
Modeling elastic and photoassisted transport in organic molecular wires:
Length dependence and current-voltage characteristics

J. K. Viljas,1,2,* F. Pauly,1,2 and J. C. Cuevas3,1,2

1Institut für Theoretische Festkörperphysik and DFG-Center for Functional Nanostructures,
Universität Karlsruhe, D-76128 Karlsruhe, Germany

2Forschungszentrum Karlsruhe, Institut für Nanotechnologie, D-76021 Karlsruhe, Germany
3Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain

�Received 8 January 2008; revised manuscript received 2 March 2008; published 17 April 2008�

Using a �-orbital tight-binding model, we study the elastic and photoassisted transport properties of metal-
molecule-metal junctions based on oligophenylenes of varying lengths. The effect of monochromatic light is
modeled with an ac voltage over the contact. We first show how the low-bias transmission function can be
obtained analytically, using methods previously employed for simpler chain models. In particular, the decay
coefficient of the off-resonant transmission is extracted by considering both a finite-length chain and infinitely
extended polyphenylene. Based on these analytical results, we discuss the length dependence of the linear-
response conductance, the thermopower, and the light-induced enhancement of the conductance in the limit of
weak intensity and low frequency. In general, the conductance enhancement is calculated numerically as a
function of the light frequency. Finally, we compute the current-voltage characteristics at finite dc voltages and
show that in the low-voltage regime, the effect of low-frequency light is to induce current steps with a voltage
separation determined by twice the frequency. These effects are more pronounced for longer molecules. We
study two different profiles for the dc and ac voltages, and it is found that the results are robust with respect to
such variations. Although we concentrate here on the specific model of oligophenylenes, the results should be
qualitatively similar for many other organic molecules with a large enough electronic gap.
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I. INTRODUCTION

The use of single-molecule electrical contacts for opto-
electronic purposes such as light sources, light sensors, and
photovoltaic devices is an exciting idea. Yet, due to the dif-
ficulties that light-matter interactions in nanoscale systems
pose for theoretical and experimental investigations, the pos-
sibilities remain largely unexplored. Concerning experi-
ments, it has been shown that light can be used to change the
conformation of some molecules even when they are con-
tacted to metallic electrodes, thus enabling light-controlled
switching.1 Some evidence of photoassisted processes influ-
encing the conductance of laser-irradiated metallic atomic
contacts has also been obtained.2 Theoretical investigations
of light-related effects in molecular contacts are more
numerous,3–19 but they are mostly based on highly simplified
models, whose validity remains to be checked by more de-
tailed calculations20,21 and experiments. However, for the de-
scription of the basic phenomenology, model approaches can
be very fruitful, as they have been in studies of elastic trans-
port in the past. Properties of linear single-orbital tight-
binding �TB� chains, in particular, have been studied in de-
tail, and to a large part analytically.3,22–32 In a step toward a
more realistic description of the geometry, symmetries, and
the electronic structure of particular molecules, empirical TB
approaches such as the �extended� Hückel method have
proven useful.4,8,33–35

Based on a combination of density-functional calculations
and simple phenomenological considerations, we have re-
cently described the photoconductance of metal-oligo-
phenylene-metal junctions.5 It was discussed how the linear-
response conductance may increase by orders of magnitude

in the presence of light. This effect can be seen as the result
of a change in the character of the transport from off-
resonant to resonant, due to the presence of photoassisted
processes.5,7,8 Consequently, the decay of the conductance
with molecular length is slowed down, possibly even making
the conductance length independent.5,8

In this paper, we apply a Hückel-type TB model of
oligophenylene-based contacts36 combined with Green-
function methods4 to study the effects of monochromatic
light on the dc current in metal-oligophenylene-metal con-
tacts. Again, we concentrate on the dependence of these ef-
fects on the length of the molecule. We begin with a detailed
account of the elastic transport properties of the model and
show that the zero-bias transmission function can be ob-
tained analytically, similarly to simpler chain models.23,27 We
demonstrate how information about the length dependence of
the transmission function for a finite wire can be extracted
from an infinitely extended polymer. Based on these analyti-
cal results, we discuss the length dependences of the conduc-
tance and the photoconductance for low-intensity and low-
frequency light. While the conductance decays exponentially
with length, its relative enhancement due to light exhibits a
quadratic behavior. Here, we also briefly consider the ther-
mopower, whose length dependence is linear. Next, we cal-
culate numerically the zero-bias photoconductance as a func-
tion of the light frequency � and find that the conductance
enhancement due to light is typically very large.3,5,8 In par-
ticular, we show that the results of Ref. 5 are expected to be
robust with respect to variations in the assumed voltage pro-
files. Finally, we describe how the steplike current-voltage
�I-V� characteristics are modified by light. At high �, the
most obvious effect is the overall increase in the low-bias
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current. At low �, additional current steps similar to those in
microwave-irradiated superconducting tunnel junctions37,38

can be seen. Their separation, in our case of symmetric junc-
tions, is roughly 2�� /e.

TB models of the type we shall consider neglect various
interaction effects �see Sec. V for a discussion� and thus
cannot be expected to give quantitative predictions. How-
ever, the qualitative features of the results rely only on the
tunneling-barrier character of the molecular contacts, which
results from the fact that the Fermi energy of the metal lies in
the gap between the highest-occupied and lowest-unoccupied
molecular orbitals �HOMO and LUMO� of the molecule.
Thus, these features should remain similar for junctions
based on many other organic molecules exhibiting large
HOMO-LUMO gaps. The light-induced effects, if verified
experimentally, could be used for detecting light, or as an
optical gate �or “third terminal”� for purposes of switching.

The rest of the paper is organized as follows. In Sec. II,
we describe our theoretical approach, discuss the general
properties of TB wire models, and introduce the Green-
function method for the calculation of the elastic transmis-
sion function. Then, in Sec. III, we calculate the transmission
function of oligophenylene wires analytically. The decay co-
efficient for the off-resonant transmission is extracted also
from infinitely extended polyphenylene. Following that, in
Sec. IV, we present our numerical results for the conduc-
tance, the thermopower, the photoconductance, and the I-V
characteristics. Finally, Sec. V ends with our conclusions and
some discussion. Details on the calculation of the time-
averaged current in the presence of light are deferred to the
Appendixes. In Appendix A, a simplified interpretation of
the current formula is derived, and in Appendix B, a brief
account of the general method is given. Readers mainly in-
terested in the discussion of the results for the physical ob-
servables can skip most of Secs. II and III and proceed to
Sec. IV.

