
PHYSICAL REVIEW B 96, 205405 (2017)

Thermal conductance of metallic atomic-size contacts:
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Motivated by recent experiments [Science 355, 1192 (2017); Nat. Nanotechnol. 12, 430 (2017)], we present
here an extensive theoretical analysis of the thermal conductance of atomic-size contacts made of three different
metals, namely gold (Au), platinum (Pt), and aluminum (Al). The main goal of this work is to elucidate the
role of phonons in the thermal transport through these atomic contacts as well as to study the validity of the
Wiedemann-Franz law, which relates the electrical and the thermal conductance. For this purpose, we have
employed two different custom-developed theoretical approaches. The first one is a transport method based on
density functional theory (DFT) that allows one to accurately compute the contributions of both electrons and
phonons to the thermal transport in few-atom-thick contacts. The second technique is based on a combination of
classical molecular dynamics (MD) simulations and a tight-binding model that enables the efficient calculation
of the electronic contribution to the thermal conductance of atomic contacts of larger size. Our DFT-based
calculations show that the thermal conductance of few-atom contacts of Au and Pt is dominated by electrons,
with phonons giving a contribution typically below 10% of the total thermal conductance, depending on the
contact geometry. For these two metals we find that the small deviations from the Wiedemann-Franz law,
reported experimentally, largely stem from phonons. In the case of Al contacts we predict that the phononic
contribution can be considerably larger with up to 40% of the total thermal conductance. We show that these
differences in the phononic contribution across metals originate mainly from their distinct Debye energies. On the
other hand, our MD-based calculations demonstrate that the electronic contribution to the thermal conductance
follows very closely the Wiedemann-Franz law, irrespective of the material and the contact size. Finally, the
ensemble of our results consistently shows that the reported observation of quantized thermal transport at room
temperature is restricted to few-atom contacts of Au, a monovalent metal in which the transport is dominated
by the s valence orbitals. In the case of multivalent metals like Pt and Al this quantization is statistically absent
due to the fact that additional orbitals contribute to the transport with conduction channels that have intermediate
transmissions between 0 and 1, even in the case of single-atom contacts.
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I. INTRODUCTION

The advent of experimental techniques like the scanning
tunneling microscope and the mechanically controllable break
junctions made it possible in the early 1990s to fabricate
metallic atomic-size contacts all the way down to single-
atom junctions and even chains of atoms [1,2]. This paved
the way for investigating a large variety of charge and
energy transport properties in these atomic contacts such as
electrical conductance [3,4], shot noise [5–8], photocurrent
[9–12], thermopower [13–16], and Joule heating [17,18],
just to mention a few. The mean free path for electrons
and phonons is larger than the characteristic dimensions
of atomic contacts [19], even at room temperature, and all
the transport properties of these nanowires are therefore
dominated by quantum mechanical effects. For this reason,
metallic atomic-size contacts have become an ideal playground
to test basic quantum theories of charge and energy transport at
the nanoscale. In fact, one can safely say that no other system
has contributed so decisively to firmly establish the quantum
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coherent transport picture put forward by Landauer, Büttiker,
Imry, and others [1,2,20–22].

Until recently, there was a basic transport property that had
not been experimentally investigated in metallic atomic-size
contacts, namely the thermal conductance. This situation has
now changed, and two experimental groups have finally been
able to independently explore the thermal transport in atomic
contacts [23,24]. In particular, Cui et al. [23] were able to
measure the room-temperature thermal conductance of both
Au and Pt contacts and found that in the case of Au single-atom
contacts the thermal conductance is quantized in units of the
universal thermal conductance quantum κ0 = π2k2

BT/(3h),
where T is the absolute temperature. Before this, thermal
conductance quantization had already been reported in a
series of experiments, making use of different microdevices,
where the heat was carried by phonons, electrons, or photons
[25–29]. But in all cases sub-Kelvin temperatures were a
necessary prerequisite for the observation of this quantum
phenomenon. Thus, the results of Cui et al. [23] constitute
the first observation of quantized thermal transport at room
temperature and demonstrate the potential of these atomic
contacts to reveal novel quantum effects in thermal transport.
The experiments of Ref. [23] also show that the thermal
conductance of Pt atomic-size contacts is not quantized, which
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is indeed expected in view of the fundamentally different
electronic structure of this metal as compared to Au.

Another important observation of Refs. [23,24] was that
the thermal conductance of atomic contacts follows closely
the Wiedemann-Franz law, irrespective of the material and the
contact size. This law establishes that the thermal conductance
of a metal, where the heat transport is dominated by electrons,
is simply proportional to its electrical conductance. The
relation is known to be approximately fulfilled in macroscopic
metallic wires made of standard metals, and in this case it can
be explained with the help of the semiclassical Boltzmann
transport equation [30]. For nanoscale devices, where the
transport is fully coherent, the validity of the Wiedemann-
Franz law requires two things: (i) The electronic transmission
function must be rather smooth around the Fermi energy in
an energy window of the thermal broadening kBT [2,31,32],
and (ii) the thermal transport must be largely dominated by
electrons [33]. The first condition is indeed expected to be met
by metallic atomic-size contacts, irrespective of the material
and the contact size, as shown by numerous investigations
of the conductance [1] and thermopower [13,15] of these
nanowires. The second condition, which is also necessary for
the observation of quantized thermal transport in Ref. [23],
is by no means trivial. It is well known that the thermal
conductance of macroscopic metallic wires is largely domi-
nated by electrons, with the phonons giving a contribution that
amounts to only a few percent of the total thermal conductivity
[34]. However, when going from the macro- to the nanoscale,
the phonon transport mechanism changes from incoherent to
coherent, and it is not obvious a priori, whether the phonon
contribution to the thermal transport of metallic atomic-size
contacts is actually negligible. In fact, Refs. [23,24] reported
slight deviations from the Wiedemann-Franz law that were
actually attributed to the contribution of phonons and possibly
to a small one of photons (thermal radiation) [23]. In this
respect, we already showed in Ref. [23] that the contribution
of the phonons to the thermal conductance of Au single-atom
contacts is only around 5% of the total one, which explains
the validity of the Wiedemann-Franz law and, in turn, the
observation of quantized transport in these contacts. The main
goal of this work is to provide a comprehensive analysis of the
phonon transport in metallic atomic-size contacts made not
only of Au, but also of other relevant metals like Pt and Al.

In this work we aim at elucidating the magnitude of the
phonon contribution to the thermal conductance of metallic
atomic-size contacts and to shed light on to what extent the
Wiedemann-Franz law is expected to be fulfilled. For this
purpose we have made use of different custom-designed the-
oretical techniques to describe the thermal transport in atomic
junctions. In particular we have employed a full ab initio,
DFT-based transport method to compute the contributions of
both electrons and phonons to the thermal conductance of
atomic contacts made of Au, Pt, and Al. Our calculations show
that, depending on the contact size and the exact geometry,
the phonons contribute by about 5%–10% to the total room-
temperature thermal conductance of Au and Pt contacts, which
explains the small deviations from the Wiedemann-Franz law
observed in Ref. [23]. Aluminum is a light metal with a high
Debye energy of about 40 meV as opposed to the 20 and 25
meV of Au and Pt, respectively. In this case we calculate that

the phonons can constitute up to 40% of the total thermal
conductance contribution, depending on the geometry. These
results show that phonons can in general not be ignored in the
analysis of the thermal transport through metallic atomic-size
contacts, especially for light metals. This is at variance with
the case of macroscopic metallic wires [34].

