
PHYSICAL REVIEW B 97, 125409 (2018)

Plasmon polaritons in cubic lattices of spherical metallic nanoparticles

Simon Lamowski,1,2 Charlie-Ray Mann,3 Felicitas Hellbach,1 Eros Mariani,3 Guillaume Weick,4,* and Fabian Pauly1,2,†
1Department of Physics and Center for Applied Photonics, University of Konstanz, D-78457 Konstanz, Germany

2Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0395, Japan
3School of Physics and Astronomy, University of Exeter, Stocker Rd., Exeter EX4 4QL, United Kingdom

4Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67000 Strasbourg, France

(Received 15 June 2016; revised manuscript received 15 February 2018; published 9 March 2018)

We theoretically investigate plasmon polaritons in cubic lattices of spherical metallic nanoparticles. The
nanoparticles, each supporting triply-degenerate localized surface plasmons, couple through the Coulomb
dipole-dipole interaction, giving rise to collective plasmons that extend over the whole metamaterial. The
latter hybridize with photons forming plasmon polaritons, which are the hybrid light-matter eigenmodes of
the system. We derive general analytical expressions to evaluate both plasmon and plasmon-polariton dispersions
and the corresponding eigenstates. These are obtained within a Hamiltonian formalism, which takes into account
retardation effects in the dipolar interaction between the nanoparticles and considers the dielectric properties
of the nanoparticles as well as their surrounding. Within this model we predict polaritonic splittings in the
near-infrared to the visible range of the electromagnetic spectrum that depend on polarization, lattice symmetry,
and wave-vector direction. Finally, we show that the predictions of our model are in excellent quantitative
agreement with conventional finite-difference frequency-domain simulations, but with the advantages of analytical
insight and significantly reduced computational cost.
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I. INTRODUCTION

Plasmonic metamaterials can be exploited to manipulate
light at subwavelength scales and may be used to tailor optical
properties [1–3]. They consist of meta-atoms with possibly
complicated subwavelength structures that are arranged in a
controlled fashion [4]. Potential applications of such metama-
terials range from optical cloaking over planar hyperlenses to
optical data processing [5,6].

The study of the optical properties of one-dimensional (1D),
two-dimensional (2D), and three-dimensional (3D) arrays of
metallic particles is a very active field of research [7]. In
the past, most theoretical and experimental research has been
focused on 1D and 2D systems, since they are much easier to
fabricate with well-established techniques [3,4]. However, the
development of reliable techniques to control 3D assemblies
of plasmonic nanoparticles is presently making substantial
advances, and such 3D assemblies can now be achieved by
using surface ligands or DNA templates [7–11]. It is thus of
current interest to also understand systematically the structure-
property relationships in 3D crystalline arrangements of meta-
atoms, where, beside the shape and the size of the nanoparticles
themselves, the spacing and the crystal symmetry can be
controlled independently.

The optical properties of a plasmonic metamaterial are
governed in the first instance by those of the individual metallic
nanoparticles [4]. Of primary importance to understand such
optical properties are the localized surface plasmons (LSPs),
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which correspond to collective oscillations of the valence elec-
trons against the ionic background. The resonance frequency
and polarization of the LSP modes are determined by the size,
shape, and material of the nanoparticles.

Classical electrodynamics can be used to understand many
of the optical properties of 1D, 2D, and 3D plasmonic
metamaterials [2,7]. Depending on the distance between the
meta-atoms, two qualitatively different regimes emerge [4]:
In the first regime, the distance between the meta-atoms is
on the order of or larger than the wavelength associated
with the LSP resonance of individual nanoparticles, so that
diffractive far-field interactions between the meta-atoms of
the array can interfere, leading to collective modes termed
surface lattice resonances. In the second, opposite regime, the
meta-atom separation is much smaller than the LSP resonance
wavelength so that near-field interactions are predominant,
yielding collective plasmons that are extended over the whole
metamaterial. In the present paper we concentrate on the latter
regime.

Early studies on the plasmonic properties of near-field-
coupled metallic nanoparticles focused on 1D chains using a
nonretarded model of point dipoles [12–15], followed by fully-
retarded classical approaches applied to 1D [16–25] and 2D
systems [26–30]. Three-dimensional metastructures were also
investigated using more approximate approaches such as the
Maxwell-Garnett effective medium theory [7] or Bruggeman
effective medium theory [31]. In addition to the classical,
typically fully numerical treatments, an analytically tractable
approach based on a Hamiltonian formalism was recently
applied to 1D [32–35], 2D [36–38], and 3D systems [39].

In this paper we study the less explored 3D plasmonic arrays
in the regime of near-field coupling between spherical metallic
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nanoparticles. Spherical particles are chosen in order to focus
on the effects of crystal structure on the optical properties
only. The nature of the modes supported by a plasmonic
metamaterial depends crucially on the dimensionality of the
lattice. For 1D and 2D lattices, the collective plasmons couple
to a continuum of photonic modes with different wave-vector
components along directions where translational symmetry is
absent. However, as it has been pointed out by Hopfield in the
context of exciton polaritons [40], in stark contrast to lower
dimensional systems, collective plasmons in 3D lattices only
couple to photons which conserve crystal momentum due to
the discrete translational symmetry of the system. As a result,
the true eigenmodes of the metamaterial are coherent super-
positions of plasmons and photons, which we call plasmon
polaritons. We study them by means of an analytically tractable
Hamiltonian-based approach, which importantly incorporates
retardation effects.

