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1 Introduction The advances in nanoscience over the
past couple of decades have made it possible to probe charge
transport in nanoscale systems down to the single-molecule
and single-atom level [1–3]. With such measurements
becoming increasingly routine, less explored effects such as
self-heating in nanojunctions due to current flow move into
the focus of research [4–7]. In this context, electron–vibration
(EV) interactions play a crucial role in dissipating the heat of
electrons by transferring it to the vibrational degrees of free-
dom. Beside this, inelastic processes can lead to discernible
signatures in transport quantities that can be exploited to char-
acterize nanoscale conductors. This latter aspect is the subject
of the present paper.

The EV interaction can significantly influence trans-
port properties. Thus it may lead to phonon drag [8–10],
thermally activated transport in long molecular wires [11],
current saturation at a high applied voltage bias [12, 13],
or electromigration as well as junction breakdown due to
current-induced forces and local heating [14–18]. Inelastic

EV scattering is also used to characterize molecular and
atomic junctions spectroscopically. Depending on the con-
ductance regime, the techniques are either called inelastic
electron tunneling (IET) spectroscopy [19–21] or point con-
tact spectroscopy [1, 22]. In both cases, however, the second
derivative d2

I/dV 2 of the electrical current I with respect
to the applied bias voltage V is measured. For simplicity,
we will refer to both techniques as IET spectroscopy in the
following.

In the IET spectroscopy, which is the central subject of
this study, the excitation of a vibrational mode inside the
junction gives rise to a characteristic signature in the current–
voltage characteristics. Especially for molecular junctions, it
has become an important tool to identify the molecule that
bridges two metal electrodes and to determine the precise
contact geometry [23–28]. For the theoretical description
of the EV interaction in nanoscale conductors, various dif-
ferent approaches exist, which can deal with the whole
regime from weak to intermediate to strong EV couplings
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[4, 29–32]. While model calculations are able to capture
experimentally observed effects on a qualitative level, a fully
atomistic theory is necessary for their material-dependent,
quantitative interpretation. Density functional theory (DFT)
provides such an atomistic electronic structure description
for molecular, solid-state, and hybrid systems. Despite the
fact that DFT is not a quasi-particle method, it is often used
to calculate transport properties of nanoscale junctions in
combination with non-equilibrium Green’s function (NEGF)
techniques. Approximate DFT tends to underestimate the
band gap of bulk semiconductors or insulators as well as
the gap between the highest occupied and lowest unoccupied
molecular orbital of molecular systems. Typically, this leads
to an overestimation of the conductance of molecular junc-
tions. To compensate for these shortcomings, a “self-energy
corrected” DFT scheme has been developed to obtain more
accurate quasiparticle energies [33] or even time-consuming
atomistic quasiparticle methods were employed within the
GW approximation [34]. For metallic systems, including
metallic atomic contacts, where the “band gap problem” of
DFT does not arise, the quantum transport calculations using
the combination of DFT and NEGF (DFT + NEGF) show
often good agreement with experiment [35].

Quantities derived from the total ground-state energy like
bond lengths, binding energies, and vibrational spectra are
commonly described reliably for molecular and solid-state
systems within the DFT schemes using the local density
approximation (LDA) or generalized gradient approximation
(GGA) [36–38]. Due to the reasonable compromise between
computational cost and accuracy, DFT + NEGF has become
the standard method for the atomistic, first-principles model-
ing of transport through nanoscale devices. The DFT + NEGF
approach is very compelling, when inelastic corrections to
the current due to the EV interaction are of interest, since it
allows for the consistent treatment of the whole system [35]:
The electronic structure, the vibrational modes, as well as
their coupling can all be described within the same method. In
DFT + NEGF the EV coupling is usually treated in the weak
limit either by means of a lowest-order expansion (LOE) or
the self-consistent Born approximation [35, 39–41].

In this work, we extend our cluster-based approach for
determining elastic quantum transport to include the inelas-
tic corrections at the level of the LOE in the EV coupling.
For a detailed discussion of the LOE and of the cluster-
based transport approach, we refer to our previous works
in Refs. [40, 42]. We do not pursue the direction of “self-
energy corrected” DFT or atomistic quasiparticle electronic
structure methods here, but use the benefit of DFT to describe
the coupled system of electrons and phonons in atomic
and molecular junctions within a single, unified atomistic
approach. We focus particularly on the calculation of the
EV coupling constants within the framework of DFT. We
have implemented a scheme that computes the EV cou-
plings, similar to the phonon modes, using density functional
perturbation theory (DFPT). The use of a Gaussian basis
allows us to calculate the required matrix elements semi-
analytically. In this way, we avoid finite differences, increase

the computational efficiency, and prevent numerical insta-
bilities especially for the low-frequency modes [43]. We test
the newly developed method at monovalent gold (Au) atomic
junctions and reproduce literature results for a well-studied
atomic chain configuration. Finally, we discuss the inelas-
tic signals in molecular junctions. Elaborating on theoretical
aspects of our previous work in Ref. [28], we study the IET
spectra of octane-based single-molecule junctions with thiol
and amine anchors. We focus especially on vibrations local-
ized on the octane molecule, which do not involve electrode
atoms.

According to the work program, this paper is organized as
follows. In Section 2, we introduce the theoretical method-
ology, define the theoretical model of the nanojunction in
Subsection 2.1, show how the electronic and vibrational
structure is obtained from DFT together with the EV cou-
plings in Subsection 2.2, and sketch the LOE to calculate the
inelastic corrections to the current in Subsection 2.3. In sec-
tion 3, we show applications of our method. We validate our
approach in Subsection 3.1 by analyzing a gold contact in
an atomic chain configuration, before we discuss the results
for the octane-based junctions in Subsection 3.2. Finally, we
conclude with a summary of our results in Section 4.

