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We calculate the effect of electron-vibration coupling on conduction through atomic gold wires, which was
measured in the experiments of �Agraït et al. Phys. Rev. Lett. 88, 216803 �2002��. The vibrational modes, the
coupling constants, and the inelastic transport are all calculated using a tight-binding parametrization and the
nonequilibrium Green’s function formalism. The electron-vibration coupling gives rise to small drops in the
conductance at voltages corresponding to energies of some of the vibrational modes. We study systematically
how the position and height of these steps vary as a linear wire is stretched and more atoms are added to it, and
find good agreement with the experiments. We also consider two different types of geometries, which are found
to yield qualitatively similar results. In contrast to previous calculations, we find that typically there are several
close-lying drops due to different longitudinal modes. In the experiments, only a single drop is usually visible,
but its width is too large to be accounted for by temperature. Therefore, to explain the experimental results, we
find it necessary to introduce a finite broadening to the vibrational modes, which makes the separate drops
merge into a single, wide one. In addition, we predict how the signatures of vibrational modes in the conduc-
tance curves differ between linear and zigzag-type wires.
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I. INTRODUCTION

The electron transport properties of atomic point contacts
between two metallic electrodes have been intensively stud-
ied during the past decade.1 Contacts of this type are typi-
cally formed by using mechanically controllable break junc-
tions �MCBJs� or with the tip of a scanning tunneling
microscope �STM�. It has been found2 that the conductance
of such contacts depends strongly on the electronic structure
of the metals, and for monovalent metals there is a tendency
for quantization in units of the conductance quantum
G0=2e2 /h. Point contacts formed from gold �Au�, platinum
�Pt�, or iridium �Ir� by one of the MCBJ or STM methods
have the further interesting property of being able to sustain
single-atom-thick chains, so called atomic wires.3–5 Follow-
ing their discovery, a good amount of experimental6,7 and
theoretical8–13 work has been carried out to further investi-
gate the conduction properties of atomic wires. It is by
now well established that the zero-bias conductance of gold
wires is close to one G0 due to a single, almost fully open
transmission channel at the Fermi energy.2,14–16 However,
less detailed work has been done in the study of truly
nonequilibrium properties, such as the current-voltage
characteristics.17

In recent experiments, the conductance vs voltage charac-
teristics G�V� of gold wires formed by the STM technique
were measured.18 It was observed that the conductance often
has a very pronounced, single drop from G0 at a critical
voltage Vph=10–20 mV, marking the onset of a dissipative
process. The size of the drop was on the order of 0.5–2.0 %
of G0. It was also found that stretching of the wire typically
leads to an increase in the step, and to a decrease in the
critical voltage Vph. Based on simple arguments for infinite
single-orbital tight-binding chains, these findings were inter-
preted as a sign of the excitation of vibrational modes in the

wire: only a single longitudinal mode with twice the Fermi
wave vector can be excited, since this corresponds to the
momentum which must be transferred from an electron to the
vibrations in a single backscattering process. Although the
validity of such arguments for a wire of finite length �of
typically less than ten atoms� can be questioned, the interpre-
tation was backed up by first-principles calculations.19,20 The
authors of Ref. 19 emphasize the importance of so-called
alternating bond length �ABL� modes, and in particular the
longitudinal mode of highest frequency.

Although it seems evident that the interpretation based on
vibrational modes is essentially correct, what is still lacking
is a systematic study of the behavior of wires with varying
numbers of atoms, and surrounded by various lead geom-
etries. Many questions of the basic physics are also still not
very well understood. When exactly does the electron-
vibration coupling lead to a drop and when an increase in the
conductance? Why does there appear to be just a single drop
in the experiments of Ref. 18, although the momentum con-
servation is not exact? What determines the height and width
of this drop? Below we aim to discuss the possible answers
to some of these questions.

In this paper we concentrate on studying the current-
voltage characteristics of gold wires. We use a
Slater-Koster-type21 tight-binding �TB� approach, where the
parameters are taken from the nonorthogonal parametrization
of Papaconstantopoulos and co-workers.22–25 The use of such
a parametrization26–28 makes the modeling of atomic wires
computationally less intensive as compared with fully ab ini-
tio methods. The approach is still microscopic in that it takes
into account the symmetries of the atomic s, p, and d valence
orbitals, which, via hybridization, form the conduction chan-
nels. It is also general enough to allow one to model every-
thing within the same framework: we use the parameters to
compute the total energy of the wire, and thus optimize the
geometry. After this, the normal modes of oscillation and the
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electron-vibration coupling constants can be computed. Fi-
nally, we calculate the transport properties using the non-
equilibrium Green’s function �or Keldysh� approach. Our
implementation is very similar to that of Ref. 28, and the
present work is, in essence, an extension of that to inelastic
transport. In addition to the full ab initio calculations,19 the
effect of electron-vibration interactions on transport through
molecular wires has been recently studied by some simple
single-level models.29–31 The tight-binding approach stands
somewhere in between these two extremes.