In addition we have made use of a combination of
classical MD simulations together with quantum mechanical
calculations of the electronic thermal conductance based on a
tight-binding model to carry out a detailed study of the validity
of the Wiedemann-Franz law for Au, Pt, and Al contacts.
Although neglecting the phonon contribution to the thermal
conductance, the strength of this method is that it allows us
to perform a detailed statistical analysis and to simulate both
the electrical and electronic thermal conductance histograms,
which enables us to establish a very direct comparison with
the experiments. Our analysis confirms the expectation that
the electronic thermal conductance fulfills in a very accurate
manner the Wiedemann-Franz law for all three metals and
irrespective of the contact size. As compared to Au and Al, we
find slightly increased deviations of the order of up to 5% in
the case of Pt contacts due to the fact that the transport in this
metal is dominated by d orbitals.

The rest of the paper is organized as follows. In Sec. II
we describe the different theoretical techniques that we have
used to simulate the thermal transport of metallic atomic-size
contacts. In particular, we present in Sec. II A the basic
formulas that describe the quantum thermal transport in
these systems within the Landauer-Büttiker approach. Then,
in Sec. III we discuss the main results obtained with our
DFT-based transport method for the thermal conductance of
Au, Pt, and Al few-atom contacts, with special emphasis on
the relative contributions of electrons and phonons. Section IV
is devoted to the analysis of the results for the electronic
contribution to the thermal conductance of Au, Pt, and Al
contacts, obtained with the help of the combined MD and
tight-binding simulations. Finally, in Sec. V we summarize
the main conclusions of this work.

II. THEORETICAL APPROACHES

In this section we describe the thermal conductance of
metallic atomic-size contacts within the Landauer-Büttiker
formalism for coherent quantum transport. For this purpose,
we combine a number of theoretical techniques, namely the
nonequilibrium Green’s function (NEGF) formalism, various
electronic structure methods, and classical MD simulations.
We will describe these different theoretical methods in certain
detail. To be precise, we will first summarize the basic
formulas of the Landauer-Büttiker approach to compute the
thermal conductance of a nanoscale system. Then, we will
introduce our DFT-based transport approach that allows us to
compute both the electronic and the phononic contributions
to the thermal conductance. Finally, we will describe the
MD simulations that we use to determine the geometries of
the atomic contacts and how we combine the MD with a
tight-binding model to compute the electronic contribution
to the different transport properties of these atomic-scale
contacts.
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A. Thermal conductance within the
Landauer-Büttiker approach

There are two basic contributions to the thermal conduc-
tance of an atomic-size contact, namely those of electrons
and phonons. The inelastic scattering lengths for electrons and
phonons are clearly larger than the typical size of these metallic
atomic contacts [19], even at room temperature. Thus the
description of the transport properties of these systems can be
performed within the Landauer-Büttiker approach for coherent
transport, where one assumes that the transport, both electronic
and phononic, is dominated by elastic scattering. Within
this approach the contributions of electrons and phonons
to the different transport properties are determined by the
corresponding electronic and phononic transmission functions
τel and τph, respectively. The electronic contribution to the
linear thermal conductance κel is given by [2,35]

κel = 2

hT

(
K2 − K2

1

K0

)
, (1)

where T is the absolute temperature and the Kn coefficients
are defined as

Kn =
∫ ∞

−∞
(E − μ)nτel(E)

(
−∂f (E,T )

∂E

)
dE. (2)

Here f (E,μ,T ) = {exp[(E − μ)/kBT ] + 1}−1 is the Fermi
function, and the chemical potential μ ≈ EF is approximately
given by the Fermi energy EF of the electrodes. At this point it
is important to notice that, if the electronic transmission does
not strongly depend on energy in the range of some kBT around
EF, the electronic thermal conductance is approximately given
by the Wiedemann-Franz law, i.e.,

κel ≈ L0T G. (3)

Here L0 = π2k2
B/(3e2) = 2.44 × 10−8 W�K−2 is the so-

called Lorentz number and G is the electrical conductance,
which we calculate as [2]

G = G0K0, (4)

with K0 defined via Eq. (2). For low temperatures, G reduces
to G = G0τel(EF), where G0 = 2e2/h = 77.48 μS is the
electrical conductance quantum. The test of the validity of
this law in metallic atomic-size contacts is one of the central
issues of this work. Notice that Eq. (3) can be rewritten as
κel = 2κ0τel(EF), where κ0 = π2k2

BT/(3h) is the thermal con-
ductance quantum, which takes the value of κ0 ≈ 0.284 nW/K
at room temperature (T = 300 K). The factor 2 in the previous
equation is related to the spin degeneracy that is assumed in
this work for the electronic transport. Thus, we see that in a
system, where electrons dominate the quantum transport and
the Wiedemann-Franz law is fulfilled, the quantization of the
electrical conductance implies the quantization of the thermal
conductance.

The corresponding phonon thermal conductance in the
linear response regime is given by [36–38]

κph = 1

h

∫ ∞

0
Eτph(E)

∂n(E,T )

∂T
dE, (5)

where n(E,T ) = [exp(E/kBT ) − 1]−1 is the Bose function,
describing the phonon occupation in the electrodes. To get an

idea about the order of magnitude of the phononic thermal
conductance, we can express the previous equation as follows:

κph = κ0

∫ ∞

0
Wph(E,T )τph(E)dE, (6)

where κ0 is the thermal conductance quantum introduced
above and the “window” function Wph(E,T ) is defined as

Wph(E,T ) = 3

π2

(
E

kBT

)2(
−∂n(E,T )

∂E

)
. (7)

It fulfills the normalization condition,∫ ∞

0
Wph(E,T )dE = 1. (8)

Thus, if we assume that τph(E) = 1 over the whole energy
range, over which the function Wph has a sizable value, then
κph = κ0. As we shall see below (c.f. Fig. 2), this condition is
difficult to fulfill at room temperature due to the finite Debye
energy of the different metals.

The bottom line of the previous discussion is that the
description of the different transport properties, investigated
in this work, requires the calculation of the electronic and
phononic transmission functions. In the following subsections
we will show, how we compute these functions with the
help of the NEGF technique and different electronic structure
methods.

B. DFT-based transport calculations

In this subsection we describe how we combine DFT
with NEGF techniques to compute the electrical and thermal
conductances of atomic-size contacts, taking into account the
contributions of electrons and phonons. This combination
makes use of the first-principles formalism developed by some
of us and reported in Refs. [39,40]. In what follows, we briefly
describe this formalism.

1. Contact geometries, electronic structure,
and vibrational properties

The first step in our ab initio calculations is the construction
of the atomic junction geometries. As described below in
more detail, we investigate ideal geometries to simulate
one-atom-thick contacts and study also the stretching of the
atomic junctions to determine conductance traces in the spirit
of the experiments of Ref. [23]. In both cases we make
use of DFT to compute equilibrium geometries through total
energy minimization and to describe their electronic structure.
Vibrational properties of the optimized contacts are obtained
in the framework of density functional perturbation theory
(DFPT).