2 Method

2.1 Definition of the system We model the
nanoscale junctions as a central device region, containing
the atomic or molecular system of interest and parts of the
electrodes, which is connected to semi-infinite, crystalline
electrodes to the left and right. The “dynamical region” (DR),
where atoms can move and vibrations are considered, is usu-
ally identical to the device part, but can also be restricted
to a smaller subset of atoms. At the effective single-particle
level, the Hamiltonian of the coupled system of electrons and
vibrations is given by [40]

Ĥ = Ĥ
e + Ĥ

v + Ĥ
ev
, (1)

where the first term

Ĥ
e =

∑
μν

d̂†
μ
H e

μν
d̂ν (2)

describes the electronic system. H e
μν

= 〈
μ

∣∣Ĥ e

1

∣∣ν〉 are matrix
elements of the single-particle Hamiltonian, represented in
first quantization, in the nonorthogonal, atomic orbital basis
{|μ〉}, and d̂†

μ
(d̂μ) is the electron creation (annihilation) oper-

ator in that basis, satisfying the anticommutation relation
{d̂μ, d̂

†
ν
} = (S−1)μν. In the expression (S−1)μν is the inverse

of the overlap matrix Sμν = 〈μ|ν〉. The second term is the
Hamiltonian of the vibrations in the harmonic approximation,
given by

Ĥ
v =

∑
α

�ωαb̂
†
α
b̂α. (3)
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Here, ωα is the frequency of the vibrational mode α and
b̂†

α
(b̂α) is the corresponding phonon creation (annihilation)

operator, satisfying the commutation relation [b̂α, b̂
†
β] = δαβ.

The phonon frequencies ωα are obtained from the eigenvalue
problem

DCα = ω2
α
Cα, (4)

with the dynamical matrix

Dχξ = 1√
MkMl

Hχξ. (5)

Here, χ = (k, u) and ξ = (l, v) are shorthand notations that
refer both to the displacements of atoms k, l from the
equilibrium values of the positions Rk, Rl along the Carte-
sian components Rk,u, Rl,v with u, v = x, y, z as well as the
index pairs (k, u) and (l, v) themselves. The matrix Hχξ =
d2

Etot/dχdξ is the Hessian of the total energy Etot, and Mk, Ml

are atomic masses. The last term in the Hamiltonian

Ĥ
ev =

∑
μν

∑
α

d̂†
μ
λα

μν
d̂ν(b̂

†
α
+ b̂α) (6)

describes the first-order EV interaction. The EV coupling
constants are given as

λα

μν
=

(
�

2ωα

)1/2 ∑
χ

〈
μ

∣∣∣∣∣dĤ
e

1

dχ

∣∣∣∣∣ ν

〉
Aα

χ
, (7)

where Aα
χ

= Cα
χ
/
√

Mk are the mass-normalized normal
modes, obtained from the eigenvectors Cα

χ
of the dynamical

matrix in Eq. (4).

2.2 Description of the system within density
functional theory All parameters entering the Hamilto-
nian in Eq. (1) are obtained in the framework of DFT [44].
The basic idea of DFT is to find variationally the electron den-
sity, which delivers the lowest total energy Etot, and hence the
ground-state energy of the studied many-body system [45].
Most of the practical implementations of DFT are based on
the Kohn–Sham (KS) scheme, which maps the interacting
many-body problem onto an effective non-interacting single-
particle problem. We will make no distinction and simply
refer to this “KS DFT” as “DFT” from here on. A detailed
discussion of DFT can be found in the extensive literature
[36, 37, 46–49]. Here we will restrict ourselves to the formu-
las and relations that are relevant for the present discussion.
All of our calculations are based on the DFT implementa-
tion in the quantum chemistry package TURBOMOLE [50],
which uses real Gaussian atomic orbital basis functions.

Finding the ground-state energy in DFT requires the solu-
tion of the so-called KS equations. In the linear combination
of atomic orbitals ansatz, the KS orbitals are expanded in a
finite set of basis functions {〈r|μ〉 = φμ(r)}. The resulting

equations are solved self-consistently and are given by

Nb∑
ν=1

(
H e

μν
− εiSμν

)
cνi = 0, (8)

where Nb is the number of basis functions, εi is the energy
of molecular orbital i, cνi are the molecular orbital expansion
coefficients, and Sμν is the overlap matrix introduced above.
The matrix elements of the single-particle Hamiltonian in
first quantization H e

μν
are those of the KS “Fock” operator

Ĥ
e

1 = ĥ1 + Ĵ 1 + V̂ xc
1 . (9)

For a system of Ne electrons and Nn nuclei at positions Rk,
the first term of Ĥ

e

1 is given by the one-electron operator

ĥ1 =
∫

d3
r|r〉

[
− �

2

2me

∇2 +
Nn∑
k=1

Vk(r)

]
〈r|, (10)

where the electron mass is me and the electron–nucleus inter-
action is Vk(r) = −e2Zk/(4πε0 |r − Rk|) with the elementary
charge e = |e|, the vacuum permittivity ε0, and the atomic
number Zk of the k-th atom. The second term is the Coulomb
operator

Ĵ 1 = e2

4πε0

∫
d3

r|r〉
∫

d3
r′(r′)

1

|r − r′| 〈r|,

(11)

with the ground-state density

(r) =
∑
μν

φμ(r)Pμνφν(r) (12)

and the closed-shell density matrix

Pμν = 2
Ne/2∑
i=1

cμicνi. (13)

The last term in Eq. (9) is the exchange-correlation operator

V̂ xc
1 =

∫
d3

r|r〉V xc([]; r)〈r|, (14)

which is defined through the functional derivative of the
exchange correlation energy with respect to the charge
density, V xc([]; r) = δExc/δ(r). The precise form of the
exchange-correlation energy depends on the choice of
the functional F ([]; r) via

Exc =
∫

d3
rF ([]; r). (15)
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With these relations the electronic Hamiltonian Ĥ
e

in Eq. (1)
is determined.