In what follows we consider 3D lattices of spherical metal-
lic nanoparticles, including simple cubic (sc), face-centered
cubic (fcc), and body-centered cubic (bcc) structures. In the
quasistatic limit [41], each nanoparticle supports a discrete
set of multipolar LSP modes. However, as we consider small
nanoparticles (of some 10 nm in radius), we neglect higher-
order multipolar modes and focus on the fundamental dipolar
LSPs, whose corresponding frequency lies in the visible to
ultraviolet range of the spectrum. In this regime, quantum-
size effects in the optical response of the nanoparticles can
be significant [6]. Due to the spherical symmetry of the
nanoparticles, each dipolar LSP is triply-degenerate with three
polarization degrees of freedom.

We work in the Coulomb gauge [42,43], where the scalar
and vector potentials describe the longitudinal and transverse
components of the electromagnetic field, respectively. The
scalar potential, which depends only on the matter degrees
of freedom, takes the form of the instantaneous Coulomb
interaction between the LSPs. This results in collective plas-
monic modes, which extend across the whole metamaterial.
The effects of retardation are then included in the light-matter
coupling through the interaction of the LSPs with the transverse
vector potential. In this way, transverse photons hybridize
with the collective plasmons to form plasmon polaritons.
We also take into account screening effects from the core
electrons as well as the dielectric medium surrounding the
nanoparticles.

Here, we decisively extend inspiring work of some of the
authors [39]. Although it is stated in Ref. [39] that spherical
metallic nanoparticles are used, these nanoparticles were
assumed to exhibit only one polarization degree of freedom
that was fixed in a given direction. This gives rise to a single
plasmon band, whose polarization does not depend on the
wave vector. In fact this model does not correctly describe
lattices of spherical nanoparticles, but could be used to study
lattices of resonators that have a nondegenerate fundamental
eigenmode, such as plasmonic nanorods. Our treatment fixes
this issue by considering plasmon polaritons which arise from
the hybridization of photons with three plasmonic bands with
wave-vector-dependent polarizations. Furthermore we show
that the model yields plasmon-polariton properties in ex-
cellent agreement with classical electrodynamics simulations
at a much reduced computational cost and at the benefit
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(c) (f)

(b)
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FIG. 1. Conventional unit cells for (a) sc, (b) fcc, and (c) bcc
lattices of spherical metallic nanoparticles of radius rnp with the
primitive lattice parameter a. (d)–(f) Corresponding first Brillouin
zones, where the red lines indicate the paths, over which the plasmon
and plasmon-polariton dispersions are plotted in Figs. 2–4.

of analytical intuition. With our newly developed tools, we
demonstrate that these highly symmetric cubic systems exhibit
polarization-dependent optical properties such as band split-
tings in the near-infrared or visible range of the spectrum. With
the emerging fabrication techniques for 3D metallic nanopar-
ticle lattices, this work is an important step towards accurate
predictions of their polaritonic properties, and the model can
be readily extended to more complex lattices and nanoparticle
shapes.

The paper is organized as follows: In Sec. II we describe our
theoretical model to study plasmon polaritons. The general so-
lution to this model is subsequently presented in Sec. III A. The
resulting dispersion relations of the collective plasmons and
plasmon polaritons for sc, fcc, and bcc lattices are discussed
in Secs. III B and III C, respectively. In Sec. IV, we compare
our predictions to classical electrodynamics simulations. We
finally summarize our results in Sec. V. In the Appendix we
discuss the form of the dielectric tensor that shows a nonlocal
response.

II. MODEL

We consider sc, fcc, and bcc lattices of spherical metallic
nanoparticles separated by a center-to-center distance a be-
tween nearest neighbors, as depicted in Figs. 1(a)–1(c). The
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corresponding first Brillouin zones are shown in Figs. 1(d)–
1(f). We describe the nanoparticles with a Drude-like dielectric
function

εD
r (ω) = εd − ω2

p

ω(ω + iγ D)
, (1)

where ωp is the plasma frequency of the considered (noble)
metal and where the dielectric constant εd takes into account
the screening of the conduction electrons by the d electrons.
In our model we use γ D = 0, but we will explore the effect
of a nonvanishing Drude damping in the finite-difference
frequency-domain (FDFD) calculations, presented in Sec. IV.
The surrounding medium that fills the space between the
nanoparticles is characterized by the dielectric constant εm.
The magnetic permeabilities of the nanoparticles and the
embedding medium are assumed to be equal to the vacuum
permeability. Each nanoparticle in the lattice supports three
degenerate dipolar LSPs polarized in the x, y, or z direction.
They interact with their neighbors through the quasistatic
dipole-dipole interaction

Vdip(R,R′) = 9εm

(εd + 2εm)2

p · p′ − 3(p · n̂)(p′ · n̂)

4πε0|R − R′|3 , (2)

where p and p′ are the dipole moments associated with the
LSPs of the nanoparticles located at the lattice sites R and
R′, respectively, while n̂ = (R − R′)/|R − R′|, and ε0 is the
vacuum permittivity. Here and in what follows, hats denote
unit vectors. In the expression above, the prefactor takes into
account the two dielectric environments and arises from a
model in which each point dipole is located inside a sphere
with dielectric constant εd and separated by a medium with
dielectric constant εm [44]. As we only consider dynamical
degrees of freedom relating to the fundamental dipolar LSPs,
we are thus neglecting any effects of higher-order multipolar
plasmons. This approximation has been shown to be valid for
center-to-center interparticle separations a � 3rnp [13], with
rnp the nanoparticle radius (see Fig. 1). We demonstrate the
validity of this approximation in Sec. IV by comparing our
results to FDFD simulations.