We compute the conductance to lowest nontrivial order in
the electron-vibration coupling constant. There are essen-
tially two well-defined limits which can be studied. In the
first limit the vibrational-mode distribution remains in equi-
librium due to a strong coupling of the modes to an external
equilibrium bath formed by the leads. In the opposite limit
the distribution is driven to strong nonequilibrium by the bias
voltage. These are the externally damped and the externally
undamped limits of Ref. 19. However, in the first limit one
should also account for the strong broadening of the vibra-
tional modes. We derive equations that take this into account
in a phenomenological manner.

With our simple, self-contained method of optimizing the
geometry, we obtain vibrational frequencies which are of the
correct order of magnitude, usually to within a factor of 2.
We study how the positions and heights of the conductance
drops due to the electron-vibration coupling vary with elon-
gation of a linear wire, and find a good overall agreement
with the experiments of Ref. 18. The height of the conduc-
tance steps grows together with the length of the wire, being
typically of the order 0.5–5 % of G0 for wires of 11 atoms or
fewer. As found in the earlier calculations,19 we find that the
highest-frequency longitudinal modes usually couple most
strongly, although there seems to be no fundamental reason
for a bias toward the “ABL” modes. But in contrast to pre-
vious theoretical results, the conductance drop is usually
found to occur in two or more consecutive steps which are
due to several close-lying longitudinal vibrational modes.
Thus we find the “mode selectivity” to be only very approxi-
mate. However, the steps can be made to merge into a single
one, when we introduce a large enough phenomenological
broadening to the vibrational modes, such that the experi-
mentally observed step widths of �5 meV are accounted for.
We also briefly study the conductance signatures of chains
which have a zigzaglike form, instead of the linear one.

The paper is divided into the following parts. In Sec. II
we start by defining the problem, and discussing the
electron-vibration coupling. In Sec. III we briefly discuss the
calculation of the vibrational modes and the electron-
vibration coupling constants, as well as our methods of com-
puting the transport. After this, Sec. IV introduces the impor-
tant wideband approximation to the full formalism. In Sec. V
we use the formalism to analyze simple tight-binding mod-
els, and in Sec. VI the full spd tight-binding model. Section
VII ends with some conclusions and discussion. Technical
details that are not of immediate importance are postponed to
the Appendixes. These include a discussion of the calculation
of the matrix elements needed for the coupling constants.
Readers mainly interested in the results can directly jump to
Secs. V–VII.

II. DEFINITION OF THE PROBLEM

To model transport through atomic wires, we consider two
idealized geometries, shown in Figs. 1 and 2. We call these
geometry A and geometry B, respectively. Both involve a
gold chain of Nch atoms suspended between two gold leads.
As the leads, we simply use semi-infinite “bars,” where the
repeat unit consists of two layers, with 12 and 13 atoms,
respectively, mimicking an infinite fcc �001� surface, where
the z axis is always chosen parallel to the axis of the wire.
The particular choice for the leads should not be very impor-
tant, as long as they are infinite in one direction, and wider
than the contact region. In geometry B, the chain connects to
small clusters of atoms or “pyramids” on the surfaces �in our
case consisting of nine atoms�, making it perhaps the more
realistic one of the two. For technical reasons, the geometry
is divided into three parts, the semi-infinite left �L� and right
�R� leads, and the “central cluster” �C�, which also includes
the pyramids if any. These parts are indicated in the figures.
We shall also consider some simple models where the re-
gions L, C, and R are parts of an infinite linear wire.

Our objective is to model the effect of vibrations �or
“phonons”� of the wire on the transport, when a voltage is
applied over the contact. Within a tight-binding picture, the
system of electrons coupled to vibrational modes is de-
scribed by the Hamiltonian

Ĥ = Ĥe + Ĥvib + Ĥe-vib,

where

Ĥe = �
ij

di
†Hijd j ,

Ĥvib = �
�

���b�
†b�,

FIG. 1. Geometry A, without “pyramids.” A zigzag wire with
Nch=6 atoms is shown.

FIG. 2. Geometry B, with “pyramids” and a linear wire of Nch

=3 atoms.
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Ĥe-vib = �
ij

�
�

di
†�ij

�d j�b�
† + b�� . �1�

Here �� are the vibrational frequencies, Hij = �i�H�j	 are the
matrix elements of the equilibrium single-electron Hamil-
tonian H in the atomic-orbital basis 
�i	�, and �ij

� are the
electron-vibration coupling constants. The index i denotes
collectively the atomic sites and orbitals, and � runs from 1
to 3Nvib, where Nvib is the number of atoms in the system,
which are allowed to vibrate. The creation and annihilation
operators for vibrational modes b�

† ,b� satisfy the bosonic
commutation relation �b� ,b�

†�=���. The electronic basis is in
general nonorthogonal, with overlap matrix elements Sij
= �i � j	. Thus the anticommutator for electron operators di

† ,di

is given by 
di ,d j
†�= �S−1�ij.