To obtain the parameters of the remaining terms Ĥ
v

and
Ĥ

ev
in Eq. (1), we need an expression for the energy. The

total DFT ground-state energy is given by

Etot =
∑
μν

Pμνhμν + 1

2

∑
μνσκ

PμνPσκ

(
μν

∣∣σκ
) + Exc + V nn.

(16)

Here, hμν = 〈μ|ĥ1|ν〉,

(
μν

∣∣σκ
) = e2

4πε0

∫
d3

r

∫
d3

r′φμ(r)φν(r)

× 1

|r − r′|φσ(r′)φκ(r′) (17)

are four-center two-electron Coulomb integrals over Gaus-
sian basis functions, and the nuclear repulsion energy V nn =∑Nn

k=1

∑Nn

j>k
e2ZkZj/(4πε0|Rk − Rj|) is given by the last term.

The total energy, Eq. (17), depends explicitly on the nuclear
coordinates Rk and on the molecular orbital expansion coef-
ficients cμi. Moreover, via Eq. (8), the cμi depend also on the
nuclear coordinates.

To calculate the vibrational modes in the harmonic
approximation, we need the second derivatives of Etot with
respect to the nuclear displacements χ and ξ. They are given
by [51]

d2
Etot

dχdξ
= ∂2Etot

∂χ∂ξ
−

∑
μν

{
∂Wμν

∂ξ

∂Sμν

∂χ

− Wμν

∂
2
Sμν

∂χ∂ξ
+ ∂2Etot

∂Pμν∂χ

∂Pμν

∂ξ

}
. (18)

Here, we have defined the energy-weighted density matrix
Wμν = ∑Ne/2

i=1 cμiεicνi. Beside the derivatives of the one-
and two-electron integrals, Eq. (18) contains also first
derivatives of Wμν and Pμν with respect to χ. They are
obtained semi-analytically from DFPT by means of the
first-order coupled-perturbed KS equations [52–55]. The
calculation of the vibrational modes is performed with
TURBOMOLE’s coupled-perturbed KS implementation in
the module “aoforce” [51, 56].

To calculate the EV coupling elements we need, in addi-
tion to the mass-normalized normal modes Aα

χ
, the first

derivative of the KS operator with respect to the nuclear
displacements

dĤ
e

1

dχ
= ∂Ĥ

e

1

∂χ
+

∑
μν

∂Ĥ
e

1

∂Pμν

∂Pμν

∂χ
. (19)

The corresponding matrix elements

〈
μ

∣∣∣∣∣dĤ
e

1

dχ

∣∣∣∣∣ ν

〉
=

〈
μ

∣∣∣∣∣∂ĥ1

∂χ

∣∣∣∣∣ ν

〉
+

〈
μ

∣∣∣∣dĴ 1

dχ

∣∣∣∣ ν

〉

+
〈

μ

∣∣∣∣∣dV̂ xc
1,LDA

dχ

∣∣∣∣∣ ν

〉
(20)

are given by

〈
μ

∣∣∣∣∣∂ĥ1

∂χ

∣∣∣∣∣ ν

〉
= −

∫
d3

r

{[
∂φμ(r)

∂ξ

]
Vk(r)φν(r)

+ φμ(r)Vk(r)

[
∂φν(r)

∂ζ

]}
(21)

with χ = (k, u), while ξ = (kμ, u) and ζ = (kν, u) refer to
displacements of the center of the basis functions φμ and φν,
respectively, for the same Cartesian component u,

〈
μ

∣∣∣∣dĴ 1

dχ

∣∣∣∣ ν

〉

=
∑

σκ

{(
μν

∣∣σκ
) ∂Pσκ

∂χ
+ Pσκ

(
μν

∣∣ ∂

∂χ
[σκ]

)}
, (22)

and〈
μ

∣∣∣∣∣dV̂ xc
1,LDA

dχ

∣∣∣∣∣ ν

〉
=

∫
d3

rφμ(r)φν(r)
∂2FLDA((r))

∂2

×
∑

σκ

{
Pσκ

∂

∂χ
[φσ(r)φκ(r)]

+ φσ(r)φκ(r)
∂Pσκ

∂χ

}
. (23)

In the one-electron part, Eq. (21), we used the translational
invariance to rewrite the Hellmann–Feynman-like expres-
sion in terms of the derivatives of the basis functions [57].
For simplicity we have quoted the case of the LDA for the
derivative of the exchange-correlation operator, as indicated
by the subscripts, and discussed closed shell systems. Yet,
our implementation in the development version of TURBO-
MOLE handles LDA, GGA, and meta-GGA functionals in
the spin-restricted and spin-unrestricted case.

2.3 Electrical current including inelastic effects
due to EV interactions We model the atomic or molecu-
lar junctions through an extended central cluster (ECC) (see
Ref. [42] as well as Figs. 1 and 3), which contains the nar-
rowest constriction and large parts of the electrodes. It is
subsequently divided into a central (C) region and the parts
belonging to the left (L) and right (R) electrodes. From the
ECC, the information on the C region and its couplings to the
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L and R parts are extracted. For the description of the semi-
infinite, perfect-crystal electrodes in the L and R regions we
perform separate calculations to determine their bulk-like
electronic structure. We do not discuss them here, but all the
details can be found in Ref. [42].