We write the full Hamiltonian of the system as

H = Hpl + Hph + Hpl-ph, (3)

where Hpl and Hph denote the plasmonic and photonic
Hamiltonians, respectively, and where Hpl-ph is the interac-
tion Hamiltonian between both subsystems. In the Coulomb
gauge [42,43], the purely plasmonic Hamiltonian reads
[33,34,36,37,39]

Hpl = h̄ω0

∑
q,σ̂

bσ̂†
q bσ̂

q + h̄�
∑

q,σ̂ ,σ̂ ′
f σ̂ ,σ̂ ′

q

[
bσ̂†

q

(
bσ̂ ′

q + b
σ̂ ′†
−q

)
+ H.c.

]
, (4)

with

f σ̂ ,σ̂ ′
q =

∑
ρ

(a�ρ�ρc)

(
a

ρ

)3 cos (q · ρ)

2

× [δσ̂ σ̂ ′ − 3(σ̂ · ρ̂)(σ̂ ′ · ρ̂)]. (5)

Here, q = q q̂ is the plasmonic wave vector in the first Brillouin
zone. In Eq. (4), bσ̂

q = N−1/2 ∑
R exp (−iq · R)bσ̂

R is defined
as the Fourier transform of the bosonic operator bσ̂

R, which
annihilates an LSP at lattice site R with polarization σ̂ = x̂, ŷ,
or ẑ, where N is the number of unit cells of the metacrystal.
The first term on the right-hand side of Eq. (4) describes the
uncoupled LSPs with Mie frequency [41]

ω0 = ωp√
εd + 2εm

, (6)

while the second one with coupling constant

� = 3εm

2(εd + 2εm)
ω0

( rnp

a

)3
(7)

corresponds to the Coulomb dipole-dipole interaction [cf.
Eq. (2)] between nanoparticles linked by the separation vector
ρ. Crucially, we consider Coulomb interactions up to a large
cutoff distance ρc � a, beyond the nearest-neighbor approxi-
mation that was employed in Ref. [39]. As will be highlighted
later, these long-range Coulomb interactions are critical for
obtaining the correct plasmonic dispersions.

As discussed in detail in Ref. [45], there is a region of
slow convergence of f σ̂ ,σ̂ ′

q around the 
 point [see Eq. (5)].

This stems from discontinuities of f σ̂ ,σ̂ ′
q at q = 0 for ρc →

∞. These discontinuities lead to the Gibbs-Wilbraham phe-
nomenon [46], and the summation in Eq. (5) does not easily
converge with increasing cutoff radius ρc. Thus, for small
wave vectors q < αρ−1

c , with α a real positive number, we
use the correction f σ̂ ,σ̂ ′

q = −2π [δσ̂ σ̂ ′ − 3(σ̂ · q̂)(σ̂ ′ · q̂)]/3ν

for the infinite lattice [45]. It contains the factor ν, which
accounts for the different volumes of the primitive cells
of the considered lattices and equals ν = 1 for sc, ν =
2−1/2 � 0.71 for fcc, and ν = 4/33/2 � 0.77 for bcc lattices,
respectively.

In Eq. (3) the photonic subsystem is described by

Hph =
∑
q,λ̂q

h̄ωph,qc
λ̂q†
q c

λ̂q
q , (8)

where c
λ̂q
q annihilates and c

λ̂q†
q creates a photon with wave vec-

tor q, dispersion ωph,q = cq/
√

εm, and transverse polarization
λ̂q (with λ̂q · q = 0). Here c/

√
εm is the speed of light in the

embedding medium. In the long-wavelength limit qrnp � 1,
the minimal light-matter coupling Hamiltonian in Eq. (3) takes
the form

Hpl-ph = i h̄ω0

∑
q,σ̂ ,λ̂q

σ̂ · λ̂qξq
(
bσ̂†

q c
λ̂q
q + bσ̂†

q c
λ̂q†
−q − H.c.

)

+ h̄ω0

∑
q,λ̂q

ξ 2
q

(
c
λ̂q†
q c

λ̂q
q + c

λ̂q†
q c

λ̂q†
−q + H.c.

)
, (9)

where ξq = [2�π/(νωph,q)]1/2. Since we consider lattice con-
stants a much smaller than the wavelength associated with the
LSP resonances, we neglect Umklapp processes in Eqs. (8) and
(9). However, the model can be readily extended to include
such Umklapp scattering in order to describe metamaterials
with larger lattice constants.

Let us point out that the first term on the right-hand side of
Eq. (9) describes, to second-order in perturbation theory, the
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exchange of virtual photons among the nanoparticles of the
lattice [43]. Such a term therefore incorporates the retardation
effects in the dipolar coupling between the LSPs.

III. RESULTS AND DISCUSSION

A. General solution

The full Hamiltonian (3), representing collective plas-
mons strongly coupled to photons, can be diagonalized by

introducing the bosonic operator

η
τ̂q
q =

∑
σ̂

(
u

τ̂q,σ̂
q bσ̂

q +v
τ̂q,σ̂
q b

σ̂†
−q

)+∑
λ̂q

(
m

τ̂q,λ̂q
q c

λ̂q
q + n

τ̂q,λ̂q
q c

λ̂q†
−q

)
,

(10)

which annihilates a plasmon polariton with wave vector q and
polarization τ̂q, the latter being generally not aligned with the
σ̂ axis. Imposing that the operator in Eq. (10) and its adjoint
diagonalize the Hamiltonian (3) as

H =
∑
q,τ̂q

h̄ω
τ̂q
pp,qη

τ̂q†
q η

τ̂q
q , (11)

the Heisenberg equation of motion [η
τ̂q
q ,H ] = h̄ω

τ̂q
pp,qη

τ̂q
q leads to the 10 × 10 eigensystem

⎛
⎜⎜⎜⎜⎜⎜⎝

ω013 + 2�Fq −2�Fq −iω0ξqPq iω0ξqPq

2�Fq −(ω013 + 2�Fq) iω0ξqPq −iω0ξqPq

iω0ξqP
	
q iω0ξqP

	
q

(
ωph,q + 2ω0ξ

2
q

)
12 −2ω0ξ

2
q12

iω0ξqP
	
q iω0ξqP

	
q 2ω0ξ

2
q12 −(

ωph,q + 2ω0ξ
2
q

)
12

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

uτ̂q
q

vτ̂q
q

mτ̂q
q

nτ̂q
q

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= ω
τ̂q
pp,q

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

uτ̂q
q

vτ̂q
q

mτ̂q
q

nτ̂q
q

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (12)

where the vectors uτ̂q
q , vτ̂q

q , mτ̂q
q , and nτ̂q

q consist of u
τ̂q,σ̂
q ,

v
τ̂q,σ̂
q , m

τ̂q,λ̂q
q , and n

τ̂q,λ̂q
q , respectively, as defined in Eq. (10).