II. THEORETICAL FRAMEWORK

A. Transport formalism

Our treatment of the transport characteristics for the two-
terminal molecular wires is based on Green’s functions and
the Landauer-Büttiker formalism, or its generalizations. As-
suming the transport to be fully elastic, the dc electrical cur-
rent through a molecular wire can be described with

I�V� =
2e

h
� dE��E,V��fL�E� − fR�E�� . �1�

Here, V is the dc voltage and ��E ,V� is the voltage-
dependent transmission function, while fX�E�=1 / �exp��E
−�X� /kBTX�+1�, �X, and TX are the Fermi function, the elec-
trochemical potential, and the temperature of side X=L ,R,
respectively.39 The electrochemical potentials satisfy eV
=��=�L−�R, and we can choose them symmetrically as
�L=EF+eV /2 and �R=EF−eV /2, where EF is the Fermi en-
ergy. For studies of dc current, we always assume TL=TR
=0. Of particular experimental interest is the linear-response
conductance Gdc= ��I /�V�V=0, given by the Landauer formula

Gdc=G0��EF�, where G0=2e2 /h and ��E�=��E ,V=0�. In
most junctions based on organic oligomers, the transport can
be described as off-resonant tunneling. This results in the
well-known exponential decay of Gdc with the number N of
monomeric units in the molecule.40 At finite voltages V, the
current increases in a stepwise manner as molecular levels
begin to enter the bias window between �L and �R �Ref. 24�.
We shall consider both of these phenomena below.

If a small temperature difference �T=TL−TR at an aver-
age temperature T= �TL+TR� /2 is applied, heat currents and
thermoelectric effects can arise.36,41,42 In an open-circuit situ-
ation, where the net current I must vanish, a thermoelectric
voltage �� /e is generated to balance the thermal diffusion of
charge carriers. In the linear-response regime, the proportion-
ality constant S=−��� /e�T�I=0 is the Seebeck coefficient.
We will briefly consider this quantity below as an example of
an observable with a linear dependence on the molecular
length N but will not enter a more detailed discussion of
thermoelectricity or heat transport.

The quantity we are most interested in is the dc current in
the presence of monochromatic electromagnetic radiation,
which we refer to as light independently of its source or
frequency �. We model the light as an ac voltage with har-
monic time dependence V�t�=Vac cos��t� over the contact.
The current averaged over one period of V�t� can be written
in the form3,4,43

I�V;�,�� =
2e

h
�

k=−	

	 � dE��RL
�k��E,V;�,��fL�E�

− �LR
�k��E,V;�,��fR�E�� . �2�

Here, the transmission coefficient �RL
�k��E�, for example, de-

scribes photoassisted processes taking an electron from left
�L� to right �R�, under the absorption of a total of k photons
with energy ��. The parameter �=eVac /�� describes the
strength of the ac drive.44 It is determined by the intensity of
the incident light and possible field-enhancement effects tak-
ing place in the metallic nanocontact.45 Again, in addition to
the full I-V characteristics, we study in more detail the case
of linear response with respect to the dc bias, i.e., the pho-
toconductance Gdc�� ,��= ��I�V ;� ,�� /�V�V=0. The argu-
ments � and � distinguish it from the conductance Gdc, al-
though we sometimes omit � for notational simplicity. The
calculation of the coefficients �RL/LR

�k� �E� is rather complicated
in general,4 and we defer comments on this procedure to
Appendix B. Below, we shall mostly refer to an approximate
formula �see Appendix A� that can be expressed in terms of
��E�. This amounts to a treatment of the problem on the level
of the Tien-Gordon approach.3,37,46 The full Green-function
formalism for systems involving ac driving is presented in
Ref. 4.

In noninteracting �non-self-consistent� models, it is, in
general, not clear how the voltage drop should be divided
between the different regions of the wire and the electrode-
wire interfaces. A self-consistent treatment would be in or-
der, in particular, for asymmetrically coupled molecules. We
only concentrate on left-right symmetric junctions, where
both the dc and ac voltages �V and Vac� are assumed to drop
according to one of two different symmetrical profiles. The
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symmetry of the junctions excludes rectification effects, such
as light-induced dc photocurrents in the absence of a dc bias
voltage.3,9,45 However, light can still have a strong influence
on the transmission properties of the molecular contact, as
will be discussed below. It will be shown that our conclu-
sions are essentially independent of the assumed voltage pro-
file.

B. Wire models

Below, we will specialize to the case of a metal-
oligophenylene-metal junction. However, to make some gen-
eral remarks, let us first consider a larger class of molecular
wires that can be described as N separate units forming a
chain, where only the nearest neighbors are coupled �see Fig.
1�. We only discuss the calculation of the elastic transmission
function ��E ,V� here, as this will be the focus of our analyti-
cal considerations in Sec. III. From this quantity �at V=0�,
the various linear-response coefficients such as the conduc-
tance and the thermopower can be extracted. Furthermore, as
already mentioned, it suffices for an approximate treatment
of the amplitudes �RL

�k��E� as well.
We assume a basis �
p

���� of local �atomic� orbitals, where
p=1, . . . ,N indexes the unit, while �=1, . . . ,Mp denotes the
orbitals in each unit.47 For simplicity, the basis is taken to be
orthonormal, i.e., 	
p

��� �
q
����=����pq. The �time-indepen-

dent� Hamiltonian Hpq
��,��= 	
p

����Ĥ�
q
���� of the wire is then of

the block-tridiagonal form

H =

H11 H12

H21 H22 H23

� � �

HN−1,N−2 HN−1,N−1 HN−1,N

HN,N−1 HNN

� , �3�

where Hpq with p ,q=1, . . . ,N are Mp
Mq matrices. �The
unindicated matrix elements are all zeros.�

In the nonequilibrium Green-function picture, the effect
of coupling the chain to the electrodes is described in terms
of “lead self-energies.”48 We assume these to be located only
on the terminal blocks of the chain, with components �11
and �NN. The inverse of the stationary-state retarded propa-
gator for the coupled chain will then be of the form

F =

F11 h12

h21 h22 h23

� � �

hN−1,N−2 hN−1,N−1 hN−1,N

hN,N−1 FNN

� . �4�

Here, hp,p�1=−Hp,p�1, hpp=E+1pp−Hpp, and E+=E+ i0+,
while F11=h11−�11 and FNN=hNN−�NN. Charge-transfer ef-

fects between the molecule and the metallic electrodes shift
the molecular levels with respect to the Fermi energy EF. In
a TB model, these can be represented by shifting the diago-
nal elements of H. Once a transport voltage V is applied,
further shifts are induced. In our model, the voltage-induced
shifts will be taken from simple model profiles, and the rela-
tive position of EF will be treated as a free parameter.

Effective numerical ways of calculating the propagator
G=F−1 for block-tridiagonal Hamiltonians exist.49,50 In Sec.
III, we shall be interested in a special case, where Hp,p−1
=H−1, Hp,p+1=H1, and Hpp=H0 with the same H1=H−1

T and
H0 �of dimension Mp=M� for all p, describing an oligomer
of identical monomeric units. In such cases also, analytical
progress in calculating the current in Eq. �1� may be pos-
sible. Once the Green’s function G is known, the transmis-
sion function is given by48

��E,V� = Tr��11G1N�NN�G1N�†� , �5�

where �11=−2 Im �11 and �11�E ,V�=�11�E−eV /2�, for ex-
ample.