Using the LOE in the EV coupling, as developed in
Ref. [40], we express the current through the C region

I = Iel + δIel + Iinel (24)

as the sum of the elastic contribution

Iel = 2e

h

∫
dEτ(E)[fL(E) − fR(E)], (25)

a quasi-elastic correction corresponding to the emission and
reabsorption of a virtual phonon, which does not change the
energy of the scattered electron,

δIel = 4e

h

∫
dEReTr[Γ L(E)Gr(E)Σr

ev(E)Gr(E)

× Γ R(E)Ga(E)][fL(E) − fR(E)], (26)

and an inelastic correction due to the emission or absorption
of a real phonon by an electron

Iinel = −i
2e

h

∫
dETr

[
Ga(E)Γ L(E)Gr(E)

× {
[fL(E) − 1]Σ<

ev(E) − fL(E)Σ>

ev(E)
}]

. (27)

Here, the Fermi function of the lead X = L, R is given
by fX(E) = f (E − μX) with f (E) = 1/[exp(βE) + 1], β =
1/(kBT ), the Boltzmann constant kB, and the temperature T .
We assume the electrochemical potentials in the L and R
electrodes to be μL = EF + U/2 and μR = EF − U/2 with
the Fermi energy EF and the potential U = eV due to the
applied bias.

In Eq. (25),

τ(E) = Tr [Gr(E)Γ R(E)Ga(E)Γ L(E)] =
∑

i

τi(E)

(28)

is the energy-dependent elastic transmission which can be
decomposed into the contribution of different transmission
eigenchannels i. With the techniques of Refs. [42, 58, 59],
both the eigenchannel transmission probability τi(E) as well
as the corresponding scattering-state wave-function Ψi(r, E)
can be determined. Ignoring the inelastic contributions, the
conductance at low temperatures and in the linear response
regime is G = G0τ(EF) with the quantum of conductance
G0 = 2e2/h.

The lowest-order EV self-energies are given by
[35, 40, 60, 61]

Σ≶
ev(E) = i

2π

∑
α

∫
dE′D≶

α
(E′)λαG≶(E − E′)λα (29)

and

Σr,a
ev (E) = Σr,a

H + Σr,a
F (E), (30)

where the two contributions in Σr,a
ev (E) are the Hartree term

Σr,a
H = − i

2π

∑
α

Dr
α
(0)λα

∫
dETr[G<(E)λα] (31)

and the Fock term

Σr,a
F (E) = i

2π

∑
α

∫
dE′[D<

α
(E′)λαGr,a(E − E′)λα

+ Dr,a
α

(E′)λαG>(E − E′)λα
]
. (32)

In the above and all the following equations, the summation
over α runs over all vibrations in the DR. For a number of
NDR atoms, this yields 3NDR modes. Typically, we choose
NDR equal to the number NC of atoms in the center, but it can
also be smaller.

We note that our Green’s function matrices G≶ are
identical to G±∓ of Ref. [40], and the corresponding self-
energies are connected by Σ≶ = −Σ±∓. Compared to Ref.
[35], Σr,a

ev (E) differs by the Hartree contribution Σr,a
H , which

is disregarded there. In the wide-band limit (WBL) approx-
imation, introduced further below [see Eqs. (62)–(64)], the
Hartree term yields no contribution to d2

I/dV 2.
The electronic Green’s functions are determined through

Gr(E) = [
ESCC − H e

CC − Σr
L(E) − Σr

R(E)
]−1

, (33)

G≶(E) = Gr(E)
[
Σ

≶
L (E) + Σ

≶
R (E)

]
Ga(E), (34)

and Ga = (Gr)†. In the LOE, the EV self-energy is not
included in Gr. The semi-infinite leads are taken into account
via the lead self-energies

Σr
X

(E) = (H e
CX

− ESCX)gr
XX

(E)(H e
XC − ESXC), (35)

Σ<

X
(E) = iΓ X(E)fX(E), (36)

Σ>

X
(E) = iΓ X(E)

[
fX(E) − 1

]
(37)

and linewidth-broadening matrices

Γ X(E) = −2ImΣr
X

(E). (38)

In the expressions, gr
XX

(E) = [(E + iε)SXX − H e
XX

]−1 is the
surface Green’s function of the semi-infinite lead X = L, R
with a small ε > 0.
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Following Ref. [40], we approximate the retarded
phonon Green’s function by the free propagator

Dr
α
(E) ≈ dr

α
(E) = 1

E − Eα + iη/2
− 1

E + Eα + iη/2
,

(39)

and the lesser and greater phonon Green’s functions are
expressed in terms of the non-equilibrium vibrational dis-
tribution function Nα(E) as

D<

α
(E) = −2πiNα(E)ρα(E), (40)

D>

α
(E) = −2πi[Nα(E) + 1]ρα(E). (41)

Here, Eα = �ωα are the bare vibrational energies.
The vibrational spectral density ρα(E) = −ImDr

α
(E)/π ≈

−Imdr
α
(E)/π is approximated by the imaginary part of the

free phonon Green’s function dr
α
(E). By keeping the infinites-

imal quantity η finite, we approximately account for the finite
life-time of the vibrations in the DR due to the coupling to
the electrodes and the environment. The vibrational spectral
density becomes

ρα(E) = 1

2π

[
η

(E − Eα)2 + η2/4
− η

(E + Eα)2 + η2/4

]
,

(42)

and the corresponding non-equilibrium voltage- and
temperature-dependent vibrational distribution function

Nα(E) = 1

2

ImΠ<
α

(E) − n(E)ηE/Eα

ImΠ r
α
(E) − ηE/(2Eα)

(43)

with the Bose function n(E) = 1/[exp(βE) − 1] describes
the heating and cooling effects in the DR. Here,

Π<

α
(E) = − i

2π

∫
dE′Tr

[
λαG<(E′)λαG>(E′ − E)

]
(44)

and

Π r
α
(E) = − i

2π

∫
dE′Tr

[
λαG<(E′)λαGa(E′ − E)

+ λαGr(E′)λαG<(E′ − E)
]

(45)

are the lesser and the retarded phonon self-energies. Using the
definitions of the transport coefficients as given in Ref. [40]