In Eq. (12), 1n stands for the n × n identity matrix, the 3 × 3
symmetric matrix Fq is defined by its elements f σ̂ ,σ̂ ′

q as given
in Eq. (5), while the 3 × 2 matrix Pq is introduced as

Pq =

⎛
⎜⎜⎝

x̂ · λ̂1,q x̂ · λ̂2,q

ŷ · λ̂1,q ŷ · λ̂2,q

ẑ · λ̂1,q ẑ · λ̂2,q

⎞
⎟⎟⎠, (13)

and P 	
q represents its transpose. Here, the two

photon polarizations can be parameterized, e.g., as
λ̂1,q = ẑ × q̂/|ẑ × q̂| and λ̂2,q = q̂ × λ̂1,q/|q̂ × λ̂1,q|
for q̂ ∦ ẑ, while for q̂ = ẑ, we choose λ̂1,q = x̂ and
λ̂2,q = ŷ.

We note that the plasmon-polariton eigenfrequencies ω
τ̂q
pp,q

arising from the eigensystem (12) occur in pairs of positive and
negative eigenvalues. Below, we will focus on the physically
relevant, positive solutions.

If not stated otherwise, we will use an interparticle distance
a = 3rnp, a cutoff radius ρc = 150a, and α = 10. We have
checked that the latter choices provide numerically-converged
results for the collective plasmon and plasmon-polariton dis-
persions, presented in the next subsections.

B. Collective plasmons

Before considering the fully coupled system, represented
by the Hamiltonian (3), it is instructive to analyze in detail
the purely plasmonic problem described by Hpl in Eq. (4).
We will therefore set the light-matter coupling to zero in this

subsection. In this way, plasmon properties are computed in
the quasistatic limit, neglecting all retardation effects.

Setting ξq = 0, the matrix defined in Eq. (12) becomes
block diagonal. On one hand, the lower 4 × 4 block is diagonal
and corresponds to the two degenerate photon branches with
dispersion ωph,q for the two positive eigenvalues. The three
positive eigenvalues of the upper 6 × 6 block, on the other
hand, yield the collective plasmon dispersion ω

τ̂q

pl,q, which is
represented in Fig. 2 as a function of wave vector q along the
red paths given in Figs. 1(d)–1(f) for the sc [Fig. 2(a)], fcc
[Fig. 2(b)], and bcc [Fig. 2(c)] lattices. In the figure we use
εd = 5.6, as determined for silver films [47,48], and εm = 4,
mimicking an embedding medium made of glass or polymer.
In Fig. 2 we also show the collective plasmon-polarization
angle φ

τ̂q

pl,q = arccos (|τ̂q · q̂|), where we choose τ̂q = û
τ̂q
q .

Notice that the alternative choice τ̂q = v̂
τ̂q
q leads to the same

polarization angle, as the vectors uτ̂q
q and vτ̂q

q are proportional

for a given wave vector q. With the above definition of φ
τ̂q

pl,q,
longitudinal collective plasmons, which do not couple to light,
have a polarization angle φ

τ̂q

pl,q = 0 (black lines in Fig. 2), while
purely transverse modes have a corresponding polarization
φ

τ̂q

pl,q = π/2 (yellow lines in Fig. 2).
Our results in Fig. 2 indicate that there are two purely

transverse collective plasmons and one purely longitudinal one
along the high-symmetry axes in the first Brillouin zone [i.e.,
axes with two- to fourfold rotational symmetry, see Figs. 1(d)–
1(f)]. For less symmetric axes the collective modes can be of
a mixed type [see, e.g., the XM and MR lines in Fig. 2(a)].
Moreover, along three- and fourfold symmetry axes, the two
transverse modes are degenerate [see, e.g., the
R and
X lines
in Fig. 2(a)]. This is a manifestation of Neumann’s principle
[49]: For the collective plasmon dispersion this enforces the
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M Γ X M R Γ

0.9

1.0

1.1

1.2
ω

τ̂ q p
l,
q
/ω

0

sc
(a)

K Γ X W L Γ

0.9

1.0

1.1

1.2

ω
τ̂ q p
l ,
q
/ω

0 fcc

(b)

N Γ H N P Γ

0.9

1.0

1.1

1.2

ω
τ̂ q p
l,
q
/ω

0 bcc

(c)

0 π/8 π/4 3π/8 π/2

φ
τ̂q

pl,q

FIG. 2. Collective plasmon dispersion ω
τ̂q
pl,q in units of the LSP

frequency ω0 along the paths shown in red in Figs. 1(d)–1(f) for the
(a) sc, (b) fcc, and (c) bcc lattices. The color code corresponds to
the collective plasmon-polarization angle φ

τ̂q
pl,q, which equals 0 (π/2)

for purely longitudinal (transverse) plasmons. In the figure we use
a = 3rnp, ρc = 150a, and α = 10 for the colored thick lines, while
in panel (a) we choose ρc = a and α = 0 for the gray thin lines,
corresponding to nearest-neighbor interactions only [cf. Eq. (15)]. In
all cases the dielectric constants are set to εd = 5.6 and εm = 4.

degeneracy of the transverse modes for the three- and fourfold
symmetry lines. The latter degeneracy is lifted for wave-vector
directions with lower symmetry. We also note that one would
expect the longitudinal and transverse plasmon modes to be
degenerate at the
 point since the latter has the full point-group
symmetry of the lattice. As we will see later, there is a radiative
correction from the light-matter interaction Hamiltonian (9)
that enforces this degeneracy in the polariton spectrum.