Typically, EF lies within the HOMO-LUMO gap, result-
ing in the exponential decay ��EF��e−��EF�N with N, charac-
teristic of off-resonant transport. The decay coefficient ��EF�
is actually independent of �11 and �NN. This can be seen by
considering the Dyson equation G=G+G�G, where G and
G are the Green’s function of the coupled and uncoupled
wires, respectively, and � is the matrix for the lead self-
energies. Assuming that G1N decays exponentially with N,
then

G1N 
 �1 − G11�11�−1G1N �6�

when N→	, and therefore G1N decays with the same expo-
nent. Thus, one can, in principle, obtain the decay exponent
from the propagator of an isolated molecule, or even an in-
finitely extended polymer. In the next section, we demon-
strate this by extracting the decay exponent of a finite oli-
gophenylene junction from the propagator for
polyphenylene. We note that in doing so, we neglect the
practical difficulty of determining the correct relative posi-
tion of EF.

There are efficient numerical methods for computing the
lead self-energies for different types of electrodes and vari-
ous bonding situations between them and the wire. Typically,
the methods are based on the calculation of surface Green’s
functions.51 Below, we shall simply treat the self-energies as
parameters.

III. PHENYL-RING-BASED WIRES

In this section, we discuss a special case of the type of
wire model introduced above, describing an oligomer of phe-
nyl rings coupled to each other via the para �p� position.36

The bias voltage V is assumed to be zero. In the special case
that we will consider, the inversion of Eq. �4� can then be
done analytically with the subdeterminant method familiar
from elementary linear algebra.23,24,27,32 Below, we first use
this method for calculating the propagator of the finite-wire
junction and derive the decay exponent ��E� of the transmis-
sion function at off-resonant energies. After that, we rederive

1 2 3

Σ 11 33ΣH H

H H

12 23

21 32

H H H
11 22 33

FIG. 1. �Color online� A finite block chain of length N=3 con-
nected to electrodes at its two ends. This gives rise to self-energies
�11 and �NN on the terminating blocks.

MODELING ELASTIC AND PHOTOASSISTED TRANSPORT… PHYSICAL REVIEW B 77, 155119 �2008�

155119-3



the decay exponent by considering an infinitely extended
polymer of phenyl rings.

A. Oligo-p-phenylene junction

Our model for the oligophenylene-based molecular junc-
tion is depicted in Fig. 2. Within a simple �-electron picture,
the electronic structure of the oligophenylene molecule can
be described with a nearest-neighbor TB model with two
different hopping elements −� and −� �Ref. 52�. Here, −� is
for hopping within a phenyl ring, between the p orbitals
oriented perpendicular to the ring plane, while −� describes
hopping between adjacent rings. Due to the symmetry of the
orbitals, the magnitude of � depends on the angle � between
the rings proportionally to cos � �Ref. 53�. We shall assume
that �=� cos �, and thus �����. In this way, the natural
energy scale of the model is set by � alone.

The ring-tilt angle � can be controlled to some extent
using side groups. For example, two side groups bonded to
adjacent phenyl rings can repel each other sterically, thus
increasing the corresponding tilt angle.53,54 In fact, even the
pure oligophenylenes in the uncharged state have �
=30° –40° due to the repulsion of the hydrogen atoms.36,53

However, side groups can introduce also “charging” or “dop-
ing” effects, which shift the molecular levels.55

For definiteness, we number the M =6 carbon atoms of a
phenyl ring according to the lower part of Fig. 2. The corre-
sponding orbitals appear in the basis in this order. Thus, the
blocks in Eq. �3� are

Hq,q =

�q

�1� − � − � 0 0 0

− � �q
�2� 0 − � 0 0

− � 0 �q
�3� 0 − � 0

0 − � 0 �q
�4� 0 − �

0 0 − � 0 �q
�5� − �

0 0 0 − � − � �q
�6�

� , �7�

for q=1, . . . ,N, and

Hq,q−1 =

0 0 0 0 0 − �

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

� , �8�

with Hq−1,q= �Hq,q−1�T. Here, the on-site energies �q
��� may be

shifted nonuniformly to describe effects of possible side
groups.36 For simplicity, we shall consider all phenyl rings to
have a similar chemical environment, and thus all on-site
energies are taken to be equal.

As a first step we note that, assuming �q
���=�q for all �, the

eigenvalues for the Hamiltonian Hqq of the isolated unit are
�q−�, �q+�, �q−�, �q+�, �q−2�, and �q+2�, while the cor-
responding orthonormalized eigenvectors are

1
�4

�0,− 1,1,− 1,1,0�T,
1
�4

�0,1,− 1,− 1,1,0�T,

1
�12

�− 2,− 1,− 1,1,1,2�T,
1

�12
�2,− 1,− 1,− 1,− 1,2�T,

1
�6

�1,1,1,1,1,1�T,
1
�6

�− 1,1,1,− 1,− 1,1�T. �9�

The first two of the eigenstates have zero weight on the ring-
connecting carbon atoms 1 and 6. Therefore, these eigen-
states do not hybridize with the levels of the adjacent rings
and consequently cannot take part in the transport. This will
be seen explicitly in the derivation of the propagator. We
note that these results can also be used to determine a real-
istic value for the hopping � from the HOMO-LUMO split-
ting of benzene.36

Below, we shall only consider the analytically solvable
case, where all on-site energies are set to the same value. We
choose this value as our zero of energy: �q

���=0 for all q
=1, . . . ,N and �=1, . . . ,M. Later on, we shall relax this as-
sumption in order to describe externally applied dc and ac
voltage profiles. In the absence of such voltages, the inverse
propagator �Eq. �4�� consists of the blocks hp,p=h0, hp,p−1
=h−1, and hp,p+1=h1, where

h0 =

E+ � � 0 0 0

� E+ 0 � 0 0

� 0 E+ 0 � 0

0 � 0 E+ 0 �

0 0 � 0 E+ �

0 0 0 � � E+

� ,

(α ) (α ) (α )

1 2 3

11
1 2 3

33Σ
ε ε ε

Σ

1

3

2 4

5

6

−η −η

−γ
−γ −γ

−γ −γ
−γ

FIG. 2. �Color online� A finite chain of length N=3 connected to
electrodes at its two ends. This gives rise to self-energies �11 and
�NN on the end sites. The nearest-neighbor hoppings inside the ring
�−�� and between the rings �−�� are different. The lower part indi-
cates also the numbering of the M =6 carbon atoms within a ring.
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h−1 =

0 0 0 0 0 �

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

� , �10�

and h1= �h−1�T. The leads are assumed to couple only to the
terminal carbon atoms, thus making the self-energy 6
6
matrices of the form

�11 =

�L 0 ¯ 0

0 0 ¯ 0

] ] � 0

0 0 0 0
�, �NN =


0 0 0 0

0 � ] ]

0 ¯ 0 0

0 ¯ 0 �R

� .