τ(E) = Tr [Gr(E)Γ R(E)Ga(E)Γ L(E)] , (46)

T in
σα

(E, E′) = Tr[Gr(Eσ)Γ R(Eσ)Ga(Eσ)λα

× Ga(E)Γ L(E)Gr(E)λα], (47)

T ec
σα

(E, E′) = 2ReTr[Gr(E)Γ R(E)Ga(E)

× Γ L(E)Gr(E)λαGr(Eσ)λα], (48)

T ecX
σα

(E, E′) = ImTr[Gr(E)Γ R(E)Ga(E)Γ L(E)Gr(E)

× λαGr(Eσ)Γ X(Eσ)Ga(Eσ)λα], (49)

JX

α
(E) = 1

π

∫
dE′ReDr

α
(E′)ReTr[Gr(E)

× Γ R(E)Ga(E)Γ L(E)Gr(E)λα

× Gr(E − E′)Γ X(E − E′)

× Ga(E − E′)λα]fX(E − E′), (50)

T II
α

(E) = 2ReTr[Gr(E)Γ R(E)Ga(E)Γ L(E)Gr(E)λα],

(51)

J IIX
α

= Dr
α
(0)

2π

∫
dETr[Gr(E)Γ X(E)Ga(E)λα]fX(E),

(52)

and the abbreviations X = L, R and Eσ = E + σE′ with σ =
±1, we can express the current formulas in Eqs. (25)–(27) as

Iel = 2e

h

∫
dEτ(E)

[
fL(E) − fR(E)

]
, (53)

δIel = 2e

h

∫
dE

∑
α

∑
σ=±1

σ

∫ ∞

0

dE′ρα(E′)

× [
T ec

σα
(E, E′)Nα(σE′)

+ T ecL
σα

(E, E′)fL(Eσ)

+ T ecR
σα

(E, E′)fR(Eσ)
] [

fL(E) − fR(E)
]

− 2e

h

∫
dE

∑
α

[
JL

α
(E) + JR

α
(E)

− T II
α

(E)
(
J IIL

α
+ J IIR

α

)] [
fL(E) − fR(E)

]
, (54)

Iinel = 2e

h

∫
dE

∑
α

∑
σ=±1

σ

∫ ∞

0

dE′ρα(E′)

× T in
σα

(E, E′)
{
Nα(σE′)fL(E)

[
1 − fR(Eσ)

]
+ Nα(−σE′)fR(Eσ)

[
1 − fL(E)

]}
. (55)

In the following calculations, we will assume in addition
that the energy-dependent electronic Green’s functions are
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constant around the Fermi energy EF. In this so-called WBL
the transport coefficients, defined in Eqs. (46)–(52), simplify
to

τ = Tr [GrΓ RGaΓ L]|EF
, (56)

T in
α

= Tr [GrΓ RGaλαGaΓ LG
rλα]|EF

, (57)

T ec
α

= 2ReTr [GrΓ RGaΓ LG
rλαGrλα]|EF

, (58)

T ecX
α

= ImTr [GrΓ RGaΓ LG
rλαGrΓ XGaλα]|EF

, (59)

T JX
α

= ReTr [GrΓ RGaΓ LG
rλαGrΓ XGaλα]|EF

, (60)

T II
α

= 2ReTr [GrΓ RGaΓ LG
rλα]|EF

. (61)

Not all integrals appearing in the expression for the current
do converge separately in the WBL. However, it is pos-
sible to combine them such that they converge, yielding
well-defined results. By doing so, one of the two energy
integrations can be carried out analytically, simplifying the
expressions for the current to

Iel = 2e

h
τU, (62)

δIel = 2e

h

∑
α

{∫ ∞

0

dEρα(E)
{

T ec
α [2Nα(E) + 1] U

+ (T ecL
α

+ T ecR
α

)[(E − U)n(E − U)

− (E + U)n(E + U) − U]
}

− 1

π
(T JR

α
− T JL

α
)

×
∫

dEReDr
α
(E)[En(E) − (E + U)n(E + U)]

+ 1

2
T II

α
Dr

α
(0)Tr[P neλα]U

}
, (63)

Iinel = 2e

h

∑
α

T in
α

∫ ∞

0

dEρα(E)

× [
2Nα(E)U + (E − U)n(E − U)

− (E + U)n(E + U)
]
. (64)

The remaining energy integration over E can be carried
out by standard numerical quadrature, and in Eq. (63) the
non-equilibrium density matrix P ne = −i

∫
dEG<(E)/π is

approximated by Eq. (13).

3 Results and discussion In this section, we will
apply the methodology of Section 2 to study the influence
of vibrations on electron transport. Regarding the compu-
tational details, all the calculations are performed with the
GGA exchange-correlation functional BP86 [62, 63] and
the module “ridft” of TURBOMOLE [50]. We use the
basis set def-SV(P) [64–66], which is of split-valence qual-
ity with polarization functions on all non-hydrogen atoms.
For Au atoms we use an electronic core potential to effi-
ciently deal with the innermost 60 electrons [67], while our
basis sets explicitly consider all electrons for the rest of the
atoms.