Before we move on to the discussion of the fully coupled
system, a comment is in order about the importance of the
dipole-dipole interaction beyond nearest neighbors for the
collective plasmon dispersion. In Fig. 2(a) we represent by thin
gray lines the plasmon dispersion of the sc lattice, including
nearest-neighbor interactions only. (Note that we do not correct
for the Wilbraham-Gibbs phenomenon around the 
 point in
this case, i.e., we use α = 0.) Under these conditions, the
matrix Fq is diagonal, and its elements read

f σ̂ ,σ̂ ′
q = δσ̂ σ̂ ′

∑
σ̂ ′′=x̂,ŷ,ẑ

(1 − 3δσ̂ σ̂ ′′) cos (aσ̂ ′′ · q). (14)

The plasmonic Hamiltonian (4) is therefore separable into x̂, ŷ,
and ẑ directions and can be diagonalized analytically, yielding

ωσ̂
pl,q = ω0

√
1 + 4

�

ω0
f

σ̂ ,σ̂
q . (15)

This result and the corresponding coefficients of the Bogoli-
ubov transformation (10), which we do not report explicitly
here, coincide with those found in Ref. [39] for LSP polar-
izations along x̂, ŷ, or ẑ and εm = εd = 1. As can be seen
in Fig. 2(a), including the dipole-dipole interactions beyond
nearest neighbors can have a qualitative effect on the collective
plasmon dispersion, most noticeably around the 
 point. They
further lift the degeneracy between plasmon branches, e.g.,
along the 
M and 
R directions. In other regions of the first
Brillouin zone the difference between the full dispersion and
those from nearest neighbors only is less significant.

C. Plasmon polaritons

We now consider the fully coupled system, represented
by the eigensystem (12), and numerically solve for its five
positive eigenvalues. These eigenvalues yield the plasmon-
polariton spectrum ω

τ̂q
pp,q, which is shown by solid lines in

Fig. 3 for the sc [Figs. 3(a)–3(c)], fcc [Figs. 3(d)–3(f)], and
bcc lattices [Figs. 3(g)–3(i)] along twofold [Figs. 3(a), 3(d),
and 3(g)], threefold [Figs. 3(b), 3(e), and 3(h)], and fourfold
symmetry axes [Figs. 3(c), 3(f), and 3(i)], cf. Figs. 1(d)–1(f).
Along the high symmetry axes of the first Brillouin zone, the
five modes split up into four polaritonic branches (colored
solid lines) and one purely longitudinal collective plasmon,
which does not couple to transverse photons (black lines). The
four polaritonic modes result from the coupling of transverse
collective plasmons (see Fig. 2) to photons, whose dispersion
relation is shown by dashed lines in Fig. 3. According to
the construction of our effective model and the nature of the
Coulomb gauge, retardation effects are taken into account for
all plasmon-polariton branches, where photons and plasmons
interact via Eq. (9).

As can be inferred from Fig. 3, there are two high-
energy polaritonic branches (orange solid lines) and two low-
energy ones (green solid lines). The two high-energy branches
are nearly degenerate. The low-energy polaritonic branches,
shown by green solid lines in Fig. 3, have the same twofold
degeneracy along threefold and fourfold symmetry axes as
the collective plasmon dispersion (compare with Fig. 2) and
the light-matter interaction does not lift this degeneracy. As
mentioned previously, there is a radiative correction to the
transverse plasmonic modes at the 
 point, which is equal to
the longitudinal-transverse splitting observed in the plasmonic
spectrum (Fig. 2). As a result, one observes that the longitudinal
and transverse high-energy polaritonic branches are degenerate
at the 
 point (Fig. 3), as required by symmetry.

For wave vectors close to the edge of the first Brillouin
zone the high-energy polaritonic branches (orange solid lines
in Fig. 3) asymptotically approach the light cone, while the
low-energy ones (green solid lines in the figure) tend to the
collective plasmon dispersion. For q → 0 (i.e., close to the 


point), the states corresponding to the low-energy branches
are mostly photonlike, with a renormalized group velocity,
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FIG. 3. Solid lines: plasmon-polariton dispersion ω
τ̂q
pp,q in units of the LSP frequency ω0 for the (a)–(c) sc, (d)–(f) fcc, and (g)–(i) bcc

lattices along the (a),(d),(g) twofold, (b),(e),(h) threefold, and (c),(f),(i) fourfold symmetry axes, shown in Fig. 1. Dashed gray lines: free photon
dispersion ωph,q. The parameters used in the figure are a = 3rnp, ρc = 150a, α = 10, ω0rnp/c = 0.237, εd = 5.6, and εm = 4.

which is smaller than c/
√

εm, indicating an effective index of
refraction larger than

√
εm. However, the high-energy branches

do not tend to the values displayed in Fig. 2 at the 
 point due to
the strong coupling between collective plasmons and photons
[cf. Eq. (9)]. This results in a splitting between the low- and
high-energy polaritonic branches. We define this polaritonic
splitting �q̂ as the frequency difference between the minimum
of the high-energy polaritonic branches and the maximum of
the lower branches over all wave vectors q in the first Brillouin
zone along a fixed direction q̂ from the 
 point.