Hereafter we denote the matrices with components Aij
with a boldface symbol A. The matrices H, S, and �� are all
symmetric in our case. In the spd TB model, the matrix
elements Hij and Sij are obtained directly from the
parametrization.25 These can also be used to calculate the
vibrational frequencies �� and the coupling constants ��, as
we shall now describe.

III. METHODS

The solution of the inelastic transport problem involves a
few rather separated subproblems: the optimization of the
geometry and evaluation of the vibrational modes, estimation
of the electron-vibration coupling constants, and finally the
calculation of the transport. In the following we give only a
brief description of each of them, and refer the reader to the
Appendixes for details. Our basic approach is to solve for the
elastic transmission problem exactly, and then to take the
electron-vibration coupling into account in a slightly modi-
fied version of lowest-order perturbation theory. Other works
have considered the so-called self-consistent Born
approximation,19,31 where some of the terms in the perturba-
tion expansions are effectively summed to infinite order.
However, this is not essential for describing the basic physics
which is involved in the present problem.

A. Vibrational modes and the electron-vibration
coupling constants

The calculation of the vibrational modes requires knowl-
edge of the total �ground-state� energy of the system as a

function E�R� k� of the ionic coordinates R� k with k
=1, . . . ,Nvib. This energy must be minimized to find the equi-

librium configuration R� k
�0�. Now consider small displace-

ments Q� k=R� k−R� k
�0� around the equilibrium. The Hamiltonian

describing the oscillations of the ions around R� k
�0� is given by

Hion =
1

2�
k�

MkQ̇k�
2 +

1

2 �
k�,l	

Hk�,l	Qk�Ql	,

where Mk are the ionic masses, � ,	=x ,y ,z denote Cartesian
components of vectors, and H is the Hessian matrix: Hk�,l	
=�2E /�Rk��Rl	. This can be diagonalized by the transforma-
tion Qk�=��=1

3NvibAk�,�q�, where q� are the normal coordi-

nates. Thus, we obtain Hion= 1
2���q̇�

2 +��
2q�

2�, where �� ��
=1, . . . ,3Nvib� are the vibrational frequencies. The transfor-
mation matrix A is normalized according to ATMA=1, M
being the mass matrix—in our case M is simply a scalar
giving the mass of a gold atom. Upon using the canonical
quantization prescription q�= �� /2���1/2�b�

† +b��, q̇�

= i���� /2�1/2�b�
† −b��, one finally obtains Ĥvib in Eq. �1�.

The electron-vibration interaction may be derived as
follows.32,33 Assume that the electronic single-particle
Hamiltonian H is a function of the ionic coordinates, denoted

collectively as R� . Then we may expand H�R� �0�+Q� �
�H�R� �0��+�kQ� k ·�� k�H�Q� =0. Defining Ĥe�=�ijdi

†�i�H�R� �0�

+Q� ��j	d j, inserting the expansion, and using the canonical

quantization for q� again, one finds Ĥe�= Ĥe+ Ĥe-vib. Here Ĥe

and Ĥe-vib are as in Eq. �1�, with H being given by H�R� �0��
and the electron-vibration coupling constants by

�ij
� = �0
 �

2��
�1/2

�
k�

Mij
k�Ak�,�, �2�

where Mij
k�= �i��k��H�Q� =0�j	. The calculation of these matrix

elements is explained in Appendix A. In Eq. �2� we have
added a dimensionless factor �0 to describe the strength of
the coupling—in the physical case �0=1.

B. Propagator formalism

Use of a local basis allows one to partition the electronic
Hamiltonian and overlap matrices into parts according to the
division in L, C, and R regions:

H = �HLL HLC HLR

HCL HCC HCR

HRL HRC HRR
�, S = �SLL SLC SLR

SCL SCC SCR

SRL SRC SRR
� .

Although the dimension of the problem is infinite, its single-
particle nature allows for very effective methods of solution,
as long as we may assume that HRL=HLR

T �0 and SRL=SLR
T

�0, which we shall do. We shall use the method of nonequi-
librium Green’s functions. In this method, one can restrict
the problem only to the C part by introducing energy-
dependent lead self-energies which take into account the
presence of the semi-infinite L and R leads in an exact way.

The quantity from which all elastic transport properties
may be extracted is the retarded Green’s function of the C
part in the absence of electron-vibration coupling. We call it

G̃r, and it may be written as G̃r�
�= �
SCC−HCC−�L
r

−�R
r �−1. The lead self-energy �L

r is given by �L
r = tCLgLL

r tLC,
and �L= i��L

r −�L
a�, where we define tCL=HCL−
SCL. The

matrix gLL
r �
�= ��
+ i�L /2�SLL−HLL�−1 is the lead �surface�

Green’s function, where �L=0+. Similar equations hold for
�R

r . The lead Green’s functions gLL
r and gRR

r are “surface”
Green’s functions for the semi-infinite leads. We compute
these with the so-called decimation technique,34 using TB
parameters for the bulk28 in the case of the full spd model.
The electron-vibration interaction gives rise to further self-
energies, as will be discussed below.
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The vibrational modes should in principle be treated in an
analogous way, by introducing lead self-energies for their
propagators. However, here we restrict the modes strictly to
the wire of Nch atoms within the C region �i.e., Nvib=Nch�
and use the corresponding normal-mode basis for them. Thus
the number of modes which we have to consider is only
3Nch, and their “lead coupling” is taken into account only in
a phenomenological way.