3.1 Gold atomic contacts To test and validate the
transport method, we examine a four-atom gold chain. It
is connected to two Au 〈100〉 electrodes, each consisting
of 45 atoms, as shown in Fig. 1a. We started from an ideal
geometry, constructed using a lattice constant of a = 4.08 Å.
Then, the C region, consisting of the four chain atoms
and the closest four atoms of each electrode (see Fig. 1a),
was fully relaxed, while the other atoms in the L and R
parts were kept fixed at their ideal face-centered cubic Bra-
vais lattice positions. This system has already been studied
with respect to its elastic conductance [68–70], transmission

Figure 1 (a) Chain of four Au atoms connected to Au electrodes. All atoms in the C region have been relaxed. The dynamical regions,
where atoms can vibrate, are marked as DR1 and DR2. (b) Energy-dependent transmission τ(E) and the four largest transmission
probabilities τ1(E) to τ4(E) of the eigenchannels. The Fermi energy EF is indicated by a vertical dashed line. (c) Wavefunctions Ψ1 to Ψ4

of the corresponding, left-incoming transmission eigenchannels, evaluated at the Fermi energy. The isosurface value is 0.012 Å
−3/2

for

Ψ1 and 0.004 Å
−3/2

for Ψ2 to Ψ4.
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eigenchannel wavefunctions [58], and inelastic signatures in
the current–voltage characteristics due to the EV coupling
[35]. It therefore serves as an ideal test system for our newly
developed method.

In Fig. 1b, the elastic transmission τ and the four largest
transmission eigenchannel probabilities, τ1 to τ4, are dis-
played as a function of energy. In agreement with previous
studies [42, 68–70], we find that τ(E) is roughly constant
around the Fermi energy EF = −5.0 eV and close to 1 for
energies between −5.5 and −2.0 eV. The peaks occurring
between −8.0 and −6.0 eV are due to Au d states. Consistent
with experimental results [71–73], we obtain a conductance
of G = 1.01G0. The channel decomposition of the transmis-
sion shows that at EF the transport is carried by one almost
completely transparent channel with τ1 = 0.996. The cor-
responding, left-incoming eigenchannel wavefunction Ψ1 in
Fig. 1c is evaluated at EF, using the procedure described in
Ref. [59]. It possesses rotational symmetry in the transport
direction along the chain, which is assumed to coincide with
the z axis. Due to this σ symmetry, Ψ1 is mainly formed from
the s and pz valence orbitals of the Au atoms. The phase-
factor is color-coded onto the isosurface of the wavefunction.
We observe that it changes continuously along the trans-
port direction, as expected for a propagating wave. The next
three transmission channels with τ2 = 0.009, τ3 = 0.003,
and τ4 = 0.003 arise from tails of transmission resonances of
d states around 1.5 eV below EF. These eigenchannels con-
stitute evanescent waves, decaying along the chain. For this
reason, we can choose the phase-factors such that the wave-
functions Ψ2 to Ψ4 are purely real in that region. Figure 1c
visualizes the d character of the wavefunctions on the Au
chain. The wavefunction Ψ2 of the second channel is mainly
attributed to d3z2−r2 states with σ symmetry along the trans-
port direction. Channels three and four of π symmetry are
almost degenerate at EF and their wavefunctions are formed
from Au chain dxz and dyz orbitals, respectively. The channels
involving the remaining two d states, dxy and dx2−y2 , have a
much smaller transmission and are not shown here.

So far we have just considered the energy-dependent
transmission of the elastic term, Eq. (25), of the total cur-
rent in Eq. (24). Now we include additionally the effects
due to the EV coupling, as described by Eqs. (26) and (27).
More precisely, we determine in the following the influ-
ence of vibrations on the electric current in the WBL, using
Eqs. (62)–(64).

We have considered two different DRs, where we take
the EV interaction into account (see Fig. 1a). In DR1, we
include the EV coupling just for the four chain atoms, in
DR2 for all Au atoms in the C region. DR1 with the four
dynamic atoms yields 12 vibrational modes, while the 12
dynamic atoms in DR2 lead to 36 modes. Figure 2a shows
all the vibrations for DR1 (degenerate transversal modes are
depicted only once), while we have selected only those for
DR2, which resemble the modes of DR1. Despite the relax-
ation of all the C atoms, the symmetry of the ideal contact
is only slightly perturbed. Hence the transverse modes (V4–
V6 and V8) remain basically twofold degenerate. Expanding

the vibrationally active region from DR1 to DR2 causes a
blue-shift of the frequencies for the four modes with the
highest energy (V1–V4). For the other four modes (V5–V8),
the frequencies are red-shifted instead. Overall, however, the
changes in the frequencies remain relatively small.

The calculated differential conductance as a function of
voltage and its derivative are shown in Fig. 2b and c for a
vibrational broadening of η = 0.01 meV. We observe that the
three longitudinal modes (V1–V3) lead to the largest change
in the current. Since the longitudinal modes mainly couple
to the first transmission channel due to symmetry, they tend
to decrease the conductance consistent with the “1/2 rule”
[74–76]. The mode V1 gives rise to the largest decrease of the
conductance followed by V2 and V3. Comparing the results
for DR1 and DR2, we find that the curves remain very simi-
lar, but the signals from V1 to V3 are shifted to higher bias
voltages for DR2, as expected from the frequency shifts in
Fig. 2a. The additional modes of DR2, which are mainly
localized in the electrodes, do not give rise to pronounced
signals in the dI/dV . The increase in the conductance at ener-
gies of the transversal mode V4 is due to its coupling to the
low-transmitting, d-like channels 3 and 4 [74–77]. Increas-
ing the temperature from T = 0.01 to 1.00 K tends to smear
out the sharp steps in the dI/dV . All the presented results for
DR1 are in good agreement with previous tight-binding and
ab initio studies [35, 40].

3.2 Single-molecule gold-octane-gold junctions
The electronic and vibrational properties of single-molecule
junctions are determined by the electrodes, the contacted
molecule and the molecule–electrode interfaces. They are
reflected in the IET spectra, which turn out to be a sen-
sitive probe to characterize the junctions. This regards for
instance molecule-specific signatures to prove the presence
of a particular molecule between the electrodes or sensitivity
to geometrical changes during the junction elongation.