We use both DFT and DFPT procedures, as implemented
in the quantum chemistry software package TURBOMOLE 6.5
[41–43]. In our calculations we employ the PBE exchange-
correlation functional [44,45]; the basis sets are def2-SV(P)
for Au [46] and def-TZVP for Pt and Al [47]. Due to linear
dependencies in bulk calculations of Pt, we have changed
the exponent of the most diffuse s basis function from 0.04
a.u.−2 to 0.07 a.u.−2 and those of the most diffuse p function
from 0.05 a.u.−2 to 0.08 a.u.−2. In all cases the corresponding
Coulomb fitting basis is employed [48,49]. To ensure that
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the vibrational properties, i.e., force constants and derived
vibrational energies, are accurately determined, we use very
stringent convergence criteria to avoid the appearance of
imaginary frequencies in the optimized contact region. Thus,
total energies are converged to a precision of better than 10−9

a.u., while geometry optimizations are continued until the
change of the maximum norm of the Cartesian gradient is
below 10−5 a.u.

The bulk phonon properties of Au are determined as
described in Ref. [40]. In short the dynamical matrix of the
Au electrode is derived from those of a spherical cluster. As
in the crystal the atoms of the Au cluster are positioned on an
fcc lattice with a lattice constant of aAu = 4.08 Å, and force
constants from the central atom to its neighbors are extracted
from a sufficiently large cluster of 333 atoms. Since phonon
properties are easily exchangeable between different electronic
structure codes and in order to avoid the calculation of large
clusters, we have changed our computational strategy for Pt
and Al. For these two materials we use DFT and DFPT, as
implemented in the plane wave code QUANTUM ESPRESSO [50]
with PAW pseudopotentials taken from the PS Library [51],
to calculate bulk force constants and phonon properties. For
Pt we employ a grid of 24 × 24 × 24 electronic k points, an
energy cutoff of 100 Ry, and a Marzari-Vanderbilt smearing
of 0.07 Ry. The phonons are then computed on a grid of
9 × 9 × 9 q points. Similarly, for Al we utilize 24 × 24 × 24
k points, an energy cutoff of 100 Ry, a Marzari-Vanderbilt
smearing of 0.1 Ry, and a q grid of 11 × 11 × 11. Similar
to Au we consistently use the experimental lattice constants
aPt = 3.92 Å and aAl = 4.05 Å for the calculation of the bulk
properties [19].

2. Electron transport

To determine the electronic structure of the atomic junctions
and to compute the electronic transmission that fixes the
electrical conductance and the electronic contribution to the
thermal conductance within the Landauer-Büttiker approach,
we use NEGFs expressed in a local nonorthogonal basis.
Briefly, the local basis allows us to partition the basis states
into L, C, and R ones, where L and R correspond to the left and
right electrodes, respectively, while C corresponds to a central
region including the atomic neck. Thus, the (single-particle)
Hamiltonian (or Fock) matrix H can be written in the block
form,

H =
⎛
⎝HLL HLC 0

HCL HCC HCR

0 HRC HRR

⎞
⎠. (9)

A similar expression holds for the overlap matrix S. The
energy-dependent electronic transmission τel(E) can be ex-
pressed in terms of the Green’s functions as [2]

τel(E) = Tr
[
�L(E)Gr

CC(E)�R(E)Ga
CC(E)

]
, (10)

where the retarded Green’s function is given by

Gr
CC(E) = [

(E + iη)SCC − HCC − �r
L(E) − �r

R(E)
]−1

.

(11)

Here, η is an infinitesimal positive parameter (that will
be omitted hereafter), and advanced and retarded Green’s

functions are related by Ga
CC = [Gr

CC]†. The retarded self-
energies in the previous equation adopt the form,

�r
X(E) = (HCX − ESCX)gr

XX(E)(HXC − ESXC). (12)

The scattering rate matrices that enter the expression
of the electronic transmission are given by �X(E) =
i[�r

X(E) − �a
X(E)], and gr

XX(E) = (ESXX − HXX)−1 are
the electrode Green’s functions with X = L, R. Finally, it is
convenient to decompose the total electronic transmission in
terms of individual transmission coefficients. For this purpose
we can write Eq. (10) as

τel(E) = Tr[tel(E)t†el(E)] =
∑

i

τel,i(E), (13)

where tel(E) = �
1/2
L (E)Gr

CC(E)�1/2
R (E) is the electronic

transmission amplitude matrix and τel,i(E) are the eigenvalues
of the transmission probability matrix tel(E)t†el(E). They are
known as transmission coefficients, while the corresponding
eigenfunctions are referred to as conduction channels.

In order to describe the transport through the atomic
contacts, we first extract HCC and SCC and the matrices
HCX and SCX from a DFT calculation of an extended central
cluster that includes the central wire and part of the leads. On
the other hand, the electrode Green’s functions gr

XX(E) are
modeled as surface Green’s functions of ideal semi-infinite
crystals. To obtain these Green’s functions, we first compute
separately the electronic structure of a large spherical fcc
cluster of 1415 atoms. Then we extract the bulk Hamiltonian
and overlap matrix elements, and we use them to model a
semi-infinite crystal that is infinitely extended perpendicular
to the transport direction. The surface Green’s functions are
calculated from this crystal with the help of a decimation
technique [39,52]. In this way we describe the whole system
consistently within DFT, using the same nonorthogonal basis
set and exchange-correlation functional everywhere.

3. Phonon transport

To compute the phonon transmission, appearing in Eq. (5),
we use our previous work [23,40,53,54] and combine DFT
and NEGF techniques in the same spirit as for the electron
transport. Briefly our starting point is the description of the
phonons or vibrational modes of the atomic contacts within
the harmonic approximation. In this approximation the phonon
Hamiltonian for small displacements {Qξ } of the atoms around
their equilibrium positions {R(0)

ξ } adopts the form,

Ĥ = 1

2

∑
ξ

p̂2
ξ + 1

2h̄2

∑
ξχ

q̂ξKξχ q̂χ , (14)

where we have introduced mass-weighted displacement op-
erators q̂ξ = √

MξQ̂ξ and mass-scaled momentum operators
p̂ξ = P̂ξ/

√
Mξ as conjugate variables. These variables obey

the following commutation relations: [q̂ξ ,p̂χ ] = ih̄δξχ and
[q̂ξ ,q̂χ ] = [p̂ξ ,p̂χ ] = 0. Here ξ = (j,c) denotes a Cartesian
component c = x,y,z of atom j at position �Rj = �R(0)

j + �Qj .
The phonon system is characterized by its dynamical matrix
Kξχ = h̄2∂2

ξχEDFT/
√

MξMχ , which is the mass-weighted
Hessian of the DFT total ground-state energy EDFT with
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respect to the Cartesian atomic coordinates. These harmonic
force constants are computed within DFPT.

In analogy with the electronic system above, the use of
a local displacement basis enables the partitioning of the
dynamical matrix into three parts, a central scattering region
C, and the two semi-infinite L and R electrodes,

K =

⎛
⎜⎝

K LL K LC 0

K CL K CC K CR

0 K RC K RR

⎞
⎟⎠. (15)

The energy-dependent phononic transmission τph(E) can be
expressed in terms of phonon Green’s functions as [37,40]

τph(E) = Tr
[

Dr
CC(E)�L(E)Da

CC(E)�R(E)
]
, (16)

where Dr,a
CC(E) are the retarded and advanced phonon Green’s

functions of the central region. They can be computed by
solving the following Dyson equation,

Dr
CC(E) = [

(E + iη)21CC − K CC − �r
L(E) − �r

R(E)
]−1

.