More details on the propagator technique, including the
expressions for the phonon propagators and all self-energy
diagrams, are given in Appendix C.

C. Calculation of current

The most important physical observable that we are inter-
ested in is the electric �charge� current through the atomic
wire, when a voltage V is applied. We denote eV=�L−�R,
where �L,R are the L and R side chemical potentials, and
e�0 is the absolute value of electron charge. We also define
fL,R�
�= f�
−�L,R�, where f�
�=1/ �exp��
�+1� is the Fermi
function, and �=1/kBT is the inverse temperature.

It may be shown that the current flowing through the in-
terface from L to C �C to R� in stationary state is given by
�see Appendix B�

I
 = ±
2e

�
� d


2�
Tr�GC


+− �
�t
C�
� − tC
�
�G
C
+− �
�� , �3�

where 
=L �R� is chosen with the upper �lower� sign, and
the factor 2 accounts for spin degeneracy. The Green’s func-
tions G+− are defined in Appendix C by Eq. �C1�. Develop-
ing Eq. �3� further, it is convenient to split it into two parts;
IL,R= Iel+ Iinel

L,R, where

Iel =
2e

�
� d


2�
Tr�Gr�RGa�L��fL − fR� , �4�

Iinel
L,R = ±

2e

�
i� d


2�
Tr
Ga�L,RGr��fL,R − 1��e-vib

+− − fL,R�e-vib
−+ �� .

Here we define the full retarded and advanced Green’s func-
tions Gr,a, where Gr= �
SCC−HCC−�L

r −�R
r −�e-vib

r �−1 and
Ga= �Gr�†. The new self-energies �e-vib

r and �e-vib
±� are due to

the electron-vibration interaction, and they are discussed in
more detail in Appendix C. Since they vanish in the absence
of ��, we call the Iinel

L,R part an “inelastic” current, while Iel is
the “elastic” part.31

If we do lowest-order perturbation theory with respect to

��, we may expand Gr= G̃r+ G̃r�e-vib
r G̃r+¯. In this way the

elastic current is split into two parts as Iel= Iel
0 +�Iel, where

�Iel is an “elastic correction.” We find

Iel
0 =

2e

�
� d


2�
Tr�G̃r�RG̃a�L��fL − fR� ,

�Iel =
4e

�
� d


2�
Re Tr��LG̃r�e-vib

r G̃r�RG̃a��fL − fR� ,

Iinel
L,R = ±

2e

�
i� d


2�
Tr
G̃a�L,RG̃r��fL,R − 1��e-vib

+− − fL,R�e-vib
−+ �� .

�5�

A proof of current conservation, that is, IL= IR� I, is
sketched in Appendix D.

Besides the charge current, other interesting observables
would be the heat current �or power dissipation�,19 current
noise,35 and possibly spin current in the case of magnetic
materials. We only consider the charge current here, as it is
the only one that can easily be measured. More specifically,
we shall be interested in the differential conductance G�V�
=dI /dV and its derivative, since these quantities reveal the
signatures of the vibrational-mode coupling most clearly.

IV. WIDEBAND LIMIT

Even in the case of the perturbative current formulas �Eqs.
�5��, the expressions will involve double energy integrals
which can be very cumbersome to evaluate. These general
formulas are discussed more in Appendix E, where they are
rewritten in terms of distribution functions and energy-
dependent transport coefficients. However, the existence of
different energy scales in the problem allows us to make an
important simplification.

The energies of the vibrational modes are on the order of
10 meV, so that we are only interested in the differential
conductance for voltages up to V�40 mV, at most. Together
with the temperature T�4.2 K, this determines the width of
the energy window around the Fermi energy �
F� which is
important for transport. However, for the atomic wires which
we are considering, the electronic density of states tends to
vary at the much larger energy scales �1 eV around 
F.
Thus, to a good approximation, we may neglect this energy
dependence, and simply evaluate all the retarded and ad-
vanced electronic Green’s functions at the Fermi energy. This
approximation is often called the “wideband limit” �WBL�.