�11�

We also define the symbol “tilde” �̃ �, which means the re-
placement of the first column of a matrix by � followed by
zeros. For example,

h̃0 =

� � � 0 0 0

0 E+ 0 � 0 0

0 0 E+ 0 � 0

0 � 0 E+ 0 �

0 0 � 0 E+ �

0 0 0 � � E+

� . �12�

For the evaluation of Eq. �5�, we only need the component
G1,MN= �G1N�1M. Using the subdeterminants of F=G−1, we
have

G1,MN =
�− 1�MN+1 det�F�MN�1��

det�F�
. �13�

Here, O�i , . . . ,k � j , . . . , l� is the submatrix of O obtained by
removing the rows i , . . . ,k, and columns j , . . . , l. We shall
also denote by L and R the “leftmost” and “rightmost” rows
or column of a matrix, respectively. Thus, for example,
det�F�MN �1��=det�F�R �L��.

Let us first concentrate on the denominator of Eq. �13�. It
is easy to see that det�F� can be written in terms of determi-
nants related to the inverse Green’s function F=G−1 of the
uncoupled wire as follows:23

det�F� = det�F� − �L det�F�L�L�� − �R det�F�R�R��

+ �L�R det�F�L,R�L,R�� . �14�

Furthermore, due to the symmetry of the molecule,
det�F�R �R��=det�F�L �L��. Thus, we are left with calculat-
ing three types of determinants. It can be shown that, for 1
�n�N, all of them satisfy a recursion relation of the form

�D�n�

D̃�n�� = �E+
2 − �2�Y�D�n−1�

D̃�n−1��
= �E+

2 − �2��a − c

c b
��D�n−1�

D̃�n−1�� . �15�

For example, in the calculation of det�F�, we have D�n�

=det�F�n�� and D̃�n�=det�F̃�n��, where the additional super-
script �n� on the matrices denotes the number of the M

M diagonal blocks. The elements of the matrix Y are given
by

a = �E+
2 − �2��E+

2 − 4�2� ,

b = − �2�E+
2 − �2� ,

c = �E+�E+
2 − 3�2� . �16�

Only the initial condition �n=1� and the last step of the re-
cursion �n=N� will differ for the three determinants. The
recursion relations can be solved by calculating Yn explicitly,
which can be done by diagonalizing Y. The eigenvalues of Y
are �1,2= �a+b���a−b�2−4c2� /2, while the �unnormalized�
eigenvectors are

v1,2 = �a − b � ��a − b�2 − 4c2

2c
,1�T

. �17�

Then, if V= �v1 ,v2� and �=diag��1 ,�2�, we have Yn

=V�nV−1. The result is

Yn = �y11
�n� y12

�n�

y21
�n� y22

�n� � , �18�

where the components are given by

y11
�n� =

��1
n − �2

n��b − a� + ��1
n + �2

n���a − b�2 − 4c2

2��a − b�2 − 4c2
,

y22
�n� =

��1
n − �2

n��a − b� + ��1
n + �2

n���a − b�2 − 4c2

2��a − b�2 − 4c2
,

y12
�n� = − y21

�n� =
c��1

n − �2
n�

��a − b�2 − 4c2
. �19�

Using these, we can now write explicit expressions for the
three required determinants. For det�F�, the recursion can be

started at n=1 with the initial conditions D�0�=1 and D̃�0�

=0 and carried out up to n=N. The result is

det�F�N�� = �E+
2 − �2�Ny11

�N�. �20�

The other two determinants require special initial and final
steps, and the results are

det�F�N��L�L�� = �E+
2 − �2�Ny21

�N�/� ,

det�F�N��L,R�L,R�� = �E+
2 − �2�N�y21

�N−1�c − y22
�N−1�b�/�2.

�21�
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Next, we consider the determinant in the numerator of Eq.
�13�, det�F�N��R �L��=det�F�N��R �L��. It can easily be shown
that it satisfies the recursion relation

det�F�N��R�L�� = 2��3�E+
2 − �2�det�F�N−1��R�L�� �22�

and so

det�F�N��R�L�� = 2N���3�N�E+
2 − �2�N/� . �23�

Now, the Green’s function of Eq. �13� can be written as

G1,MN =
− �2��3�N/�

y11
�N� + �LRy21

�N�/� + �L�R�y21
�N−1�c − y22

�N−1�b�/�2 ,

�24�

where we used the shorthand �LR=�L+�R.
It is notable that the common �E+

2 −�2�N factors canceled
out from the final propagator. These factors apparently cor-
respond to the two eigenvectors of h0 �Eq. �9�� having zero
weight on the ring-connecting atoms 1 and 6. The cancella-
tion is a manifestation of the physical fact that such localized
states cannot contribute to the transport through the mol-
ecule. In the infinite polymer to be discussed below, these
states appear as completely flatbands in the band structure.

To conclude this part, we point out that for E inside the
HOMO-LUMO gap �more precisely, when �a−b�2−4c2�0�,
the eigenvalues �1,2 are real valued and the decay exponent
of the transmission ��E� for large N is controlled by the one
with a larger absolute value. Since inside the gap E
0, we
find that �2��1�0. Then, using Eq. �5� and omitting
N-independent prefactors, the decay of the transmission for
large N follows the law

��E� � ��2�E�
2��3 �−2N

= e−2N ln��2�E�/�2��3��. �25�

Thus, the decay exponent is given by

��E� = 2 ln��2�E�/�2��3�� . �26�

We note that for resonant energies, oscillatory dependence of
��E� on N can be expected, instead, and for limiting cases
also power-law decay is possible.32 Next, we shall reproduce
the result for the decay exponent by considering an infinitely
extended polymer.

B. Poly-p-phenylene

For comparison with the “correct” evaluation of the
propagator and the decay coefficient for a finite chain, let us
consider the propagator for an infinitely extended polymer.
To describe the polymer, we start from a finite chain with
periodic boundary conditions. Neglecting curvature effects,
the latter actually represents a ring-shaped oligomer, as de-
picted in Fig. 3�a�.

Let us first consider the eigenstates of the periodic chain.

The Hamiltonian Hpq
��,��= 	
p

����Ĥ�
q
���� is of the general form

H =

H0 H1 H−1

H−1 H0 H1

� � �

H−1 H0 H1

H1 H−1 H0

� , �27�

where H0,�1 are the M 
M matrices �M =6� of Eqs. �7� and
�8�, with �q

���=0. �Again, only nonzero elements are indi-
cated.� The normalized eigenvectors �p

�n��k� satisfying

�
q

Hpq�q
�n��k� = E�n��k��p

�n��k� �28�

are of the Bloch form �q
�n��k�=eikqd��n��k� /�N, where

��n��k� are the normalized eigenvectors of

H�k� = eikdH1 + H0 + e−ikdH−1 �29�

with the eigenvalue E�n��k�, and n=1, . . . ,M. Due to the fi-
niteness of the wire, the k values are restricted to k�

=2�� /Nd, where � is an integer and d is the lattice constant
�the length of a single phenyl-ring unit�.