As can be seen in Fig. 3 for εd = 5.6 and εm = 4, the
polaritonic splitting reaches values of the order of 25% of the
LSP resonance frequency ω0. For noble-metal nanoparticles
the latter typically lies in the visible to ultraviolet range
(ω0 � 2–4 eV/h̄), resulting in a splitting of about �q̂ � 0.5–
1.0 eV/h̄. The splitting in the polaritonic dispersion has im-
portant experimental consequences for the optical properties
of the metamaterial. Indeed, along a certain direction q̂ in
the Brillouin zone, no plasmon polariton can propagate for
frequencies within the band gap, so that the reflectivity of the
metacrystal should be perfect. We would like to emphasize
that the physical origin of these band gaps is entirely different
from those emerging in conventional photonic crystals which
are the result of Bragg scattering [50]. In fact, we neglect
Umklapp processes and therefore the band gaps emerge as
a result of polaritonic hybridization between Mie resonances
and photons.

Interestingly, the polaritonic splitting depends on the polar-
ization for the twofold symmetry axes of the three cubic lattices
[see Figs. 3(a), 3(d), and 3(g)]. This birefringence is directly re-

lated to the polarization dependence of the collective plasmon
dispersion, the latter being due to the anisotropic nature of the
dipole-dipole interaction between the nanoparticles composing
the metamaterial. The modulation of the band splitting can be
rather significant for the sc and fcc lattices (around 12% of ω0),
while for the bcc lattice it is comparatively less (around 3% of
ω0). In the following, we will refer to the modulation of �q̂

for different polarizations as δq̂ .
Let us now discuss the dependence of the plasmon-polariton

dispersions on the dielectric constants εd and εm for the twofold
symmetry axes, as shown in Fig. 4. To simplify the discussion,
we keep the Mie frequency ω0 constant in Figs. 4(a) and 4(b)
by adjusting ωp, while the Mie frequency is varied in Fig. 4(c).
As indicated in Fig. 4(a), an increase in the screening of the
core electrons decreases the polaritonic splitting and leads to a
corresponding flattening of the longitudinal plasmon branch.
The smaller splitting can be understood by noting that the
coupling constant � ∝ 1/(2 + εd/εm) in the plasmonic part
[see Eq. (7)] decreases with increasing εd. The dependence
of the polaritonic dispersion on the dielectric constant of the
surrounding medium εm is more complex, as displayed in
Fig. 4(b). An increasing εm reduces the effective speed of
light in the medium. Hence, this reduces the slope of the
low-energy polaritonic branches around the 
 point, while
the slope of the high-energy polaritonic branches is modified
away from the 
 point. Furthermore, with increasing εm a
larger polaritonic splitting �q̂ as well as increased modulation
δq̂ between the low-energy polaritonic branches of different
polarization is observed. We attribute this to two factors.
Most importantly the coupling constant � increases with
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FIG. 4. Plasmon-polariton dispersions for various values of the
dielectric constants εd and εm. The lines present the results of our
Hamiltonian approach [see Eq. (12)] and the symbols those found
as solutions in FDFD simulations. Solid and dashed lines: plasmon-
polariton dispersions ω

τ̂q
pp,q in units of the LSP frequency ω0 for the sc

lattice along the twofold symmetry axis (see Fig. 1). Dotted gray lines:
free photon dispersions ωph,q. The parameters for the Hamiltonian
approach are a = 3rnp, α = 10, and ρc = 150a, while we choose
rnp = 10 nm and a = 3rnp in the FDFD calculations. In panels (a) and
(b) the LSP frequency ω0rnp/c = 0.177 [see Eq. (6)] is kept constant,
while in panel (c) ωp = 9.6 eV/h̄ is constant. All other parameters are
indicated in the respective panels. In the FDFD calculations presented
in panel (c), we choose a finite Drude damping γ D [47], and plot
the calculated imaginary parts of the eigenfrequencies, i.e., damping
rates, as error bars.

increasing εm, and thus the related band splittings get larger. An
increasing εm also enhances the plasmon-photon coupling as
ξq ∝ ε

1/4
m /(2 + εd/εm)1/2 [see Eq. (9)], but the effect of ξq on

the polaritonic dispersion is not easily quantified. In Fig. 4(c)
the plasma frequency ωp is fixed to the value of silver films
[47,48], while the dielectric constant εm of the medium is
varied. In this case, we observe similar effects as in Fig. 4(b).

We note that for certain high-symmetry axes it is possible to
derive analytic expressions for the components of the dielectric
tensor of the metamaterial, as we show in the Appendix. Their
dependencies on the wave vector and frequency indicate a
nonlocal behavior of the metamaterial in space and time.

The experimental observability of the band splittings �q̂

and of their polarization-dependent modulation δq̂ , discussed
above, may be hindered by damping mechanisms, leading to
the decay of the plasmon polaritons. The latter are mostly
subject to two sources of damping: Ohmic (absorption) losses
with decay rate γ D inherent to any type of metallic nanos-
tructure [see Eq. (1)], and Landau damping with decay rate
γ L, i.e., the decay of the plasmon excitation into electron-hole
pairs [41,51]. Note that radiation damping is irrelevant for the
infinite metacrystals considered here since there is no photonic
continuum into which the plasmons can decay. Ohmic losses
were experimentally estimated to be of the order of γ D �
24 meV/h̄ for bulk silver [47]. Moreover, it has been shown that
Landau damping only weakly depends on the dipole-dipole
interaction [33,34,52], so that we estimate it with the Landau
damping of a single nanoparticle. This yields γ L = 3vFg/4rnp,
where vF is the Fermi velocity and g is a numerical factor of
the order of 1 [41,51,53,54]. For Ag nanoparticles, we obtain
h̄γ L � 690 meV/rnp[nm]. For the nanoparticle radii that we
consider (typically of the order of 10 nm), the total linewidth
of the plasmon-polariton band structure is therefore of the order
of γ D + γ L � 100 meV/h̄. For this reason the splittings in the
plasmon-polariton dispersion �q̂ , as well as their polarization
dependence δq̂ for certain directions in the first Brillouin zone,
should be experimentally accessible.