A. Current

In the WBL approximation, the current expressions of Ap-
pendix E may be simplified considerably, since some of the
energy integrals may be done analytically. In this case the
current I is easily divided into symmetric and asymmetric
parts, according to the symmetry of their contributions to
G�V� under the reversal of V.36 Thus I= Isym+ Iasy, where the
symmetric current is

Isym =
2e2

h
T0V +

2e

h
�
�
�

0

�

d�1����1�

� �
�T �
ec + T �

in��2N���1� + 1� − �T �
ecLR + T �

in��eV

+ �T �
ecLR + T �

in�
 �1 − eV

e���1−eV� − 1
−

�1 + eV

e���1+eV� − 1
�� �6�

and the asymmetric part is
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Iasy = −
2e

h
�
�
�

−�

�

d�1
1

2�
Re�d�

r ��1��T�
asy

� 
2n��1��1 −
�1 − eV

e���1−eV� − 1
−

�1 + eV

e���1+eV� − 1
� . �7�

Here n�
�=1/ �exp��
�−1� is the Bose distribution and N� is
the voltage-dependent mode distribution, to be discussed
shortly. The function �� is the vibrational density of states
�DOS�, given in general by Eq. �C12�. We approximate it
here by using the imaginary part of d�

r in Eq. �C8�, that is,

���
� =
1

�

�/2

�
 − ����2 + �2/4
−

1

�

�/2

�
 + ����2 + �2/4
, �8�

where we take � as a finite phenomenological parameter
describing the effect of coupling the vibrational modes to an
external bath. This bath is provided by the leads.31 However,
we are neglecting any renormalizations of the bare frequen-
cies ��, so that the main purpose of � here is to broaden the
DOS. Similarly, Re d�

r is obtained from Eq. �C8�.
The current involves a number of transport coefficients,

which determine the shape of the current-voltage character-
istics. The coefficients of Isym may be computed as follows:

T0 = Tr��G̃r�RG̃a�L��
F
, �9�

T �
in = Tr��G̃r�RG̃a��G̃a�LG̃r����
F

, �10�

T �
ec = 2 Re Tr��G̃r�RG̃a�LG̃r��G̃r����
F

, �11�

T �
ecLR = T �

ecL + T �
ecR = Re Tr��G̃r�RG̃a�LG̃r���G̃r

− G̃a�����
F
. �12�

Here T �
ecLR is a sum of the two coefficients T �

ecL and T �
ecR

defined in Eqs. �E6�. The coefficient T �
in is always positive,

while T �
ecLR and T �

ec can apparently have either sign. The
latter two represent interferences between various processes,
and are responsible for the enhanced backscattering needed
for the conductance drops. The asymmetric coefficient

T�
asy = Re Tr��G̃r�RG̃a�LG̃r��G̃r��R − �L�Ga����
F

�13�

vanishes for sufficiently symmetric junctions, making Iasy

=0. For us, this is always the case, even with zigzag chains.

B. Mode distribution

Our approximation is essentially that of lowest-order per-
turbation theory in the coupling constant ��. However, as
explained in Appendix C, there is a natural way of extending
the theory somewhat further by taking into account the “pho-
non polarizations” in a voltage-dependent distribution func-
tion N�. This is given by Eq. �C14�, i.e.,

N��
� = −
1

2

Im ��
+−�
� + n�
��
/���

Im ��
r �
� − �
/2���

, �14�

where � is the same bath-coupling parameter as in ��. Here
Im ��

+− and Im ��
r are the imaginary parts of the phonon

polarizations �see Appendix C�. In the WBL one may show
that

2� Im ��
+−�
� � Tr����G̃r�LG̃a��G̃r�RG̃a��
F

� 
 
 + eV

e��
+eV� − 1
+


 − eV

e��
−eV� − 1
�

+ �Tr����G̃r�LG̃a��G̃r�LG̃a��
F

+ Tr����G̃r�RG̃a��G̃r�RG̃a��
F
�




e�
 − 1

�15�

and

Im ��
r �
� � − �
/��Tr��� Im G̃r�� Im G̃r� , �16�

which is proportional to the electron-hole damping rate of

Ref. 36. Using G̃r��L+�R�G̃a=−2 Im G̃r, one may easily
show that for V=0 Eqs. �14�–�16� indeed yield N��
�=n�
�
for any �.

Here it is important to note a few things. In the expression
for the distribution function, the limit �→0+ corresponds to
the case where the vibrational modes are uncoupled from the
leads. Supposing that one also wishes to take the phonon
polarization to zero, which is formally accomplished by tak-
ing �0→0, one discovers an interesting thing: the two limits
do not commute.

If we take first the limit �→0, then the result actually
becomes independent of �0, since ��

r ,��
+−��0

2 and the �0
2

factors cancel. A physical interpretation can be described as
follows. If the vibrational modes are not coupled to any ex-
ternal bath, then even an infinitesimally small coupling con-
stant can eventually lead to a stationary state with a strongly
nonequilibrium mode occupation. Here emission and absorp-
tion of phonons are in balance, and hence there is no net
energy transfer between the electrons and the vibrations. Fol-
lowing Ref. 19, we call this the externally undamped limit,
although our way of computing N� is quite different. In this
case the voltage dependence of N������ shows a sharp kink
at V=��� /e, and a subsequent linear increase.19

In the opposite case, where �0→0 first, the expression
becomes independent of �, and we recover the Bose distri-
bution. This corresponds to the limit where the vibrational
modes are strongly damped by coupling to a heat bath which
is in equilibrium. This is the externally damped limit. How-
ever, for a finite �� this limit can only be reached with a
large enough finite �. Thus the externally damped limit
should also imply a considerable broadening of the vibra-
tional modes.