The spectral decomposition of the �retarded� propagator
g�E�= �E+1−H�−1 of the chain is of the form

gpq
��,���E� = �

�,n

	
p
������n��k���	��n��k���
q

����
E+ − E�n��k��

, �30�

with the Bloch states

���n��k��� =
1

�N
�

p=−�N/2�+1

�N/2�
eik�pd�

�=1

M

��
�n��k���
p

���� . �31�

In the limit of large N �Fig. 3�b��, we can use N−1��

→ �d /2���−�/d
�/d dk to turn the summation into an integral over

the first Brillouin zone. In this case, there are M =6 bands
with energies

E�1,2��k� = � � ,

E�3,4��k� = �
1
�2

��2 + 5�2 − 2B�k� ,

(a)

(b)
1 2

3

4

N

−η −γ

−γ

−γ
−γ

−γ
−γ

FIG. 3. �Color online� Phenyl-ring chains: �a� a periodic chain
with N units and �b� an infinite chain. Case �b� is obtained from �a�
in the limit N→	.
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E�5,6��k� = �
1
�2

��2 + 5�2 + 2B�k� , �32�

where

B�k� =
1

2
���2 + 3�2�2 + 16��3 cos�kd� . �33�

Clearly, we have the symmetries E�1��k�=−E�2��k�, E�3��k�
=−E�4��k�, and E�5��k�=−E�6��k�. For n=1,2, the bands are
completely flat, and the corresponding eigenvectors ��1,2��k�
are as in Eq. �9�, i.e., independent of k and completely local-
ized on atoms �=2,3 ,4 ,5. Thus, for p�q, they do not con-
tribute to the propagator in Eq. �30�. For n=3,4 ,5 ,6, the
vectors are very complicated, but they are not needed in the
following.

To compare with the result of Sec. III A, we should now
calculate, for example, the component gpq

�1,6�. However, ex-
pecting the decay exponent to be independent of � and �, we
consider the simpler case Tr�gpq�=��gpq

��,��. Due to the ortho-
normality ����

�m��
�

�n�*=�mn, the dependence on the vector
components then drops out. Thus, for p�q,

�
�

gpq
��,�� = 4EA

d

2�
�

−�/d

�/d

dk
eikd�p−q�

A2 − B2�k�
, �34�

where we defined

A = E+
2 −

1

2
��2 + 5�2� , �35�

such that E+
2 − ���3,5��k��2=A�B�k�. Defining now z=eikd, the

integral can be turned into a contour integral around the con-
tour �z � =1,

�
�

gpq
��,�� = −

2EA

2�i��3�
�z�=1

dz
zp−q

�z − z+��z − z−�
, �36�

where the poles z� are determined from the equation z2

− �4A2− ��2+3�2�2��8��3�−1z+1=0. They are given by

z� =
4A2 − ��2 + 3�2�2

16��3 ���4A2 − ��2 + 3�2�2

16��3 �2

− 1

�37�

such that z+=1 /z−, and we choose the signs so that z− is
inside the contour �z � =1. In addition to this, assuming that
p�q, there is a pole of order q− p at z=0. The integral can
then be evaluated using residue techniques, with the result

�
�

gpq
��,�� =

2EA

��3

z+
p−q

z+ − z−
. �38�

This leads to an exponential decay of the propagator with
growing q− p�0 when E is off-resonant �in which case z�

are real valued�. Using this result, we can give an estimate
for the decay of the transmission function �Eq. �5�� through a
finite chain of length N by replacing G1,MN with Tr�g1N� /M.
This yields

��E� � �z+�E��−2N = e−2N ln�z+�E��, �39�

and thus the exponent

��E� = 2 ln�z+�E�� . �40�

It can be checked that this result is, in fact, equal to the result
�Eq. �26�� obtained for the finite chain.

It is thus seen explicitly that the decay coefficient of the
off-resonant transmission does not in any way depend on the
coupling of the molecule to the leads. It should be kept in
mind, however, that the relative position of EF within the
HOMO-LUMO gap depends on the electrode-lead coupling
and the charge-transfer effects. This information is still
needed for predicting the decay exponent ��EF� of the con-
ductance.

The analytical results presented in this and the previous
section can be used for understanding the behavior of the
transmission function upon changes in the parameters. For
example, it should be noted that when � is made smaller, the
band gap around E
0 becomes larger, and at the same time
the decay exponent ��E� grows. In this way, the conductance
of a molecular junction can be controlled, for example, by
introducing side groups to control the tilt angles � between
the phenyl rings.36,53

IV. PHYSICAL OBSERVABLES AND NUMERICAL
RESULTS

In this section, we present numerical results based on our
model. Throughout, we employ the “wide-band” approxima-
tion for the lead self-energies, such that �L�E�=−i�L /2 and
�R�E�=−i�R /2, with energy-independent constants �L,R.
Furthermore we only consider the symmetric case �L=�R
=�. First, we briefly describe how we generalize the theory,
as presented above, to take into account static and time-
dependent voltage profiles. Then, we concentrate on near-
equilibrium �or “linear-response”� properties, using as ex-
amples the conductance, the thermopower, and the
conductance enhancement due to light with low intensity and
frequency. In this case, knowledge of the zero-bias transmis-
sion function calculated above is sufficient, and we can dis-
cuss the length dependence of the transport properties in a
simple way. After that, we consider the dc current in the
presence of an ac driving field of more general amplitude
and frequency, first concentrating on the case of infinitesimal
dc bias and finally on the I-V characteristics.

A. Voltage profiles

When considering finite dc or ac biases within a non-self-
consistent TB model that cannot account for screening ef-
fects, one of the obvious problems is how to choose the
voltage profile. Throughout the discussion, we shall refer to
two possible choices, as depicted in Fig. 4. They are in some
sense limiting cases, and the physically most reasonable
choice should lie somewhere in between. Profile A assumes
the external electric fields to be completely screened inside
the molecule, such that the on-site energies are not modified,
while B corresponds to the complete absence of such screen-
ing. In both cases, we can write the time-dependent on-site
energies as �p

����t�=eV�t�P�zp
����, where zp

��� are the distances
of the carbon atoms from the left metal surface, and V�t�
=V+Vac cos��t�. In case A, P�z�=0 inside the junction,
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while in case B P�z�= �L−2z� / �2L�, where L=Nd+d /3 is the
distance between the two metal surfaces.

The profile B is more complicated, because the voltage
ramp breaks the homogeneity of the wire. In this case, the
current must be calculated with the method outlined in Ap-
pendix B. In the case of profile A, however, the I-V charac-
teristics can be calculated based on the knowledge of the
zero-bias transmission function in the absence of light, ��E�.
As discussed in Appendix A, the current is given by3,46,56

I�V;�,�� =
2e

h
�

l=−	

	 �Jl��

2
��2� dE��E + l����fL�E� − fR�E�� .

�41�

The low-temperature zero-bias conductance then takes the
particularly simple form4,5

Gdc��,�� = G0 �
l=−	

	 �Jl��

2
��2

��EF + l��� . �42�

Here, l indexes the number of absorbed or emitted photons,
Jl�x� is a Bessel function of the first kind �of order l�, and
�=eVac /�� is the dimensionless parameter describing the
strength of the ac drive. Note that Gdc�� ,�=0�=Gdc��
=0,��=G0��EF�=Gdc. Equation �41� may equally well be
written in the form37,57

I�V;�,�� = �
l=−	

	 �Jl��

2
��2

I0�V + 2l��/e� , �43�

where I0�V� is the I-V characteristic in the absence of light
�Eq. �1��. Below, the results from these formulas are com-
pared to the numerical results for profile B.