(17)

In the expression, η > 0 is an infinitesimal parameter and
Da

CC(E) = Dr
CC(E)†. The scattering rate matrices,

�X(E) = i
[
�r

X(E) − �a
X(E)

]
, (18)

are related to the corresponding embedding self-energies,

�r
X(E) = K CXdr

XX(E)KXC, (19)

which describe the coupling between the central region C and
electrode X. In the expressions dr

XX(E) = [(E + iη)21XX −
K XX]−1 is the surface Green’s function of lead X = L,R, and
�a

X(E) = �r
X(E)†.

To calculate the different parts of the dynamical matrix in
Eq. (15) we follow the same strategy as in the electronic case
described above. We first compute the dynamical matrix for an
extended central cluster, including the atomic wire and parts
of the leads. Subsequently we extract from it the matrices K CC

and K CX. On the other hand, the surface Green’s functions of
the electrodes dr

XX(E) are obtained by extracting bulk force
constants either from a separate calculation of a big cluster
or from a periodic bulk calculation, as discussed before in
Sec. II B 1. The extracted bulk parameters are then used in
combination with a decimation technique [39,52] to describe
the surface of a semi-infinite perfect crystal, exactly like in the
electronic case.

Let us close this subsubsection by pointing out another
analogy with the electronic case: We can decompose the
total phononic transmission of Eq. (16) into the contribution
of individual phonon transmission coefficients, τph(E) =∑

i τph,i(E). Here, the coefficients τph,i(E) are the eigenvalues
of tph(E)t†ph(E), where tph(E) = �

1/2
L (E)Dr

CC(E)�1/2
R (E) is

the phononic transmission amplitude matrix.

C. Combination of MD simulations and a tight-binding model

The DFT-based transport calculations are very time-
consuming and to carry out a complete statistical analysis
within this ab initio approach is out of reach at present. Instead
we are able to perform such an analysis for the electronic

transport (both for G and κel) by combining classical MD
simulations of the junction formation with quantum transport
calculations based on a sophisticated tight-binding model.
In particular, this hybrid approach allows us to compute
conductance histograms that can be directly compared with
those reported experimentally. Indeed this combination has
been quite successful in determining a variety of properties of
these atomic-scale wires [8,15,23,55–59]. The disadvantage of
this method, as compared to our DFT-based approach, is that
at present we are not able to describe the phonon transport.
But since the phonons will be shown to play a minor role in
most situations, calculations of this type are extremely useful to
explore, in particular, the validity of the Wiedemann-Franz law
in metallic atomic-size contacts of several hundred atoms in
size. In what follows, we shall describe this combined approach
by presenting separately the details of the MD simulations
and those related to the transport calculations based on the
tight-binding model.

1. Molecular dynamics simulations

As mentioned above, in order to perform a thorough
statistical analysis of the thermal conductance of different
metallic atomic-size contacts, we carry out classical MD
simulations to first determine the geometry of these contacts
following our previous work [15]. The thermal conductance is
then computed for the geometries determined with these MD
simulations, as we explain in the next paragraph. We perform
the MD simulations with the open source program package
LAMMPS [60,61]. Within LAMMPS we use the embedded atom
method with the semiempirical potentials from Ackland et al.
[62] for Au and from Sheng et al. [63] for Pt and Al to
model the interactions between atoms. It is worth stressing
that these potentials account for the possibility to have an
atomic coordination that differs from the bulk. In order to
obtain the geometry of the atomic contacts, we start with an
ideal fcc lattice, where the crystal direction 〈100〉 lies parallel
to the transport and elongation direction. In these simulations
we first divide the geometry into three parts: two electrodes
and a central wire, bridging the gap between them, as shown in
Fig. 1. Each electrode consists of 661 atoms that are kept fixed
during the simulations. The size of the electrodes is chosen
such that they contain at least all those atoms that are separated
from the central wire atoms by less than the cutoff radius of the
interaction potentials. The central wire is made up of 563 atoms
and their motion is described with Newtonian equations of
motion. We assume a canonical ensemble and use the velocity
Verlet integration scheme [64]. In our simulations the wires
have an initial length of 0.82 nm for Au, 0.78 nm for Pt, and
0.84 nm for Al. The starting velocities of the atoms in the wire
are chosen randomly with a Gaussian distribution to yield an
average temperature of T = 300 K. Because of the randomness
in the initial velocity distribution, every stretching simulation
is different, while a Nosé-Hoover thermostat ensures that
the temperature remains fixed [64]. The time step in all
our simulations is 1 fs, and in the beginning each wire is
equilibrated for 0.1 ns. Subsequently, the elongation process
is simulated by separating the electrodes at a constant velocity
of 0.4 m/s. During this process the geometry is recorded every
10 ps, in order to compute the transport properties. A stretching
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right
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2.71 nmcentral
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left
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(a) (b)

FIG. 1. (a) The initial fcc structure of the atomic contacts
employed in the MD simulations. The example is for Al, where
the central wire possesses a length of 0.84 nm. We also show the
partitioning of the contact into the left and right electrodes and the
central wire, as used for the MD and transport calculations. (b)
Example of an atomic contact of Al at an elongation of 1.87 nm.
Considering the initial length of the junction of 0.84 nm, the total
length of the central wire amounts to 2.71 nm, as indicated in the
panel.

process needs a total simulation time of about 4.5 ns until the
contact breaks.

2. Tight-binding-based transport calculations

The geometries obtained from the MD simulations are
used to compute the electronic contribution to the transport
properties within the Landauer-Büttiker formalism. In this
case the electronic transmission that determines both the
electrical conductance and the electronic contribution to the
thermal conductance is computed with the help of a tight-
binding model. To be precise, we employ a nonorthogonal
Slater-Koster tight-binding parametrization, which has been
constructed by fitting DFT-based results for the electronic band
structure and total energies of metals across the periodic table;
see Refs. [65,66] for details. In this parametrization we take
into account the relevant valence orbitals, which for Au and Pt
include the 5d, 6s, and 6p orbitals, and for Al the 3s, 3p, and 3d

orbitals. Moreover the hopping and overlap matrix elements in
this tight-binding model are functions of the distance between
the atoms, which enables us to use it with our MD simulations.

To compute the electronic transmission, we combine the
tight-binding model with NEGF techniques and the formulas
detailed in Sec. II A, very much like in the DFT-based
calculations. Details can be found in Refs. [55,56]. Briefly,
as in the MD simulations, the system is divided into three
regions for the transport calculations, i.e., the two electrodes
and the central wire; see Fig. 1. Because the local environment
of the atoms in the central part is very different from that
in the bulk, we impose a charge neutrality condition for all
the atoms of the central wire [55,56], which is known to be
approximately fulfilled in metallic systems. As in the DFT
case the electrodes are considered to be semi-infinite perfect
crystals, and their surface Green’s functions are computed with
the help of a decimation technique [39,52]. Again, as in the
DFT-based calculations, the Green’s function techniques also

FIG. 2. Window function Wph(E,T ), defined in Eq. (7), as a
function of energy at room temperature (T = 300 K). We also show
the phonon transmissions used to estimate the phononic thermal
conductance of single-atom contacts of Au, Pt, and Al. We assume
for simplicity that τph(E) is equal to 3 for energies up to the Debye
energy of the corresponding metal. Arrows in the plot refer to left and
right vertical scales.

allow us to compute the individual transmission coefficients
τel,i(E) at a given energy E.