Note that in both of the above limits, N� is zeroth order in
�0. In these two cases our expression for Isym �Eq. �6�� is
indeed of second order in �0, and there should be no correc-
tions within that order. In general, however, Eq. �14� for N�
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generates terms of all orders in �0
2. These are not, strictly

speaking, warranted, because they represent only a small
subset of all possible higher-order terms in the current.

C. Further discussion

Apart from the ��-weighted integral, the only difference
between Eq. �6� and the approximation of Ref. 36 for Isym is
that T �

ec�T �
ecLR. The difference T �

ec−T �
ecLR is proportional

to Re G̃r, and is typically very small. It could well be ne-
glected. If N��const, then the direction and size of the con-
ductance step is solely determined by the combination
T �

ecLR+T �
in. Since T �

in is positive, the Iinel part of the current
always tends to increase the conductance. This can be seen
as a result of the appearance of a new, inelastic conduction
“channel” when eV����. However, numerically one finds
that the coefficient T �

ecLR, due to interferences between vari-
ous elastic processes, is typically negative and �T �

ecLR��T �
in

when T0�1. Thus, the net effect of the vibrational coupling
is a decrease in the conductance. In general, the voltage de-
pendence of N� also affects the shape of G�V�. Since T �

ec

+T �
in is usually also negative, the effect of local heating is to

give a finite negative slope to G�V� after the step. There can
also be an increase in the apparent height of the step.

By using the vibrational DOS of Eq. �8�, we are neglect-
ing broadenings and frequency shifts due to the electron-
vibration coupling. The shifts are given by the quantities
Re ��

r and, using Eq. �C10�, we estimate them to be on the
order of −1 meV. Neglecting the broadenings is certainly
justified, since they are typically on the order of
�Im ��

r ������ /����10−2, which is much smaller than the
usual kBT /��� due to temperatures T�1 K.19 If we assume
also � to be small compared to the other relevant energy
scales, i.e., if �Im ��

r � ,��kBT����, then ����1�����1

−����−���1+����, and the �1 integral in Eq. �6� may be
done analytically. The calculation of the lead-coupling ef-
fects is difficult, but it is very possible that they can lead to
broadenings � /����1. Thus, the validity of the �-function
approximation of �� may be questioned. Naturally, the lead
coupling can also shift the vibrational frequencies.

Note also that N��
� and n�
� diverge if �
→0. Since in
Eq. �6� these are evaluated at 
����, there can be an arbi-
trarily large renormalization of the zero-bias conductance if
there are very-low-frequency vibrational modes ����

�kBT� with a strong coupling to the electrons. In such a
case, the theory appears to break down. With linear wires the
condition kBT���� is easily satisfied for all strongly
coupled modes �, but in case of the zigzag chains �and/or
other materials� it may not be. In any case, we limit our
study mostly to the linear wires in this paper. We note that
these restrictions are present also in Ref. 36, where �=0+. In
fact, in our formulation the problem is perhaps partly cor-
rected by the presence of the “broadening factor” ��. In gen-
eral �0

�d�1����1��1, and when ���→0, the whole func-
tion tends to zero. Thus low-frequency modes contribute to
the current with a very small weight.

V. SIMPLE CHAIN MODELS

Here we shall first present some example results, using an
adaptation of the simple chain models of Refs. 37 and 20.

Only after this do we turn to the full spd tight-binding pa-
rametrization. Chain models of this kind are very appealing,
because they can be studied analytically to a large extent,
and allow us to make our main points in a simple fashion.

The single-particle Hamiltonians H which we consider,
are of the block-tridiagonal form

H = �� � �

t�i,i−1 
� t�i,i+1

� � �

� , �17�

graphically depicted in Fig. 3. Here 
� includes the on-site
energies, and t�i,i+1 are the intersite hopping matrices between
sites i and i+1. They are modulated as a function of
the longitudinal atomic displacements Qi as t�i,i+1�Q�
= t�0+ t���Qi−Qi+1�. We only consider orthogonal tight binding
here, such that S=1. The chain is split into three parts, where
the C part has Nch atoms. The L and R “leads” are semi-
infinite chains. The displacements Qi are restricted to the C
part, where the Hessian is assumed to be of the form

H = K�� � �

− 1 2 − 1

� � �

� , �18�

with fixed boundary conditions at the ends.20 Unlike in the
spd model to be explained below, here the spring constant K
is taken as a new, separate parameter. The vibrational modes
are simply obtained by diagonalizing this H.

A. Single „s… orbital: Discussion

To remind ourselves of some of the well-known argu-
ments, let us first discuss the simple single-orbital orthogonal
model of Ref. 20.

If we assume that charge neutrality is achieved by one
electron per atomic site, then the Fermi energy 
F lies exactly
in the middle of the band −2�t0��
−
0�2�t0�, where 
0 is
the on-site energy, and t0 is the intersite hopping. The Fermi
wave vector is then kF=� /2a, where a is the interatomic
distance. Since the chain has full translational invariance,
momentum conservation dictates that only vibrational modes
with the wave vector qvib=2kF=� /a may be excited, via the
backscattering of Fermi-point electrons. Furthermore, if the
atomic orbitals are invariant with respect to rotations around
the axis of the chain �s wave, say� the modes can only be
longitudinal ones. As it happens, qvib=� /a corresponds ex-
actly to the Brillouin zone boundary and thus to the highest-
frequency modes.