In Ref. [28], we analyzed both experimentally and the-
oretically octanedithiol (ODT) and octanediamine (ODA)
single-molecule junctions. The focus was on the properties
of the metal–molecule interface, and we showed that the two
different anchoring groups give rise to qualitatively differ-
ent features in the IET spectra. For sulfur anchors, which
bind strongly to gold surfaces, the S–Au modes remained
approximately constant in energy during the junction elon-
gation. Additionally, we observed IET peaks corresponding
to the formation of gold chains. For the much weaker NH2–
Au bond we found instead a red-shift of the N–Au mode
with increasing electrode separation, and chain formation
was absent. Here we will extend this work and analyze theo-
retically in more detail the IET signals related to vibrational
modes localized on the molecule.

The ECC for the ODT and ODA junctions is shown in
Fig. 3a and b. It is divided into the L, C, and R regions
at the dashed lines indicated for the topmost geometries.
The two outermost layers of the Au electrodes are the L
and R parts. They are kept fixed at their ideal face-centered
cubic lattice positions, while the inner part or C region is
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Figure 2 (a) Vibrational modes for DR1 and DR2 with the dynamical regions defined as shown in Fig. 1a. For DR2 those modes are
displayed, which are mainly localized on the chain and resemble those of DR1. (b) Differential conductance as a function of voltage for
DR1 and DR2 at the temperatures of T = 0.01 and 1.00 K. (c) First derivative of the differential conductance plotted in (b).

relaxed to its ground-state geometry. The vibrationally active
region is identical to C. To simulate an adiabatic stretch-
ing of the molecular junctions, we proceed as described in
Ref. [28]. The electrodes to the left and the right are sep-
arated symmetrically by Δd = 0.2 a.u. ≈ 0.106 Å in each
step. In Fig. 3a and b selected stages of the stretching process
are displayed, and the elastic conductance for each electrode
separation is summarized in Fig. 3c. For ODA the depen-
dence of the conductance on the electrode separation is rather
weak, showing a slight increase until the contact breaks at
d = 1.48 Å. The overall length of the conductance plateau
for ODT is much longer than for ODA and the conductance-
distance trace exhibits several distinct features: At first, the
conductance remains roughly constant before a kink appears
at d = 2.75 Å. It coincides with a plastic deformation of
the contact, resulting in the formation of a gold chain (see
Fig. 3a). Before the contact breaks at d = 4.34 Å, the conduc-
tance increases with d roughly to its starting value at d = 0.
For a more detailed discussion we refer to our previous work
in Ref. [28].

Next, we discuss inelastic effects in electrical transport
due to the EV coupling by considering the IET spectra of the
ODT and ODA junctions. We use the same terminology for
the modes as in our Ref. [28] and refer the interested reader to
that work for its detailed description. We note that the char-
acterization of the vibrations in terms of molecule-internal
modes remains approximate due to the absence of molecu-
lar symmetries in the junctions. As compared to Ref. [28],
we focus here mainly on the vibrational modes of the octane
molecules that do not involve the Au electrodes.

For all the IET spectra, calculated within the WBL, we
assumed a temperature of T = 4.2 K and a vibrational broad-
ening of η = 1 meV. They describe the intrinsic line-width
broadening of the IET signals due to a finite temperature
and finite life-time of the vibrational modes, respectively.
In the experiments, the lock-in measurement technique con-
stitutes another source of broadening. It can be accounted
for by convoluting the d2

I/dV 2 with an instrumental func-
tion, which depends on the modulation voltage Vω, applied
to detect the IET characteristics [78, 79]. In Fig. 4, the effect
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Figure 3 Geometries for (a) ODT and (b) ODA molecules between Au electrodes at different electrode displacements. (c) Evolution of
the elastic conductance as a function of the displacement.

of this broadening on the IET spectra is demonstrated for
Vω = 5 mV, the modulation voltage used in Ref. [28]. The
additional smearing may prevent experimental resolution of
individual vibrational modes, if they are very close in energy.
Even if the lock-in broadening is important for the compari-
son of calculated IET spectra and measured ones, we neglect
it in the following calculations, as we did for the Au junc-
tions above. In this way we finely resolve all the vibrational
features and consider only the intrinsic broadening effects.

The electron–phonon coupling in ODT junctions has
already been the subject of several previous experimental
[24, 27, 28, 80, 81] and theoretical [82–84] studies. Our cal-
culated vibrational frequencies and IET spectra are consistent
with these works. The IET spectra for ODT and ODA, dis-
played in Fig. 4, are for a stretching distance of d = 0.42 Å,
where the molecules adopt a rather straight configuration
inside the junctions. At that d, the bond lengths dC−C and
bond angles αC−C−C are very similar for ODT and ODA.

When we compare the IET spectra at high energies from
145 to 200 meV, we find that the positions of the pronounced
peaks stemming from γw(CH2) and δs(CH2) modes, located
at 169 and 178 meV, respectively, are the same for ODT and
ODA. The position of the second γw(CH2) mode at 156 meV
for ODT and 163 meV for ODA differs slightly. For ODT
we observe small signals from γt(CH2) modes at 150 and
160 meV as well as a γt(CH2) + δt(CH2) mode at 145 meV,
which are absent for ODA. The very faint signal at 197 meV
can be attributed to a δs(NH2) vibration of the ODA anchor-
ing group. Between 110 and 145 meV, ν(C − C) modes give
rise to prominent features in the IET spectra. We can identify