III. DFT-BASED TRANSPORT RESULTS:
PHONON TRANSPORT

In this section we shall discuss the main results for the
thermal conductance of metallic atomic-size contacts, obtained
with our ab initio, DFT-based transport method. But before
doing so, it is instructive to estimate the contribution of
phonons to the thermal conductance at room temperature. Let
us focus, in particular, on the case of single-atom contacts.
To get estimates for upper bounds, we assume that there are
three phonon conduction channels. We choose the number
of three, since one expects one channel for each spatial
dimension. They might also be seen as a longitudinal and
two transverse eigenchannels. Let us furthermore assume that
the channels exhibit a perfect transparency for energies up to
the corresponding Debye energy ED of the metal: 20 meV
for Au, 25 meV for Pt, and 40 meV for Al. Thus, if we use
τph(E) = 3 for E ∈ [0,ED] in Eq. (6), as shown in Fig. 2,
we obtain a room temperature phononic thermal conductance
of 0.199 nW/K = 0.7κ0 for Au, 0.244 nW/K = 0.86κ0 for
Pt, and 0.378 nW/K = 1.33κ0 for Al. Notice that the largest
value arises for Al, which is simply due to its higher Debye
energy as compared to Au and Pt. These estimates need
to be put into relation to the corresponding ones for the
electronic contribution to the thermal conductance. To obtain
them, we use the Wiedemann-Franz law [see Eq. (3)], and the
experimentally reported values for the transmission of single-
atom contacts. We extract the transmissions from the lowest
peak in the electrical conductance histograms, which typically
arises from single-atom contacts. In this way we expect a
room temperature electronic thermal conductance of about
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TABLE I. Room-temperature values of the different transport
properties for the single-atom contacts of Fig. 3. G is the electrical
conductance, L0T G is the expected result for the electronic contri-
bution to the thermal conductance from the Wiedemann-Franz law,
κel is the electronic thermal conductance, κph is the phononic thermal
conductance, and κ is the total thermal conductance, determined as
the sum of the electronic and phononic contributions.

Metal G (G0) L0T G (nW/K) κel (nW/K) κph (nW/K) κ (nW/K)

Au 1.01 0.577 0.578 0.051 0.629
Pt 1.83 1.041 1.098 0.098 1.196
Al 0.49 0.277 0.271 0.130 0.401

0.568 nW/K = 2κ0 for Au single-atom contacts [1], roughly
between 0.710 nW/K = 2.5κ0 and 1.420 nW/K = 5κ0 for Pt
[15,67,68], and something between 0.284 nW/K = κ0 and
0.568 nW/K = 2κ0 for Al [69,70]. Thus, we see that the
phononic and electronic contributions could in principle be
of similar order, and it is by no means obvious that phonons
can be ignored in the analysis of the heat conduction in
metallic atomic contacts. The quantitative determination of the
relative contributions of electrons and phonons to the thermal
conductance will be a central issue of the rest of this section.

Let us start our discussion of the DFT-based transport
results by considering single-atom contacts of Au, Pt, and Al.
Simulations, based on both classical MD and DFT [55,56,71],
show that the last conductance plateau corresponds to one-
atom-thick contacts that usually feature an atomic dimer in
the narrowest region before breaking. For this reason we
consider the ideal dimer geometries, shown in the upper part
of Fig. 3, as representative examples of single-atom contacts.
For all the contacts the crystallographic 〈111〉 direction is
oriented along the transport direction. Figure 3 summarizes the
transport results for the three junction materials under study,
and precise values of the relevant transport properties at room
temperature are summarized in Table I. Figure 3(a) displays
the electronic transmission, both the total one and those of the
five highest transmission coefficients, as a function of energy
for the Au dimer contact. We find that the electronic transport
around the Fermi energy is dominated by a single conduction
channel that is almost fully open, as it has been reported before
for similar geometries [4,39,72,73]. In this particular case
we find that the electrical conductance is 1.01G0, while the
corresponding result for the electronic thermal conductance
at room temperature is κel = 0.577 nW/K ≈ 2κ0. This value
agrees very well with the expectation from the Wiedemann-
Franz law in Eq. (3), L0T G = 0.578 nW/K = 2κ0. Turning
now to the phonon contribution to the thermal transport, we
show in Fig. 3(b) the corresponding phononic transmission. In
this case the phononic transmission is mainly dominated by
three conduction channels, which are in general partially open.
(Indeed the transmission values vary between 0 and 1, depend-
ing on energy.) Notice that the transmission only differs from
zero below 20 meV, which corresponds to the Au Debye energy
in our calculations. Using this transmission function, we find
that the phonon contribution to the thermal conductance at
room temperature is κph = 0.051 nW/K = 0.18κ0, which is
about 8% of the total thermal conductance. This value is much

smaller than the upper bound provided above, because the
total transmission is clearly below 3 for almost all energies,
which we attribute to the mismatch between the incoming
phonons and the local vibrations in the narrowest part of the
contact. For completeness we also present in Fig. 3(c) the
temperature dependence of the thermal conductance, including
the electronic and phononic contributions, as well as the total
one. Note that hereafter κ = κel + κph denotes the total thermal
conductance. As one can see, and we already explained in Ref.
[23], the thermal conductance of Au dimer contacts is clearly
dominated by electrons for most temperatures. On the other
hand, the room temperature thermal conductance quantization,
as observed in Ref. [23], is a consequence of the fact that,
in addition, the electrical conductance is quantized and the
electronic transmission is rather smooth around the Fermi
energy [see Fig. 3(a)], which implies that the Wiedemann-
Franz law is accurately fulfilled. Note that we will refer to
electrical conductance quantization as a situation, where all
open transmission channels exhibit perfect transparency, i.e.,
τel,i(EF) is either 1 or 0. Let us furthermore recall that the
tendency of Au single-atom contacts to exhibit an electrical
conductance of around 1G0 is due to the fact that the electronic
transport is dominated by the s valence orbitals of this metal.
In general the number of conduction channels in a single-atom
contact is determined by the number of valence orbitals that
give a significant contribution to the density of states around
the Fermi energy [4,72].

We will now discuss the results for the Pt single-atom
contact shown at the top of the second column in Fig. 3.
The corresponding total electronic transmission function is
displayed in Fig. 3(d) along with the five most relevant
transmission coefficients. As one can see, and in strong contrast
with the Au case, there are four conduction channels that
provide a sizable contribution to the transport at the Fermi
energy. This is due to the fact that apart from the s valence
orbitals, the d valence orbitals of Pt atoms also contribute to the
electronic transport [15,56,74]. Moreover these orbitals yield
conduction channels that are partially open, which naturally
explains the lack of electrical conductance quantization in
this metal [15,67,68]. The transmission function results in
an electrical conductance of 1.83G0, while the corresponding
electronic contribution to the thermal conductance at room
temperature is 1.098 nW/K = 3.87κ0. This is close to the
value of 1.041 nW/K = 3.67κ0 suggested by the Wiedemann-
Franz law. The larger deviation from this law, as compared to
Au, arises from the more pronounced energy dependence of
the electronic transmission function of Pt around the Fermi
energy, caused by the d bands [15,56,57]. In contrast to the
electronic transport, the shape of the phonon transmission of
this Pt contact is similar to that of the Au contact, as visible
from Fig. 3(e). This originates from the similar masses of Au
and Pt atoms, leading to comparable Debye energies. As in
the case of Au, three to four conduction channels dominate
the phonon transport in the Pt dimer contact, leading to a
phonon thermal conductance of 0.098 nW/K = 0.35κ0. This
value almost doubles κph of the Au contact, but is comparable
in relative terms: It also constitutes about 8% of the total
thermal conductance κ (see Table I). Figure 3(f) shows that,
very much like in the case of Au, the thermal conductance is
largely dominated by the electrons at all relevant temperatures.
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FIG. 3. (a) Electronic transmission τel as a function of energy (measured with respect to the Fermi energy EF) for the Au single-atom
contact shown above the panel. We display the total transmission as well as the five largest transmission coefficients, as indicated in the legend.
(b) The corresponding phononic transmission as a function of energy. Similar to the electronic transmission we show both the total one and
the largest five individual transmission coefficients. (c) Thermal conductance as a function of temperature for the Au single-atom contact with
the total thermal conductance κ resolved into electronic and phononic contributions, κel and κph, respectively. (d)–(f) The same as in panels
(a)–(c) for the Pt single-atom contact shown above panel (d). (g)–(i) The same as in panels (a)–(c) for the Al single-atom contact shown above
panel (g).