More technically, the momentum conservation can be
seen to follow from the form of the Fourier transforms
Mk1,k2

q ��k1−k2,q of the coupling matrix elements Mij
k .32 We

FIG. 3. Infinite multiorbital nearest-neighbor chain in equilib-
rium, where the sites are separated by a distance a.
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note that the momentum conservation can only be strictly
valid if one considers the actual vibrational modes of the
whole infinite chain. Interestingly, it appears to remain ap-
proximately valid even if the vibrational modes are restricted
only to a small, finite part of the chain.20 Indeed, as found in
Ref. 20, when the Fermi energy is in the middle of the band,
there is only a single visible step in the conductance. But, as
we shall discuss next, this appears to be somewhat acciden-
tal.

B. Two (s and pz) orbitals

Although such a single-orbital model can correctly de-
scribe the most important experimental observations, it ne-
glects some details of realistic gold wires. Although atomic
gold contacts and chains typically have only one fully open
conduction channel at the Fermi surface, this channel is ac-
tually formed from the hybridization on multiple orbitals
with rotational symmetry around the chain axis �s,pz,d3z2−r2�.
Thus we consider here a simple generalization of the above
chain model to the case of two orbitals, with s and pz char-
acters, respectively. In Table I we show a set of example
parameters for this model. The resulting transmission and
DOS curves are shown in Fig. 4 and the conductance-voltage
characteristics in Fig. 5. The density of states is defined as
Di�
�=−�1/���� Im Gi�,i��
�, where i now stands for atomic
sites and � for orbitals.

The results are very similar to those of the single-orbital
chain,20 but the situation is a bit closer to what happens in
the full spd model. For example, the hybridization of s and
pz result in a gap in the DOS. If we still populate the chain
with one electron per site, the Fermi energy will again be in
the middle of the lower band �the “s band”�, and there is only
a single drop in the conductance. This is illustrated by the

F=−0.4 eV case in Fig. 5. But for 
F’s deviating from the
center of the band, we find that the conductance step gener-
ally consists of several substeps, although the total step

height remains almost the same. Notice that if we were to use
two electrons per site, then the Fermi energy would lie in the
gap, and the transmission would be zero. It must be noted,
however, that the assumption of the WBL will break down if
the Fermi energy is very close to a band edge.

Within this model of a gold chain, it is probably most
physical to occupy the atoms with a single electron per site.
However, in a more realistic description the s and pz orbitals
hybridize also with lower-energy d orbitals. Also, the real
systems are not translationally invariant, and charge neutral-
ity need not be fully satisfied locally. Such things can com-
plicate the picture enormously. Furthermore, the arbitrariness
of the charge-neutrality procedure in the full spd model be-
low renders the position of the Fermi energy with respect to
the electronic structure of the wire somewhat uncertain.
Thus, as we shall see, all of the cases shown in Fig. 5 are
actually good descriptions of our results for the full spd
model.

Although at low temperature there can be several peaks,
at higher temperatures the steps fuse together, since the vi-
brational frequencies of the different modes are quite close to
each other. The fusing effect of the steps would be further
enhanced, if we introduced a larger broadening � for the
vibrational modes—here �=0.002 meV�kBT. The small �
also affects the results in another way: since the “lead cou-
pling” of vibrations is small, the wire heats, and the distri-
bution functions N� differ strongly from the Bose distribu-
tion. The signature of this heating is the steep downward
slope of the G�V� curves at high voltage.19

We have also tested the effect of nth-nearest-neighbor
hoppings and addition of nonorthogonality, but these have no
essential qualitative effect on the results. These will be taken
into account in the full spd parametrization, which we now
turn to.

VI. FULL spd PARAMETRIZATION

In this section we describe a more realistic tight-binding
approach to the problem. We use the nine-orbital spd param-

TABLE I. Parameters for the spz chain. Here tij
0 are elements of

the matrix t�0, for example.

Quantity Symbol Value

Number of chain atoms Nch 6

s-orbital energy 
ss 0.0 eV

p-orbital energy 
pp 1.0 eV

Bare s-s hopping tss
0 −0.5 eV

Bare p-p hopping tpp
0 0.3 eV

Bare s-p hopping tsp
0 =−tps

0 0.35 eV

s-s hopping modulation tss� −0.3 eV

p-p hopping modulation tpp� 0.3 eV

s-p hopping modulation tsp� =−tps� 0.3 eV

Fermi energy 
F −0.4–0.2 eV

Atomic mass M 197 amu

Spring constant K 2.0 eV/Å2

Temperature T 1.0–4.2 K

Phonon broadening � 0.002 meV

FIG. 4. Elastic transmission T0 �solid line� and density of states
�dashed line� for an spz chain model.
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etrization of Papaconstantopoulos et al.22–25 This type of spd
TB approach is known to reproduce very well some non-
trivial ab initio results, like the numbers of conduction chan-
nels and the formation of zigzag Au chains.38,39 Thus we can
be confident that the method gives at least good order-of-
magnitude estimates for all of the quantities which we shall
be interested in.

