME decays
like 1/R, which leads to a systematic overestimation of the true inte-
gral value in the limit of large separations R in Fig. 1(a). The inte-
gral shown in Fig. 1(b) contains a monopole-monopole interaction,
which determines the interaction for large separations. Therefore,
0-OME and 1-OME are virtually identical.

In order to validate the method in a realistic calculation, results
are shown for the DNA2 molecule27 using the def2-SVP basis set.28

FIG. 1. Exact values and estimates of two different ERIs as a function of the
separation R between charge distributions. The estimates consist of the Schwarz
estimate together with the 0-OME and 1-OME. The two ERIs (a) (dp∣ps) and (b)
(ps∣ps) are formed by the particular distributions introduced in Table I.
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FIG. 2. Histograms for different integral estimates as obtained with the DNA2
molecule.27 Shown is the number of integrals for a fixed ratio Iest/Iex of the integral
estimate [Iest = (μν|κλ)est] and the exact integral value [Iex = (μν|κλ)]. The inset
displays a magnified view for low ratios.

Figure 2 displays histograms presenting the precision of the Schwarz
screening and of the two multipole-based screening methods. For
the Schwarz screening, we distinguish between all ERIs and ERIs
which are WS. Let us point out that the histograms for 0-OME
and 1-OME consider only WS integrals, which passed the Schwarz
screening for a threshold of ϵs = 10−12, since the multipole estimate
yields no reliable results for close-by distributions (see also Fig. 1).

FIG. 3. Number of negligible and non-negligible integrals for different values of αs.
Shown are integral batches, which are WS and pass the Schwarz screening. For
the analysis, (a) the DNA2 molecule27 and (b) hBN26 were used. For the latter, a
27× 27 k-mesh was employed, and the basis sets were def2-SVP28 for DNA2 and
pob-TZVP29 for hBN. For both systems, calculations with two different Schwarz
screening thresholds (ϵs = 10−8 and 10−12) were performed.

The differences between the Schwarz screening for all ERIs and those
that are WS show that for close-by distributions the Schwarz esti-
mate is a very accurate upper bound, which usually overestimates
the true integral value by no more than a factor of 10. On the
other hand, the splitting of maxima in the histograms for Schwarz

FIG. 4. CPU times and integral statistics are studied for varying values of αs,max ≥ 1 for the DNA2 molecule in (a) and (b), and for hBN with 27 × 27 k-points in (c) and (d) with
thresholds ϵs = 10−8 [(a) and (c)] and 10−12 [(b) and (d)]. Shown are CPU times (left axis and points) of the 0-OME (green) and 1-OME (violet) screening schemes. αs,max = 1
is equivalent to pure Schwarz screening, i.e., no additional multipole screening. Solid lines are associated with the right axis and show the number of integral batches, which
are identified to be negligible by the 0-OME (yellow) and 1-OME (blue). Similarly, the number of integrals, which are analyzed but are non-negligible, is plotted for 0-OME
(red) and 1-OME (black). The basis sets and structures used are the same as given in Fig. 3.
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screening and multipole-based screening illustrates the bad perfor-
mance of the Schwarz estimate for WS distributions.

We emphasize that no WS ERIs are underestimated by the
0-OME and 1-OME. This is apparent from Fig. 2, where the his-
tograms vanish for ratios (μν|κλ)est/(μν|κλ) < 1. Hence, we can
exclude a significant impact of the overlap error on our integral
estimates.

C. ERI preselection for Fock matrix construction
In our implementation, the multipole estimate is used as

an additional screening criterion for all WS ERIs that pass the
Schwarz screening. In this sense, the 0-OME and 1-OME screen-
ing procedures should be seen as “combined” Schwarz+0-OME or
Schwarz+1-OME schemes.

We want to construct the matrix Kμν of the Fock exchange by
using Eq. (1). By defining the quantity

αs =
D(μν∣μν)1/2

(κλ∣κλ)1/2

ϵs
(29)

with D = max{∣Dμκ∣, ∣Dνκ∣, ∣Dμλ∣, ∣Dνλ∣}, we can quantify how far the
Schwarz-based estimate for the exchange matrix element is away
from the target threshold ϵs.

In Fig. 2, we saw that the Schwarz estimate overestimates the
true value of ERIs in the far field by a factor of roughly 5–100.