In Fig. 5, we plot the zero-bias transmission functions for
wires with N between 1 and 7. Notice that the four energy
bands numbered 3–6 in Eq. �32� are all visible, being sepa-
rated by the HOMO-LUMO gap at E /�
0 and the addi-
tional gaps at E /�
 �1.7. Here, we use the parameters
� /�=5.0, �=40° �i.e., � /�
0.77�, and set the Fermi energy
to EF /�=−0.4. These values are close to those used in Ref.
36, where they were extracted from a fit to results for gold-
oligophenylene-gold contacts based on density-functional

theory �DFT�. We shall continue to use them everywhere
below. A DFT calculation for the HOMO-LUMO splitting of
benzene, together with the results preceding Eq. �9�, yields
the hopping �
3 eV. The length of a phenyl-ring unit is
approximately d=0.44 nm, and the largest ac electric fields
Vac /L considered will be on the order of 109 V /m. The pho-
ton energies �� will mainly be kept below the energy of the
HOMO-LUMO gap of the oligophenylene.

B. Near-equilibrium properties

Let us start by illustrating the usefulness of the analytical
results of Sec. III with a few examples. We concentrate on
low temperatures and small deviations from equilibrium. In
addition to the linear-response conductance

Gdc = G0��EF� , �44�

we shall consider the thermopower, or Seebeck coefficient.
At low enough temperature T, this is given in terms of the
zero-bias transmission function ��E� as28,41,58,59

S = −
�2kB

2T

3e

���EF�
��EF�

, �45�

where prime denotes a derivative. Thus, it measures the loga-
rithmic first derivative of the transmission function at E
=EF. The sign of this quantity carries information about the
location of the Fermi energy within the HOMO-LUMO gap
of molecular junction.41 The third quantity we shall consider
is the photoconductance. In the limit ��1 and �� /��1, we
can expand ��E� and the Bessel functions in Eq. �42� �see
Appendix A� to leading order in these small quantities, yield-
ing Gdc���=G0��EF�+G0�����2���EF� /16. Defining then
the light-induced conductance correction �Gdc���=Gdc���
−Gdc��=0�, where Gdc��=0�=Gdc=G0��EF�, the relative
correction becomes

�Gdc��,��
Gdc

=
�����2

16

���EF�
��EF�

. �46�

We thus see that this quantity gives experimental access to
the second derivative of the transmission function at E=EF.
Note that in this approximation, which can be seen as an

d / 6

d / 3 d / 3 d / 3

(a)
d

L

(b)
( z )PB

A

z

FIG. 4. �Color online� �a� The coordinates of the carbon atoms
in the direction z along the molecular wire. The left electrode is at
z=0 and the length of a phenyl-ring unit is d. �b� Relative variation
of the on-site energies for two different voltage profiles, A and B.
The profile function P�z� describes how the harmonic voltage
V�t�=V+Vac cos��t� is assumed to drop over the junction, the volt-
age at z being given by V�z , t�=V�t�P�z�.
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FIG. 5. �Color online� Transmission functions for the oligophe-
nylene wires with lengths N=1,3 ,5 ,7. The parameters are � /�
=0.5, �=40°, and EF /�=−0.4, as discussed in the text.
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adiabatic or “classical” limit,57 the conductance correction
depends only on the driving field through the ac amplitude
Vac=��� /e.

As discussed above, it is reasonable to assume that for
large enough N, the transmission function ��E� satisfies the
exponential decay law

��E� � C�E�e−��E�N �47�

at the off-resonant energies E
EF. Let us furthermore as-
sume that C�E� is only weakly E dependent. Then, it is clear
that the Seebeck coefficient will have the following simple
linear dependence on N �Refs. 28 and 36�:

S � ���EF�/��EF� � − ���EF�N . �48�

In contrast, the light-induced conductance correction satisfies
a quadratic law

�Gdc���/Gdc � ���EF�/��EF� � − ���EF�N + ����EF��2N2.

�49�

Deviations from these laws can follow from the energy de-
pendence of C�E�.

In Fig. 6, we demonstrate these length dependences
within our model for the oligophenylene junctions. The
circles connected by lines show the results based on the
transmission functions of Fig. 5, using Eqs. �44�–�46�. The
separate solid lines are the estimates of Eqs. �47�–�49�, based
on the analytic result for ��E�. The result for �Gdc��� /Gdc is
furthermore compared with some example results for finite �
and �, using �=0.5 and �� /�=0.05 �see below�. Although
Eq. �46� was derived above by assuming profile A, the result
appears to be rather well satisfied for profile B as well.

C. Zero-bias conductance at finite drive
frequencies and amplitudes

Next we consider the zero-bias photoconductance Gdc���
for light whose frequencies and intensities are not restricted

to the adiabatic limit. We have discussed this case previously,
based on DFT results for gold-oligophenylene-gold
contacts.5 There, however, the analysis was based solely on
the simple formula of Eq. �42�. Here, we show that those
results are not expected to change in an essential way within
a more refined theory, since the results of our TB model are
not very different for the two voltage profiles A and B. This
is seen in Fig. 7, where we show Gdc��� for N=1, . . . ,4 as a
function of � for two values of �, and for both profiles. The
results for profile A again follow from Eq. �42�, but the re-
sults for B require a more demanding numerical calculation
�see Appendix B�. In both cases, the effect of light is to
increase the conductance considerably. The physical reason
is that the photoassisted processes, where electrons emit or
absorb radiation quanta, bring the electrons to energies out-
side of the HOMO-LUMO gap, where the transmission prob-
ability is higher. This happens when �� exceeds the energy
difference between the Fermi energy and the closest molecu-
lar orbital, in this case the HOMO. The main difference be-
tween the two profiles is that in case B, the sharp resonances
at some frequencies are smeared out, and thus the light-
induced conductance enhancement tends to be smaller. The
increase can still be an order of magnitude or more.

The dependence of this effect on the length of the mol-
ecule is still illustrated in Fig. 8, where the conductances in
the absence of light and in the presence of light with �� /�
=0.5 and �=1.5 are shown as a function of N. While the
conductance in the absence of light has a strong exponential
decay, in the presence of light, this decay is much slower. For
profile A, the conductance actually oscillates periodically,
while in the case of profile B, the oscillations are superim-
posed on a background of slow exponential decay. In the
DFT-based results,5 the oscillations were not present, or at
least not visible for the cases N=1, . . . ,4 considered there.
Indeed, they are likely to be artifacts of the our TB model
that neglects all other than �-orbital contributions, as well as
uses the wide-band approximation.