The lack of electrical conductance quantization results in the
absence of thermal conductance quantization for single-atom
contacts of Pt, as was confirmed experimentally in Ref. [23].

Let us now address the Al single-atom contact displayed
above Fig. 3(g). We remark that the thermal transport in
Al contacts has not been investigated experimentally so far.
Aluminum is a reactive metal that is not easy to handle at room

temperature, but the electronic transport through Al atomic
contacts has been thoroughly explored at low temperatures. It
is a very good example of a light metal with a Debye energy
that is significantly larger than those of Au and Pt. The total
electronic transmission around the Fermi energy stems from
two to three partially open channels, as one can see in Fig. 3(g)
and has been reported both theoretically and experimentally
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in numerous occasions [4,58,70–72,75]. These observations
can be understood by the contribution of both s and p valence
orbitals of Al atoms [4,72]. The electrical conductance in this
example is 0.49G0, while the room temperature electronic
thermal conductance is 0.277 nW/K = 0.98κ0, in very good
agreement with the value of 0.271 nW/K = 0.95κ0 from the
Wiedemann-Franz law. As one can see at the phonon trans-
mission function, displayed in Fig. 3(h), the phonon transport
is also dominated by three to four conduction channels, like in
the Au and Pt cases, but now phonon modes up to 40 meV
participate. These additional phonon modes give rise to a
phonon thermal conductance of 0.130 nW/K = 0.46κ0. This
value is clearly larger than those of Au and Pt. Together with
the lower electrical conductance, κph yields now about 32%
of κ (see also Table I). Figure 3(i) shows the corresponding
temperature dependence of the thermal conductance for the Al
dimer contact. Notice that contrary to the cases of Au and Pt the
phonon contribution is now of the same size as the electronic
one in a broad range of temperatures up to T = 100 K and
at room temperature it still constitutes a very significant
contribution. These results suggest that a clear violation of the
Wiedemann-Franz law should be observable in Al single-atom
contacts, a prediction that yet awaits experimental verification.

To further study the relative contributions of electrons
and phonons to the thermal conductance and to model the
experiments more closely, we have used our DFT-based
approach to simulate the contact formation and to compute
the corresponding conductance traces. Since Au and Pt behave
similarly with regard to the small contribution of phonons to
κ , we concentrate in the following on a comparison of Au
and Al only. We start out with atomic contacts of Au and
Al, and stretch or compress the geometry adiabatically. This
is done by separating or by approaching the electrodes in
a steplike manner and by subsequent re-optimization of the
junction geometry. As the displacement step we use 0.26 Å
and compute G, κel, κph, and κ with our DFT-based transport
method for the obtained equilibrium geometries.

In Fig. 4(a) we show the results of such a simulation
for the Au contact of Fig. 3 that is grown along the 〈111〉
direction of the fcc lattice. We started with the dimer contact
represented by the second geometry in that panel, counting
from the right. This geometry was compressed to obtain thicker
cross sections as well as stretched to simulate the breaking
of the contact. In Fig. 4(a) we show the results for G and
κ at room temperature for the series of contacts, obtained
following our protocol. The electrical conductance in this plot
is normalized by the electrical conductance quantum G0, while
the thermal conductance is normalized by 2κ0 with T = 300 K.
As one can see, both conductances proceed in a steplike
manner in a succession of plateaus and abrupt jumps, related
to elastic stages, where bonds are stretched and forces build
up, and plastic stages, where bonds break and the accumulated
tension is released. This behavior resembles the experiments
[23]. In addition both conductances follow each other very
closely. With the normalization used here, this means that
the Wiedemann-Franz law is well obeyed. Notice also that
both G and κ feature a plateau at 1G0 and 2κ0, respectively,
which illustrates the tendency of Au single-atom contacts to
exhibit quantized electronic and thermal transport, even at
room temperature [23].

FIG. 4. (a) Electrical and thermal conductance at room temper-
ature as a function of electrode displacement for an Au contact,
oriented along the fcc 〈111〉 crystallographic direction. The blue dots
correspond to the results for the electrical conductance (right vertical
scale), which is normalized by the electrical conductance quantum
G0. The red diamonds correspond to the total thermal conductance
(left vertical scale), taking into account both the electronic and
phononic contributions, and it is normalized by twice the thermal
conductance quantum κ0. The different geometries, shown in this
panel, correspond to snapshots taken during the elongation and
compression processes. (b) The corresponding Lorentz ratios, defined
via Eq. (20). The red diamonds show the full ratio computed
with the total thermal conductance, while the blue dots show the
electronic Lorentz ratio, if the thermal conductance consists only of
the electronic contribution.

To quantitatively assess the validity of the Wiedemann-
Franz law, it is customary to define the so-called Lorentz ratio
L/L0 as follows:

L

L0
= κ

L0T G
. (20)

Here, κ = κel + κph is the total thermal conductance due to
both electrons and phonons, L0 is the Lorentz number, and
G is the electrical conductance. A Lorentz ratio equal to 1
means that the measured thermal conductance agrees exactly
with the expectations from the Wiedemann-Franz law, while
deviations from 1 signal that this relation is violated. Such
violations could be due to the contribution of phonons or they
can have an electronic origin. In Fig. 4(b) we show the Lorentz
ratio (red diamonds), using the results of Fig. 4(a). As one can
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FIG. 5. The same as in Fig. 4, but for an Al contact.

see, there are small deviations from 1 on the order of 5%–
10% in the contact regime, depending on the exact junction
geometry. These observations are in good agreement with
the measurement of Ref. [23]. In order to better understand
the origin of these deviations, we also show in Fig. 4(b)
(blue dots) the electronic Lorentz ratio Lel/L0 = κel/(L0T G),
constructed by replacing κ with κel in Eq. (20). As one can see,
this electronic Lorentz ratio is very close to 1, irrespectively
of the electrode displacement. This means that the deviations
from the Wiedemann-Franz law are mainly due to phonons.
It is also worthwhile to consider in detail the behavior of
L/L0 with the electrode displacement in Fig. 4(b). Deviations
from the Wiedemann-Franz law tend to increase with larger
displacements, i.e., towards smaller minimal contact cross
sections. Furthermore L/L0 exhibits a sawtoothlike shape,
typically decreasing within each elastic stage. Taking into
account that Lel/L0 ≈ 1 implies L/L0 ≈ κ/κel = 1 + κph/κel,
this means that the relative weight of κph in κ tends to reduce
with increasing stress in the Au single-atom contacts. We
attribute this to overall decreasing force constants with pulling
or, in other words, a softening of interatomic bonds. Revivals
of L/L0 are seen at the points, where bonds break and the
atomic contact reconfigures.