Accordingly, additionally screenable integrals are only expected in
the range of 1 < αs < 100. In order to test this hypothesis, we clas-
sify the ERIs in the following as “negligible” or “non-negligible,” if
α = D∣(μν∣κλ)∣/ϵs < 1 or α ≥ 1, respectively.

Figure 3 characterizes integrals according to the value of αs for
two systems, namely, DNA227 and hexagonal boron nitride (hBN).26

Since integrals with αs < 1 are already screened out by the Schwarz
screening, they are not analyzed further. Moreover, only WS inte-
grals are shown because only these are accessible to the multi-
pole screening developed. Independent of the system and the used
threshold ϵs, integrals with low αs are seen to be negligible with high
probability. More precisely, almost all of the negligible integrals are
found to coincide with values αs < 100. Hence, it seems wise to apply
the additional multipole screening only to ERIs below a given αs,max.

IV. BENCHMARKS AND TIMINGS
The efficiency gain achievable with the additional multipole

screening depends on the investigated system, selected integral
neglect threshold ϵs, and quantity αs,max. In the following, αs,max will
be used as an adjustable parameter, which determines if a particular
integral batch is checked by the 0-OME or 1-OME. Only integrals
for which αs < αs,max will be examined by the multipole estimate.

Central processing unit (CPU) time and integral statistics for 0-
OME and 1-OME are shown in Fig. 4 as a function of the parameter

TABLE II. Performance of the 1-OME screening approach for various systems. Tests are carried out for up to two different thresholds ϵs = 10−8 and 10−12. The table lists
the absolute number of integral batches, which pass the Schwarz screening (“Ints.”), followed by WS integrals (“WS ints.”) and WS integrals, which are actually smaller than
the target threshold ϵs (“Negl. ints.”). The latter two quantities (“WS ints.” and “Negl. ints.”) are given in percent by putting them into relation to the number of integrals, which
pass the Schwarz screening (“Ints.”). The next column shows the ratio of actually screened integrals and the total number of negligible WS integrals (“Ident. ints.”). The last two
columns finally display the proportion of integrals passing the Schwarz screening to integrals actually evaluated after additional 1-OME screening (“Ratio ints.”) and the speed-up
(“Speed-up”), which is determined as the ratio of CPU times for the Schwarz calculation and the 1-OME scheme. Timings are obtained from the computation of a single exchange
matrix. In all of the calculations, ERIs are only tested if αs < αs,max = 100. Molecular systems are calculated with def-SVP28 and def-TZVP31 basis sets; for solid-state systems,
we use the pob-TZVP basis set.29 Molecular structures are taken from Ref. 27, solid state systems from Ref. 26.

Basis set ϵs Ints. (106) WS ints. (%) Negl. ints. (%) Ident. ints. (%) Ratio ints. Speed-up

Benzene def-SVP 10−8 0.63 10.0 0.55 52.0 1.00 1.00
Benzene def-SVP 10−12 0.68 10.4 0.14 8.5 1.00 1.00
Amylose2 def-SVP 10−8 32.71 54.6 22.3 87.3 1.12 1.05
Amylose2 def-SVP 10−12 57.87 56.4 10.5 80.3 1.05 1.02
DNA2 def-SVP 10−8 364.0 80.5 29.7 94.8 1.38 1.15
DNA2 def-SVP 10−12 960.8 83.3 16.2 95.1 1.17 1.07
DNA2 def-TZVP 10−8 3562 83.6 34.6 94.2 1.46 1.21
DNA2 def-TZVP 10−12 9387 86.0 18.2 95.2 1.20 1.10

hBN, Nk = 132 pob-TZVP 10−8 60.08 94.6 49.0 97.9 1.79 1.61
hBN, Nk = 132 pob-TZVP 10−12 189.6 95.8 27.2 97.9 1.33 1.27
hBN, Nk = 272 pob-TZVP 10−8 123.8 97.4 68.1 99.1 2.81 2.25
hBN, Nk = 272 pob-TZVP 10−12 563.7 98.6 39.0 99.0 1.62 1.49
Graphene, Nk = 132 pob-TZVP 10−8 89.59 94.3 47.0 97.9 1.73 1.56
Graphene, Nk = 292 pob-TZVP 10−8 214.3 97.6 65.1 99.1 2.56 2.14
Diamond, Nk = 93 pob-TZVP 10−8 1065 96.3 57.0 98.2 2.15 1.81
Diamond, Nk = 133 pob-TZVP 10−8 1814 97.8 66.7 98.8 2.77 2.23
Diamond, Nk = 173 pob-TZVP 10−8 2192 98.2 72.0 99.1 3.29 2.29
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αs,max. A central question is the particular speed-up achievable with
the multipole screening. The smallest acceleration of 1.1 is obtained
for the DNA2 calculation using ϵs = 10−12. The highest value of 2.3
occurs for hBN and ϵs = 10−8. To ensure a fair comparison, the tim-
ings represent a single construction of the exchange matrix. In all
cases, the initial density was taken from a well-converged density
functional theory calculation with the Perdew-Burke-Ernzerhof30