The results of Fig. 8 can also be stated in terms of the
relative conductance enhancement �Gdc��� /Gdc. For large �

10
-8

10
-6

10
-4

10
-2

10
0

G
dc

/G
0

0 4 8 12
N

0
10
20
30
40
50

S
/(

k B2 π2 T
/3

eγ
)

0 4 8 12
N

0

50

100

150

(∆
G

dc
/G

dc
)

/(
α

h_
ω

/γ
)

2(a)

(b)

(c)

FIG. 6. �Color online� Dependence of observables on the num-
ber of units N: �a� conductance, �b� Seebeck coefficient, and �c� the
light-induced relative conductance enhancement. The circles corre-
spond to values extracted from the ��E� function �Fig. 5� using Eqs.
�44�–�46�. The red lines correspond to the simple order-of-
magnitude estimates of Eqs. �47�–�49�, with the analytically calcu-
lated ��E�. In �c�, the crosses �
 for profile A and � for profile B�
show numerical results with the finite values �=0.5 and �� /�
=0.05 �see Sec. IV C�.
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FIG. 7. �Color online� Zero-bias conductance for different driv-
ing frequencies � and driving strengths �=eVac /��. Panels �a�–�d�
are for N=1, . . . ,4. The solid lines correspond to profile A, and the
dashed lines to profile B. The lower pair of curves is for �=0.5, and
the upper pair for �=2.0.
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and �, the increase of this quantity with N is exponential for
both profiles A and B. This should be contrasted with the
quadratic behavior for small � and � �Eq. �49��. Thus, the
fact that the results indicated by the crosses in Fig. 6 exceed
the result of Eq. �46� is understandable.

D. Current-voltage characteristics

Finally, we discuss the effects of light at finite voltages V.
Let us first consider the properties of the I-V characteristics
in the absence of light. Examples are shown in Fig. 9�a� for
the case N=5. They consist of consecutive steps,60 which
appear every time a new molecular level comes into the bias
window between �L and �R. These steps are seen as peaks 1
and 2 in the differential conductance dI /dV shown in Fig.
9�b�. The first one occurs roughly at the voltage V1=2�EF
−EHOMO� /e, where EHOMO is the energy of the HOMO. The
factor of 2 arises from the symmetric division of the voltages
with respect to the molecular energy levels. In the case of
profile B, the currents tend to be smaller than for profile A,
but the current steps occur at roughly the same voltages. It
should also be noticed that for profile B, a small negative
differential conductance is present following some of the
steps. The origin of this is the localization of the molecular
eigenstates due to the dc voltage ramp, which suppresses the
transmission resonances.24 This can be seen in the voltage-
dependent transmission functions ��E ,V� in Fig. 10.

In the presence of light, the step structure of the I-V
curves is modified. For profile A, the results follow simply
from Eq. �41� or �43�, but for profile B, a fully numerical
treatment is again needed. In Fig. 9, the results for �=1.5
and �� /�=0.075 are shown as the curves indicated with
arrows. In Fig. 9�a�, it is seen that the current for voltages
below the steps is increased and decreased above them. This
removes the negative differential conductance present in the
case of profile B. These changes are associated with the ap-
pearance of additional current steps. Here, we concentrate
only on the additional steps in the low-bias regime at volt-
ages V�V1, as the relative changes are largest there. Figure
9�c� shows the differential conductance on a logarithmic

scale in this voltage region. It can be seen that there are
multiple extra peaks below the main peak, all of which are
separated by voltages 2�� /e from each other. These peaks
are “images” of the main peak at V=V1 and are easily un-
derstood based on Eq. �43�. For profile B, all the peaks are
moved to slightly smaller voltages and their spacing is re-
duced, since finite voltages tend to also suppress the trans-
mission gap �see again Fig. 10�. Notice that, in contrast to
high dc biases �Figs. 9�a� and 9�b��, in the low-bias regime
�Fig. 9�c��, the results depend only weakly on the choice of
the voltage profile. Thus, the predictions of the model appear
to be robust. To observe the side steps, the radiation fre-
quency should be large enough such that the steps are not
“lost” under the broadening of the main steps. On the other
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FIG. 10. �Color online� The voltage-dependent transmission
function at three voltages for the wire with N=5 and profile B. For
profile A, the result is independent of voltage and equal to ��E ,V
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hand, it should be small enough to have at least one step
present. Thus, if the voltage broadening of the main step at
V=V1 is approximately �1 /e, then we require �1���
�EF−EHOMO.

Figure 11 additionally shows the low-bias differential
conductances for N=1, . . . ,4, with other parameters chosen
as in Fig. 9�c�. It is seen that the effects of light quickly
become weaker, as the length of the molecule decreases. In
the case N=4, small side peaks are still observed. Larger
effects could be obtained by increasing the parameter �.

Similar-looking additional steps are visible in the I-V
characteristics of an extended-Hückel model for xylyl-dithiol
in Ref. 8. Despite the differences in magnitudes of param-
eters, and slight asymmetries in the geometries, it is likely
that some of those steps have essentially the same origin as
explained above. However, the most striking result in that
reference was the overall order-of-magnitude increase in the
current.

V. CONCLUSIONS AND DISCUSSION

In this paper, we have studied a �-orbital tight-binding
model to describe elastic and photoassisted transport through
metal-molecule-metal contacts based on oligophenylenes. In
contrast with simpler linear chain models that have previ-
ously been studied in great detail, our model describes a
specific molecule, and its parameters can be directly associ-
ated with quantities obtainable from DFT simulations, for
example. Models of this type can be of value in analyzing
the results of more detailed ab initio or DFT calculations,36

and in making at least qualitative predictions in situations
where such calculations would be prohibitively costly.

We first showed that at zero voltage bias the model can be
studied analytically in a similar fashion as the simpler linear
chain models. In particular, we derived an expression for the
decay exponent of the off-resonant transmission function. We
then discussed the length dependence of the dc conductance,
the thermopower, and the relative light-induced conductance
enhancement in the case of light with a low intensity ��� and
low frequency ���. The conductance enhancement was found

to scale quadratically with length. For large � and �, the
relative enhancement increases exponentially with length. Fi-
nally, it was shown, by numerical calculations, that the
current-voltage characteristics are modified in the presence
of light by the appearance of side steps with a voltage spac-
ing 2�� /e. We demonstrated that the predictions of the
model are robust with respect to variations in the assumed
voltage profiles. This provides further support for our previ-
ous results on the photoconductance.5

In our work, only symmetrical junctions with symmetrical
voltage profiles were studied. Asymmetries can modify our
results through the introduction of rectification effects45 and
can change the positions of the light-induced current steps.
The experimental observation of additional steps with a
spacing related to the frequency of the light would neverthe-
less provide more compelling evidence for the presence of
photoassisted transport than a conductance enhancement
alone. The latter can also have other causes.2

We note that the light-induced current steps are similar to
the steps observed in current-voltage characteristics of mi-
crowave-irradiated superconducting tunnel junctions, where
they result from photoassisted quasiparticle tunneling.37,61 In
that case, the main difference is that the energy gap neces-
sary for the effect is located in the macroscopic electrodes,
while the transmission through the tunnel barrier depends
only weakly on energy and voltage. As a result, the current
steps have a voltage spacing of precisely �� /e. These effects
are exploited in the detection of microwaves in radio-
astronomy.57 Similarly, one may imagine properly engi-
neered molecular contacts as detectors of light in the infrared
or visible frequency range.