IV. COMPARISON TO CLASSICAL ELECTRODYNAMICS
SIMULATIONS

To validate the predictions of our Hamiltonian approach
presented in the preceding section, we compare them here
to calculations based on classical electrodynamics. FDFD
simulations are carried out with the electromagnetic wave
module of the COMSOL MULTIPHYSICS package with the
eigenfrequency solver. We numerically search for solutions
to the eigenequation

∇ × [∇ × E(r,ω)] −
(ω

c

)2
εr(r,ω)E(r,ω) = 0, (16)

where E(r,ω) corresponds to the electric field at position r and
frequency ω, and where εr(r,ω) characterizes the dielectric
properties of the metamaterial. We consider an infinite, sc
lattice with a lattice constant of 30 nm, which allows us
to simplify the numerical calculations by applying Floquet
periodicity on the faces of a unit cell for the electric and
magnetic fields. We choose nanoparticles of radius 10 nm and
model them using the Drude dielectric function of Eq. (1),
while in the embedding medium εr(r,ω) = εm. Note that since
we use the eigenvalue solver in COMSOL, we do not insert a
driving source into the system. The meshes on three surfaces of
the cubic cell are of a free triangular type. They are copied to the
opposite side to be compatible with the Floquet periodicity. The
cubic cell is filled with an automatically-generated tetrahedral
mesh, and the parameters utilized for generating the triangular
and tetrahedral meshes are listed in Table I.
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TABLE I. Parameters of the triangular and tetrahedral meshes
used in the COMSOL simulations.

Maximum element size 2.4 nm
Minimum element size 0.3 nm
Maximum element growth rate 1.45
Curvature factor 0.5
Resolution of narrow regions 0.6
Geometry scaling 1
Adaptive mesh refinement Not used

The results of the FDFD calculations for the low-energy
polaritonic branches are summarized with symbols in Fig. 4. As
for the Hamiltonian approach, parameters in Figs. 4(a) and 4(b)
are adjusted to give the same Mie frequency ω0 = 3.48 eV/h̄

for the nanoparticles. In Fig. 4(c) we keep ωp and εd constant,
varying εm and exploring the influence of a finite Drude
damping γ D, which is not contained in our Hamiltonian-based
model. The parameters ωp and γ D are chosen as specified
for silver in Ref. [47]. We find an excellent agreement of
the FDFD simulations with the predictions of our effective
model in all cases, confirming its validity. To avoid repetition,
we refrain from discussing in further detail the results of the
FDFD calculations in Figs. 4(a) and 4(b), but concentrate on
the new aspect due to the inclusion of a finite damping in
Fig. 4(c). There, the imaginary part of the eigenfrequencies,
which can be interpreted as the linewidth broadening due to
Ohmic losses, is represented by error bars. We find a general
trend of an increased damping with increasing wave vector.
Since the broadenings turn out to have nearly no influence
on the polaritonic dispersion relations, our model reproduces
the dispersions with great accuracy. The small redshift of the
FDFD calculations with respect to our model can be understood
by the fact that we neglect Umklapp scattering and higher-order
multipolar bands, which would push the bands downward in
energy. Even if a wave-vector-independent broadening γ L due
to Landau damping would be added, which we argued to be
actually larger than the broadening due to Ohmic losses (see
the discussion in Sec. III C), the polarization-dependent band
gap modulation δq̂ should still be observable.

With the distribution of the electric field available in the
COMSOL package, we can check the polarization direction
that our Hamiltonian approach predicts for the sc lattice. Along
the 
M direction with q̂ = (x̂ + ŷ)/

√
2 [see Figs. 1(d) and 4]

we find that the lowest-energy transverse plasmon-polariton
branch exhibits a polarization τ̂q parallel to the ẑ axis, while
the second lowest-energy one exhibits a polarization τ̂q parallel
to ŷ − x̂. This is indeed confirmed by the FDFD calculations
for all the parameter sets tested in Fig. 4. An example of
the field distributions is given in Figs. 5(a) and 5(b). For
different lengths of the reciprocal wave vectors q, these modes
change in details like the field distribution in the middle
of the nanoparticle or the calculated field strength, but the
polarization directions and the overall dumbbell shape remain
the same.

We would like to highlight some difficulties in obtaining
the polariton dispersions using FDFD calculations. As we are
trying to solve a nonlinear equation in 3D, the solver also
converges on many unphysical solutions where the electric

x

y |E
| [

V
/n

m
]

y

z

FIG. 5. (a),(b) Density plots for the distribution of the electric field
of the low-energy transverse polaritonic modes, shown on a plane
cutting through the center of the primitive cell. These distributions
are calculated at q = 0.49π (x̂ + ŷ)/a in the direction of the twofold
symmetry axis, using the parameters rnp = 10 nm, a = 3rnp, εd = 5.6,
εm = 1, ωp = 9.6 eV/h̄, and γ D = 22.8 meV/h̄ [47]. The dipolar
modes exhibit a polarization oriented in the (a) ŷ − x̂ and (b) ẑ

directions.

field is, e.g., concentrated in a single spot or exhibits a
random-looking distribution. As a result, one has to manually
inspect the field profile of the eigenmodes, discarding the
artificial solutions and retaining only those with a dipolarlike
character, such as the ones shown in Fig. 5. Also, the starting
and linearization points for the eigenfrequency search were
varied for the different calculations, and we checked that they
had negligible effect on the real part of the eigenfrequency.
However, we find that the imaginary part is less robust and
changes with distance of the real part of the eigenfrequency
from the linearization point. For this reason, we took care that
the linearization points were located close to the respective
eigenfrequencies at each wave vector.