three major peaks at slightly different energies. For ODT, the
ν(C–C) mode with the highest energy is located at 131 meV,
while it is slightly blue-shifted to 137 meV for ODA and
contains an additional γw(NH2) contribution. At 125 meV
we observe a clear ν(C–C) mode for both anchoring groups.
The third ν(C–C) mode is located at 118 meV for ODT and
at a slightly higher energy of 121 meV for ODA. While the
ν(C–C) modes with the highest and lowest energies are blue-
shifted for ODA as compared to ODT, the γt(CH2) mode is
red-shifted and located at 128 meV for ODT and 121 meV for
ODA. Not considering modes with a mixed character, we find
three signals involving the N atom of the amino anchoring
groups in the energy range: One δr(NH2) mode at 121 meV
and two modes ν(C–N), γw(NH2) at 116 meV. Between 70
and 110 meV there are no signatures of vibrational modes
present in the IET spectra for ODA. ODT on the other hand
shows some small signals belonging to δr(CH2) and δt(CH2)
vibrations between 90 and 105 meV. The magnitude of these
two IET signals is known to depend crucially on the pre-
cise contact geometry [83]. In contrast, the ν(C–S) mode at
86 meV gives rise to a dominant peak. At energies below
70 meV, the IET spectra of ODT and ODA differ substan-
tially. In that range, we observe most of the modes involving
the anchoring groups and the Au electrodes. Additionally, we
observe several δ(C–C–C) and δ(C–C–N) stretching modes
for ODA and some low-energy γw(CH2) and δr(CH2) modes
for ODT. The modes at very low energies are mainly local-
ized on the Au electrodes and shall not be discussed here.
Our results confirm that the characteristic peaks in the IET
spectra and their sensitivity to the precise contact geometry
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Figure 4 IET spectra without (black curve) and with (red curve)
lock-in broadening for ODT and ODA. When we separate modes
by a comma, there are several contributing to the same peak. When
we use “+”, a single mode has a mixed character.

can be used to infer the precise binding geometry and to dis-
tinguish between ODT and ODA, i.e., molecules that differ
only in their anchoring group [28].

The evolution of the IET spectra with increasing elec-
trode separation is displayed in Fig. 5 for both ODT and
ODA. Increasing d, increases dC−C and αC−C−C in the octane
molecule. This affects mainly vibrational modes involving
the carbon backbone. For ODA, the δ(C–C–C), δ(C–C–N)
and ν(C–C) modes are red-shifted by around 3 meV. The red-
shifts occurs continuously during the stretching process from
d = 0 until the contract breaks at d = 1.38 Å. The energy
of the modes involving the NH2 anchoring group [δs(NH2)]
and the CH2 units [γw(CH2), δs(CH2)] remains basically con-
stant. As expected, they are not influenced by the mechanical
stretching. For ODT a similar behavior is observed, but the
plastic deformation of the Au electrodes needs to be taken
into account. From d = 0 to d = 2.54 Å the ODT contact is
elastically deformed, building up stress in the molecule. As
for ODA, dC−C and αC−C−C are increased, resulting in a red-
shift of ν(C–C) modes by around 7–9 meV. For the modes
with clear CH2 character, the red-shift is smaller and does
not exceed 3 meV. The plastic deformation of the Au elec-
trode, occurring at around d = 2.75 Å, releases the stress
and allows dC−C and αC−C−C to restore their initial values.

Figure 5 IET spectra of the ODT and ODA junctions for different
electrode displacements.

This results in a blue-shift of the vibrational modes, which
take values slightly above their initial energy. The movement
of the peaks in the IET spectra in the subsequent elastic stage
until contact rupture is similar to the first one.

4 Conclusions We presented a new first-principles
approach to study the IET spectra of atomic and molecular
contacts. To achieve this, we extended the quantum chemistry
software package TURBOMOLE to compute the EV cou-
plings via an efficient and accurate semi-analytical derivative
scheme based on DFPT. This functionality will be available
in TURBOMOLE V6.6. It allows us to describe the cou-
pled system of electrons and phonons of the nanostructures
at the level of DFT without free parameters. Using a LOE
in terms of the EV coupling [40], we determined the influ-
ence of vibrations on the electrical current. This constitutes
an important extension of our previous capabilities to study
the elastic transport properties of nanoscale conductors [42].
Gold electrodes bridged by an atomic chain served as test sys-
tem and demonstrated that our approach is consistent with
experimental and theoretical studies in the literature.

Based on these theoretical developments, we studied the
IET spectra of ODT and ODA single-molecule junctions. We
extended our previous investigations in Ref. [28], where we
focused on the metal–molecule interface, by a more detailed
discussion of the molecular vibrations localized on the octane
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itself. We found that the vibrations of the alkane backbone
differ only slightly for the two different anchoring groups.
However, anchoring-group-specific modes could be clearly
resolved in the IET spectra, offering the possibility to dis-
tinguish between ODT and ODA. The sulfur and amine
anchors differ substantially in their binding strength to Au.
This resulted in a qualitatively different behavior of the junc-
tions during their elongation. While the ODA junction broke
at the weak Au–N bond, gold electrodes were plastically
deformed for ODT. Ultimately, the ODT junction ruptured
at a Au–Au bond and not the strong Au–S bond. During the
junction elongation, we observed a red-shift of δ(C − C − C)
and ν(C − C) modes for both anchoring groups due to the
increasing bond lengths dC−C and bond angles αC−C−C. The
methylene vibrations on the other hand were only slightly
affected by the increasing electrode separation. For ODT
the plastic deformation of the Au electrodes was reflected
also in the molecular vibrations. Due to the relaxation of
the stress built up during elastic stages, the plastic deforma-
tion lead to a decrease of dC−C and αC−C−C, blue-shifting the
corresponding vibrational modes. Subsequent elastic defor-
mations decreased their energies again.

So far, heating effects and the non-equilibrium distribu-
tion of the phonons are taken into account in an approximate
way in our ab initio calculations. The consideration of the
coupling of the vibrations in the central device region to
those in the electrodes [85, 86] constitutes a natural exten-
sion of the developed methodology. Work along these lines
combined with calculations for a larger set of atomic and
molecular junctions will allow new insights into the interac-
tion of electrons and phonons, important for challenges such
as the improved control of electron transport and heating in
electronic nanocircuits.
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