In Fig. 5 we show the results of the simulation for an Al
atomic wire that was performed following exactly the same
protocol as in the Au simulation of Fig. 4, where we use the
Al dimer contact of Fig. 3 as starting geometry. As in the
Au case, the electrical and thermal conductances proceed in a

FIG. 6. The same as in Fig. 4, but for an Au contact grown along
the fcc 〈100〉 crystallographic direction. The contact was elongated,
starting with the geometry shown in the upper left part of panel (a).

steplike manner with the peculiarity that most plateaus exhibit
a positive slope at the end of each plateau, i.e., the conductance
increases upon stretching before bonds break. This unique
behavior of Al contacts is well known, and it has been
observed in different experiments and convincingly explained
[4,70,71,75]. The electrical and thermal conductance are
correlated, but larger deviations as compared to Au are visible.
This is well apparent in the Lorentz ratio, shown in Fig. 5(b),
which features deviations from the Wiedemann-Franz law as
large as 40% and even above. Notice also that the electronic
contribution to the thermal conductance follows closely the
prediction of the Wiedemann-Franz law, with deviations that
are at most about 5%, as can be inferred from the electronic
Lorentz ratio Lel/L0. Thus, the larger violations of the
Wiedemann-Franz relation that we find for Al are mainly
due to the phonon contribution to the thermal transport. Our
results illustrate that the phonon thermal conductance cannot
always be neglected, when analyzing the thermal transport of
metallic atomic-size contacts. The sawtoothlike behavior of
L/L0, discussed for Au before, is not so apparent for this Al
contact. In any case the Lorentz ratio exhibits minima close to
the displacement values, at which atomic bonds break.

It is worth stressing that we have checked that the
conclusions above are not an artifact of the protocol used
to simulate the contact formation or the choice of the
crystallographic direction of the contact geometries. In Fig. 6
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FIG. 7. The same as in Fig. 6, but for an Al contact.

we show an example of such tests, where we have simulated
the contact formation of another Au atomic wire. In this
case the contact is grown along the fcc 〈100〉 direction, and
we started the simulation with the geometry shown in the
upper left part of Fig. 6(a). As before, we then stretched
the contact progressively in steps of 0.26 Å. We find that
all the basic observations made above about the Au contacts
are reproduced here. Notably, this Au wire forms a chain
with up to four atoms in length in the last stages before
breaking. During the formation of this atomic chain, G and
κ remain approximately quantized with values of 1G0 and
2κ0, respectively. The formation of such Au atomic chains has
been reported in numerous experiments [68,76–78], and their
electronic transport properties have been amply discussed in
the literature [1,2]. As for the Au contact before, the plots of the
Lorentz ratio show that the relative contribution of phonons to
the total thermal conductance tends to decrease with increasing
tension in the contact.

As a last example, we briefly discuss the stretching
simulation for the Al contact depicted in Fig. 7. As in the
Au case of Fig. 6, this Al contact is grown along the fcc
〈100〉 direction and the stretching simulations were initiated
with the geometry displayed in the upper left part of Fig. 7(a).
There are two features of the results in Fig. 7 that we want
to highlight. First of all, the last plateau before the breaking
of the wire exhibits an electrical conductance of about 2G0. It
originates from a one-thick contact, where there is a monomer
in the narrowest region, as opposed to the dimer realized

before breaking in the previous Al simulation of Fig. 5. As
we shall argue in the next section, geometries of this type
are responsible for a second peak in the electrical conductance
histogram of this metal close to 2G0. The second feature worth
remarking is that, as one can see in Fig. 7(b), the phonons give a
slightly smaller contribution to the total thermal conductance,
as compared with the example of Fig. 5, but still clearly larger
than in the Au case. The sawtoothlike shape of L/L0 as a
function of electrode displacement in Fig. 7(b) is much more
pronounced than in Fig. 5.

Throughout this section, we have so far only discussed
the contact regime of heat transport, which has been studied
experimentally [23,24]. But it is also interesting to examine
the tunneling regime, when contacts are broken. This regime is
still challenging for experimentalists, since signals are rather
small and contamination of surfaces may play a crucial role
[79]. Moreover, as the gap between the electrodes increases, at
some point the thermal radiation via photon tunneling may give
a contribution of similar order [54]. Figures 4–7 consistently
show that in the tunneling regime the electronic Lorentz ratio
Lel/L0 stays close to 1. However, L/L0 typically increases
significantly in our calculations, meaning that the phonon ther-
mal conductance decays more slowly with distance than the
electronic part. This can be rationalized by considering that the
electronic thermal conductance arises only from the overlap
of electronic wave functions, which decreases exponentially
with the separation of left and right junction parts. Lattice
vibrations may instead couple over longer distances, because
multipolar electrostatic charge contributions can, for instance,
lead to an algebraic decay of κph [80,81].

IV. ELECTRONIC THERMAL CONDUCTANCE:
STATISTICAL TEST OF THE WIEDEMANN-FRANZ LAW

The DFT simulations presented in the previous section
represent the state of the art in the modeling of the thermal
transport of atomic-scale systems. Ideally, one would like to
perform many such simulations for even larger contacts to
describe the conductance histograms for G and κ that are
reported experimentally. However, these simulations are very
time-consuming, and a study of conductance histograms with
DFT-based methods is presently not feasible for us. Instead
we employ an alternative method based on the combination of
classical MD simulations and quantum transport calculations
based on a tight-binding model. As described in Sec. II C,
this hybrid approach allows us to determine the geometries,
realized in the experiments, as well as to compute the electronic
transport, i.e., G and κel. In particular, as shown by us
previously [15,23,55,56], the approach allows us to calculate
conductance histograms and, in turn, to establish a very direct
comparison with experiments. As compared to the adiabatic
stretching processes at T = 0, assumed in our DFT simulations
above, the MD simulations offer the advantage to take also the
influence of finite temperature on the formation of junction
geometries into account. In this work we have used the hybrid
MD and tight-binding approach to study in a systematic
manner the electronic contribution to the thermal conductance
in atomic contacts in order to test, whether deviations from the
Wiedemann-Franz law are expected from purely electronic
effects.

205405-11



KLÖCKNER, MATT, NIELABA, PAULY, AND CUEVAS PHYSICAL REVIEW B 96, 205405 (2017)

FIG. 8. (a) Electrical conductance histogram obtained from 100 MD simulations of the stretching of Au atomic contacts at room temperature.
(b) The corresponding electronic thermal conductance histogram. (c) The 20 largest electronic transmission coefficients as a function of
conductance for the Au simulations. The lines correspond to the average values and the bars to the standard deviations. (d) Density plot of the
electronic Lorentz ratio as a function of electrical conductance for the Au contacts. (e)–(h) The same as in panels (a)–(d), but for Pt contacts.
(i)–(l) The same as in panels (a)–(d), but for Al contacts.