Furthermore, in the discussion above, we have focused on
the low-energy polariton branches which show the interesting
polarization-dependent band splittings. However, at higher
frequencies one can also find, in addition to the longitudinal
branch, many polaritonic branches which arise from multipolar
plasmon modes.

The excellent agreement of plasmon-polariton dispersions
predicted by our Hamiltonian-based model with those of the
FDFD simulations shows that higher multipolar modes beyond
the considered dipolar interactions as well as intraparticle
retardation effects are irrelevant in the studied parameter
regime. In addition, we want to point out that the computational
costs of our Hamiltonian approach are only a fraction of
those of the COMSOL simulations and avoid the cumbersome
problems related to the convergence to unphysical solutions.
Our Hamiltonian-based approach is thus an efficient way to
quantitatively predict the response of metacrystals in the near-
field regime, when meta-atom separations are much smaller
than the LSP resonance wavelength, i.e., ω0a/c � 1.

V. CONCLUSIONS

In this paper we have theoretically studied plasmon po-
laritons in sc, fcc, and bcc lattices of spherical metallic
nanoparticles. We have developed a model based on a quantum-
mechanical Hamiltonian, justified for small nanoparticles (i.e.,
with a radius between ca. 1 and 20 nm) in the near-field
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dipolar regime. The dipole-dipole interaction between the
nanoparticles leads to collective plasmons, which are delo-
calized over the metacrystal. The strong coupling of these
collective plasmons to photons results in the formation of
plasmon polaritons.

Our model readily incorporates retardation effects and
considers the dielectric properties of the nanoparticles and of
the medium in which they are embedded. This has enabled us to
derive semianalytical expressions, which determine collective
plasmon dispersions, plasmon-polariton dispersions, and their
corresponding polarization dependence, and we have analyzed
these aspects in detail for the three cubic lattices. We have
discussed the influence of the dielectric screening due to
core electrons of the nanoparticles and due to the embedding
medium on these optical properties. Specifically, we have
shown that the polaritonic dispersions present band splittings
in the near-infrared to the visible range of the spectrum
for all three cubic lattices and for all high-symmetry axes
starting from the center of the first Brillouin zone. Remarkably,
for special directions in the reciprocal space the polaritonic
splitting depends on the polarization, suggesting the possibility
to realize a birefringent metacrystal, despite the high degree
of cubic symmetry of the latter. By comparing our model to
classical electrodynamics simulations, we have shown that
it is in quantitative agreement at much reduced computa-
tional costs. This robustness emphasizes that the predicted
polarization-dependent band dispersions and band splittings
should be observable.
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APPENDIX: DIELECTRIC TENSOR

In this Appendix, we show that our model of interacting
plasmonic nanoparticles leads to a nonlocal, dispersive re-
sponse. The dielectric tensor of the metamaterial is calculated
explicitly for a special, analytically tractable case and is found
to depend on both the wave vector and the frequency.

We consider the sc crystal and assume q = qx̂. In this case,
the matrix Fq is diagonal and f x̂,x̂

q �= f
ŷ,ŷ
q = f ẑ,ẑ

q . Further-
more, the choice of q results in a sparse matrix Pq with the

only nonvanishing components being P
ŷ,λ̂1,q
q = P

ẑ,λ̂2,q
q . Hence

the matrix on the left-hand side of Eq. (12), which we now call
Mq, can be reordered into a block-diagonal form with block
matrices Mx,q �= My,q = Mz,q, which read

Mx,q =
(

ω0 + 2�f x̂,x̂
q −2�f x̂,x̂

q

2�f x̂,x̂
q −ω0 − 2�f x̂,x̂

q

)
(A1)

and

My,q =

⎛
⎜⎜⎜⎜⎝

ω0 + 2�f
ŷ,ŷ
q −2�f

ŷ,ŷ
q −iω0ξq iω0ξq

2�f
ŷ,ŷ
q −ω0 − 2�f

ŷ,ŷ
q iω0ξq −iω0ξq

iω0ξq iω0ξq ωph,q + 2ω0ξ
2
q −2ω0ξ

2
q

iω0ξq iω0ξq 2ω0ξ
2
q −ωph,q − 2ω0ξ

2
q .

⎞
⎟⎟⎟⎟⎠. (A2)

The matrix Mx,q leads to the longitudinal plasmon, which
does not couple to light within our model. For this reason, we
concentrate on the transverse components. We follow Hopfield
[40] to find an expression for the transverse components
of the dielectric tensor of the metamaterial ε

ŷ,ŷ
meta(q,ω) =

ε
ẑ,ẑ
meta(q,ω). For this purpose, we calculate det (My,q − ω214) =

0 and substitute the definition of the dielectric function
c2q2 = ε

ŷŷ
meta(q,ω)ω2 in the resulting expressions. Solving for

ε
ŷŷ
meta(q,ω) and exploiting the plasmonic dispersion relation

(ωŷ

pl,q)2 = ω2
0 + 4�ω0f

ŷ,ŷ
q finally yields

ε
ŷŷ
meta(q,ω) = εm

[
1 + 8π�ω0(

ω
ŷ

pl,q

)2 − ω2

]
. (A3)

Equation (A3) is the same expression as Eq. (21) in Ref. [39]
for εm = εd = 1 and for the respective polarization of the
collective plasmon, but we consider here the dipole-dipole
interaction beyond the nearest-neighbor limit.
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