(PBE) exchange-correlation functional. The large spread of the
speed-up can be explained by the number of effectively screened
integrals. For the DNA2 molecule with ϵs = 10−12, only 15% of
all integrals could be identified to be negligible with the multipole
screening, avoiding their evaluation. For the hBN calculation with
ϵs = 10−8, this value increases to 68%, which leads to the correspond-
ingly larger acceleration. The comparison between 0-OME and
1-OME is unambiguous. In all cases, the 1-OME scheme shows a
faster performance. Nevertheless, the difference is only around 1%.

The integral statistics in Fig. 4 show in all cases that almost all
negligible integrals belong to values αs < 100. For higher values of
αs,max, only the number of non-negligible integrals increases steadily.
Consequently, the CPU time does not decrease any further for αs,max
> 100. For DNA2 with ϵs = 10−12, the CPU time actually increases
for αs,max > 100.

Detailed results for several molecules and solid-state systems
are summarized in Table II. In these calculations, the 1-OME scheme
is employed for WS ERIs with αs,max < 100. The obtained speed-up
shows a large spread, ranging from 1.00 to 2.29, which correlates
with the size of the molecule or corresponding solid-state system.
The actual speed-up is in all of the cases below the ratio of inte-
grals evaluated with the pure Schwarz screening and the additional
multipole screening. Possible reasons could be that there is a certain
screening overhead or that the simple proportionality between CPU
time and integral batch does not hold in all of the cases.

Except for the benzene and amylose molecules, the major-
ity of ERIs is WS and the screening scheme identifies more than
94% of the negligible integrals. Hence, a superior integral esti-
mate for well-separated distributions would not lead to significant
improvements over the scheme presented here. The obtained effi-
ciency gain is mainly determined by the number of actually negligi-
ble integrals, whose portion increases for larger systems and looser
thresholds ϵs.

V. CONCLUSIONS
The accurate multipole-based ERI estimate presented here is

easy to evaluate and can be used in any electronic structure calcu-
lations employing local basis sets. It assumes charge distributions
to be well separated, i.e., without direct overlap. The overlap error,
the difference between the true value of the ERI and the result from
the multipole approximation up to infinite order, was studied ana-
lytically and numerically. We could exclude a significant underesti-
mation of particular integrals due to the overlap error in numerical
tests.

We introduced the new multipole-based ERI estimate in
Hartree-Fock calculations as an additional integral screening crite-
rion on top of the Schwarz inequality. The extra number of integrals
filtered out as compared to the pure Schwarz screening was studied
for a variety of systems ranging from molecules to periodic struc-
tures, and the efficiency increase was analyzed. We have shown that

the presented screening correctly identifies more than 90% of the
negligible integrals. The analysis also revealed that the multipole-
based ERI screening is advantageous for large molecules and for
solid-state systems, since in this situation a considerable number of
integrals are excluded by the additional multipole screening.

The proposed estimate is universal and could, in principle, be
used not only for the Fock term, like in this work, but also for
the Hartree term when evaluated with the fast multipole method.
Similarly, the formalism could be exploited in the determination
of energy gradients instead of total energies. Further applications
could be in electronic structure methods treating electron correla-
tion or in local-pair natural-orbital methods, where the multipole
method is used for prescreening of weak32 or for the evaluation of
far-separated8 electron pairs. Another obvious area of application
would be a precise integral evaluation scheme based on the multi-
pole method. It is straightforward to find expressions like Eqs. (24)
and (25), which treat a certain number of multipole moments explic-
itly and provide knowledge about the ERI contribution of higher
multipole moments. This would allow a well controllable integral
evaluation via the multipole expansion. Significant speed-ups for
ERI evaluation can be expected for highly contracted basis func-
tions as well as for basis functions with high angular momentum l.
Such an integral evaluation scheme is already used, however without
accurate error control.8–10
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