In terms of our model, to increase the chances of observ-
ing the light-induced current steps, the aim should be to
minimize the broadening �1 /e of the first main current step
at voltage V1 and to maximize �. Also, a wire with a large
enough V1 should be used. The broadening �1 is related to
the sharpness of the transmission resonances, and thus to the
length of the molecule and its coupling to the electrodes,
described by �. A decrease of �, however, increases the im-
portance of Coulomb correlations. Their effect on photoas-
sisted transport has recently been discussed within simple
models.15,62 Increase of � through the light intensity, in turn,
increases the heating of the electrodes2 and the excitation of
local molecular vibrations.51 These may affect the geometry
through thermal expansion45 and structural deformations but
will also give rise to an incoherent component to the
current.63 At high enough photon energies, also the direct
excitation of electrons on the molecule may become impor-
tant. The relaxation of such excitations due to various
mechanisms �creation of electron-hole pairs in the electrodes,
spontaneous light emission� should thus also be considered.9

Also, conformational changes of the molecule are possible.1

Finally, a proper treatment of screening effects on the mol-
ecule and in the electrodes, the excitation of plasmons, and
their role in the field enhancement45 are other issues that
should be studied in more detail.

Of course, for the investigation of most of these issues,
noninteracting models of the type presented above are not
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FIG. 11. �Color online� Same as Fig. 9�c� but for wires with
N=1, . . . ,4.
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sufficient. Strong time-dependent electric fields may have ef-
fects that can only be captured by self-consistent theories
taking properly into account the electron correlations due to
Coulomb interactions. These interactions may influence the
electronic structure in a way that would, at least, require the
parameters of our model to be readjusted in the presence of
the light. Even the geometry of the junction can become
unstable, and so it should, in principle, be optimized with the
light-induced effects included. Time-dependent density-
functional theory is showing some promise for the treatment
of such problems.20,21 In addition to DFT, also more ad-
vanced computational schemes are being developed to
handle correlation effects.64,65 A systematic investigation of
the optical response of metal-molecule-metal contacts, and
thus the testing of the predictions of the simple models,3,6–9

remains an important goal for future research.
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APPENDIX A: SIMPLIFIED FORMULA
FOR THE TIME-AVERAGED CURRENT

Consider the expression Eq. �2� for the time-averaged �or
dc� current. The coefficient �RL

�k��E�, for example, is the sum
of the transmission probabilities of all transport channels tak-
ing the electron from energy E on the left to energy E
+k�� on the right. That is, for k�0 �k�0�, it describes
electron transmission under the absorption �emission� of k
photons. Assuming the wide-band approximation and the
voltage profile A, Eq. �2� can be written in the more trans-
parent forms of Eqs. �41� and �43�. This can be demonstrated
rigorously using the equations of Appendix B, but it is in-
structive to consider the following simpler derivation. The
idea is the same as in the “independent channel approxima-
tion” of Ref. 7.

For now, we allow the ac voltage drops at the L and R
lead-molecule interfaces to be asymmetrical. Thus, we define
the quantities �L and �R, satisfying �=�L−�R. Since for
profile A there is no voltage drop on the molecule, electronic
transitions only occur at the lead-molecule interfaces. Thus,
the transmission coefficients �RL

�k��E� are given by

�RL
�k��E� = �

l=−	

	

�Jl−k��R��2��E + l����Jl��L��2, �A1�

where �Jl��L��2 is the probability for absorbing �emitting� l
photons on the left interface and �Jl−k��R��2 the probability
for emitting �absorbing� l−k photons on the right interface.
The propagation between the interfaces occurs elastically at
the intermediate energy E+ l��, according to the transmis-
sion function ��E�. A similar expression holds for �LR

�k��E�.

Using these and the sum formula �k=−	
	 �Jk�x��2=1, Eq. �2�

leads to

I�V;�,�� =
2e

h
�

l=−	

	 � dE��E + l�����Jl��L��2fL�E�

− �Jl��R��2fR�E�� . �A2�

Equation �41� follows by setting �L=� /2 and �R=−� /2, and
the equivalent form of Eq. �43� follows by changing summa-
tion indices and integration variables. Similarly, other sug-
gestive forms may be derived.3,46,56 For x�1 and l�0, one
may expand J�l�x�
��x /2�l / l!− ��x /2�l+2 / �l+1�!. This
can be used in the limit ��1, �� /��1 discussed in the
text.

APPENDIX B: GREEN-FUNCTION METHOD
FOR THE TIME-AVERAGED CURRENT

Here, we outline the Green-function method4,7,66 used for
obtaining the results for voltage profile B. Consider again the
dc current of Eq. �2�. In the case of a harmonic driving field,
it is reasonable to assume the existence of time-reversal in-
variance, in which case we have the symmetry3

�LR
�k��E� = �RL

�−k��E + k��� . �B1�

The current expression of Eq. �8� in Ref. 4 was derived under
this assumption, and that result can be brought into the form
of Eq. �2�. Using the notation of that reference,47 the coeffi-
cients can be written as

�RL
�k��E� = Tr��Ĝ�E��̂R

�k��E�Ĝ†�E��̂L
�0��E�� ,

�LR
�k��E� = Tr��Ĝ�E��̂L

�k��E�Ĝ†�E��̂R
�0��E�� , �B2�

where the hats denote the extended “harmonic” matrices67

and Tr� a trace over them. In particular, Ĝ is the matrix for
the retarded propagator

Ĝ�E� = ��Ê − H1̂� − Ŵ − �̂L�E� − �̂R�E��−1, �B3�

where H is the Hamiltonian of the wire in the absence of

voltage profiles. The matrix Ê is defined by �Ê�m,n= �E
+m����m,n1, where m and n are the harmonic indices. Using
the wide-band approximation for the electrodes, the matrices

�̂X and �̂X
�l� are given by

��̂X�m,n�E� = �m,n�X,

��̂X
�l��m,n�E� = Jm−l��X�Jn−l��X��X, �B4�

with X=L ,R and �L,R= �� /2. Here, �X is the self-energy
matrix of lead X �extended to the size of H�, and �X

=−2 Im �X. The matrix Ŵ includes the effect of the profiles
for the voltage V�t�=V+Vac cos��t�. If W�t�=Wdc
+Wac cos��t� is a diagonal matrix consisting of the on-site
energies �p

����t�, then
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�Ŵ�m,n = Wdc�m,n +
1

2
Wac��m−1,n + �m+1,n� . �B5�

In this formalism, the time-reversal invariance amounts to Ĝ

and �̂L,R
�k� being symmetric, i.e., ÂT= Â. Equation �B1� can

then be proven by using the relations �Ĝ�m+k,n+k�E�
= �Ĝ�m,n�E+k��� and ��̂X

�l��m+k,n+k�E�= ��̂X
�l−k��m,n�E+k���.

We note that �̂X
�l� is defined with a different sign of l than in

Ref. 4.
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