In Fig. 8 we summarize the results, obtained from 100 MD
simulations of the formation of Au, Pt, and Al atomic contacts
at room temperature. In this figure we show the electrical
conductance histograms, the electronic thermal conductance
histograms, the evolution of electronic transmission coeffi-
cients with conductance, and the electronic Lorentz ratio. Let
us stress that we have checked that 100 simulations are enough
to converge the main features of the conductance histograms.
We also want to point out that the results for Au and Pt
were already presented in Ref. [23] and are shown here for
comparison with Al, which has not been analyzed before. The
first thing to notice in Fig. 8 is the good correlation between
the histograms of the electrical conductance and those of the
electronic thermal conductance, which clearly indicates that
the Wiedemann-Franz law is nicely fulfilled, where we ignore
here of course the contribution of phonons. This is more

apparent in the lower panels, where we show the electronic
Lorentz ratio. As one can see, for the cases of Au and Al
the deviations from 1 are very small. They are on the order
of 1%–2%, while in the case of Pt they are slightly larger
and can reach up to around 5%, which is consistent with our
DFT results. As discussed above, these larger deviations in the
case of the transition metal Pt are due to a more pronounced
energy dependence of the electronic transmission around the
Fermi energy, which in turn is due to the fact that atomic d

valence orbitals play a major role in the electronic transport
of this metal. In summary our results show that no significant
deviations from the Wiedemann-Franz law are expected from
purely electronic effects, irrespective of the material or the
contact size.

With respect to the conductance histograms there are several
features that we want to emphasize. First of all, the Au
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histograms are dominated by a large peak around 1G0 for
the electrical conductance and around 2κ0 for the electronic
thermal conductance. Since in the Au case the phonons play
a relatively minor role, this explains the observed quantized
transport of κ in Ref. [23]. The large peak for G and κel

in the Au histograms originates from single-atom contacts,
where the electronic transport is dominated by a single,
fully open channel, as can be deduced from Fig. 8(c). The
corresponding histograms for Al are very interesting. They
exhibit two peaks close to quantized values at 1G0 and 2G0,
which may give the impression that the electronic transport
is also quantized in Al few-atom contacts. However, this is
actually not the case in the sense of our definition in Sec. III,
which requires that transmission coefficients τel,i are either
1 or 0. As we show in Fig. 8(g), the main contribution to
those two peaks comes from contacts, where at least three
partially open channels give a significant contribution to the
transport. A detailed analysis shows that the lowest peak
close to 1G0 for the electrical conductance originates from
one-atom-thick contacts, featuring a dimer in the narrowest
part, while the second peak around 2G0 stems mainly from
contacts with only a single atom at the tightest constriction.
This is indeed consistent with the observations of our DFT
simulations in Figs. 5 and 7. The fact that the transmission
coefficients of the open conduction channels in the last two
plateaus of Al wires add up to a total transmission close
to integer values is, in general, merely a coincidence. We
do find, however, that there is a tendency for Al contacts
to break, when the electrical conductance is close to 1G0,
like in the DFT simulation of Fig. 5. In those cases the
transport is indeed dominated by a single conduction channel.
However, along the last plateaus this is normally not the case,
but we find that at least two additional channels contribute
to the electronic transport. Let us remark that the multipeak
structure in the electrical conductance histogram of Al contacts
has been reported experimentally [69], and it is qualitatively
reproduced by our MD simulations. Let us also stress that our
interpretation of the lack of quantized electronic transport in Al
contacts has been verified in great detail in experiments, where
the electronic conduction channels were determined with the
help of superconductivity [4,58,75]. Finally, in the Pt case the
histogram only features a rather broad peak slightly below
2G0 for the electrical conductance. This broad peak and the
lack of quantized transport are due to the fact that even in the
case of Pt single-atom contacts several conduction channels
with intermediate transmissions give a significant contribution
to the electronic transport; see Fig. 8(k). As explained in the
previous section, this is due to the electronic structure of the
transition metal Pt, in which the atomic d valence orbitals
contribute decisively to both the density of states around the
Fermi energy and to the electronic transport.

V. CONCLUSIONS

In summary, motivated by recent experiments [23,24], we
have used state-of-the-art theoretical techniques to perform
a systematic study of the thermal conductance of metallic
atomic-size contacts made of Au, Pt, and Al. In particular
we have investigated two points of special interest, namely
the contribution of phonons to the thermal transport and the

validity of the Wiedemann-Franz law. Our first-principles
transport calculations based on DFT show that in the case
of heavy metals like Au and Pt, which were experimentally
investigated in Ref. [23], phonons provide a modest contri-
bution to the thermal conductance (typically below 10%), and
this conductance is given, to a very good approximation, by the
Wiedemann-Franz law. Moreover our calculations show that,
while the thermal conductance of Au single-atom contacts
is quantized due to the fact that the electronic transport
is dominated by a single, fully open channel, in the case
of Pt such a quantization is not present, since additional
electronic conduction channels originating from the Pt d bands
contribute. In the case of Al, a light metal with a much
higher Debye energy, we find that the relative contribution
of phonons to the thermal transport is considerably larger
than for Au and Pt. Indeed, it can be as large as 40%
of the total thermal conductance, depending on the contact
geometry. This is primarily caused by the fact that, because
of the higher Debye energy of Al, the phonon modes yield
a larger contribution to the heat transport, but also due
to the fact that the electrical conductance of Al junctions
is somewhat lower than those of Au or Pt for the same
contact size. Thus, our calculations show that, in general,
the phonon transport cannot be ignored, when evaluating
the thermal conductance of metallic atomic-size contacts.
This is clearly at variance with the case of macroscopic
wires, in which the phonon contribution to thermal transport
is basically negligible, irrespective of the chosen (standard)
metal.

Beyond the contact regime, our DFT simulations predict
that phonons will contribute substantially more to thermal
transport than electrons, when junctions are in the tunneling
regime. While this aspect was not studied systematically, a
possible explanation might be that electrostatic interactions
between dipoles or higher multipoles of the electrode geometry
dominate for large gaps, where the overlap of electronic wave
functions of the broken sides of the contacts has decayed
exponentially.

On the other hand, since our DFT results and the ex-
periments [23] consistently suggest that electrons are more
important in heat transport than phonons for metallic atomic-
size contacts in the contact regime, we have employed classical
MD simulations and a tight-binding model to carry out a
statistical study of the purely electronic transport. In particular,
we have analyzed whether the electronic contribution to the
thermal conductance follows the Wiedemann-Franz law. Our
results for Au, Al, and Pt atomic wires show that only minor
deviations from the Wiedemann-Franz law are expected from
the electronic contribution, irrespective of the contact size.
The largest deviations, albeit modest (below 5%), are obtained
in transition metals like Pt, where the energy dependence of
the electronic transmission is more pronounced than for Au
and Al due to the contribution of the d orbitals. This energy
dependence is also reflected in other transport properties such
as the thermopower, which has been found to be larger in
single-atom contacts of Pt than of Au [15]. On the other hand,
the fact that the Wiedemann-Franz law is accurately fulfilled
in these metallic nanowires for the electronic part provides a
practical way to estimate the electronic thermal conductance
from the knowledge of the electrical conductance. This, in
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turn, enables the extraction of the phonon contribution from
the experimental results of the thermal conductance.

Overall our results provide deep insight into the thermal
transport in metallic atomic-size contacts, one of the most
important testbeds for nanoscale transport. Our results, in
turn, may prove important for related systems such as
single-molecule junctions, whose thermal transport properties
should soon be amenable to measurement with the very same
techniques that have finally enabled the exploration of the
thermal conductance of metallic atomic contacts [23,24].
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