However, since the parameters are extracted from first-
principles bulk calculations, they cannot be exactly correct
for atomic point contacts, where the important atoms of the
structure are significantly less coordinated than in bulk. It
has thus become customary in the method to “correct” the
parameters in the central cluster in order to satisfy local
charge neutrality. Doing this typically brings the central clus-
ter levels better in resonance with the lead orbitals. We com-
pute the charge with the so-called Mulliken population
analysis �see Appendix B�, and only shift the on-site energies
of the Hamiltonian. Tests with other ways of achieving neu-
trality give very similar results.28 Furthermore, we have com-
pared to results obtained without charge neutrality, and again
find that there is not much qualitative difference, although
charge neutrality yields conductances closer to G0 on aver-
age. Also, without charge neutrality there appears to be a
tendency for seeing lower-frequency vibrational modes in
the conductance curves.

The results of this paper are generated using finite lead
broadenings �L,R�1.0 eV. The limit �L,R→0+ can in prin-
ciple be taken without affecting the results in any essential
way.

A. Geometry optimization and vibrational modes

We consider two types of ideal geometries, A and B,
shown in Figs. 1 and 2, respectively. As mentioned, the leads
are assumed to be of fcc type with the �001� axis in the
transport �or z� direction. Before geometry optimization, the
chain atoms are positioned as described in Fig. 6. The
“length of the wire” Lch is defined as Lch=a+d�Nch−1�,
where Nch is the number of atoms in the chain, d the distance

between them, and a=4.08 Å is the equilibrium lattice con-
stant of the bulk fcc lattice. We only optimize the geometry
of the Nch chain atoms—also in geometry B which has the
“pyramids.” Thus, although the interatomic distances change
slightly from those of Fig. 6, Lch remains fixed.

To estimate the total energy E�R� k�, we simply take a clus-
ter that includes the wire and some atoms from the leads,
solve for the electronic eigenstates 
�, and then occupy the
states according to charge neutrality. This energy, as a func-
tion of the 3Nch wire coordinates, is then optimized with
standard library routines. As known previously,38 it is often
energetically favorable for the gold chains to exist in a zig-
zaglike pattern instead of a linear one. Only after a sufficient
amount of stretching �i.e., with a larger d� does the linear
configuration become stable, after which it remains linear
until the wire breaks. We find that the maximum d at break-
ing is, depending on the geometry, typically something be-
tween 2.70–2.85 Å. There is no clear trend with increasing
Nch.

After the geometry is optimized, the energy function is
used to compute the Hessian matrix H. The eigenvalues k�

��=1, . . . ,3Nch� are all positive, and the vibrational frequen-
cies are simply given by ��=�k� /M. With both geometries
A and B, we obtain quite similar vibrational frequencies and
modes. For a linear wire, the modes can be classified as
longitudinal or transverse in character. The highest-
frequency modes are then always longitudinal ones, and the
highest of them is of the ABL type.19

FIG. 5. The top panels show the conductance
vs voltage G�V� for the spz chain model with pa-
rameters as in Table I, and the lower panels show
the derivative dG /dV. Here the curves have been
shifted by integer multiples of 0.01 or 0.005 for
clarity. The left panels are at T=1.0 K, while the
right panels are at T=4.2 K. The vibrational
modes are as in Fig. 1 of Ref. 20.

FIG. 6. Dimensions of the unoptimized geometry with Nch=4.
Here a=4.08 Å, the fcc lattice constant. Only the coordinates of the
Nch chain atoms are optimized.
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B. Elastic transmission

Perhaps the most characteristic experimental property of
gold chains is that they appear to have a conductance very
close to the quantum of conductance G0. Thus we shall
briefly comment on the elastic transmission properties of the
chains in our calculations. The present TB method was pre-
viously only used with bulk distances d�2.885 Å between
all the atoms.28 In this case, we find very similar transmis-
sion functions T0�
� for our geometry B. These are often
characterized by very long plateaus �of widths up to
2−3 eV� around the Fermi energy 
F, where 0.95�T0
�1.0. The same is true for the results with and without
charge neutrality.

However, when the geometry is optimized, the wide trans-
mission plateaus close to 1 are replaced by larger oscilla-
tions. Still, at the Fermi energy, there is usually only a single
open channel, which consists of s, pz, and d3z2−r2 orbitals.
Sometimes, a small contribution is seen arising from a sec-
ond channel, involving the other p and d orbitals, as will be
discussed below.28 The transmission around 
F varies be-
tween 0.7�T0�1.0. The present method is known to repro-
duce experimental conductance histograms rather well.40 In
particular, the conductance peak somewhat below G /G0=1
is a very robust feature.

We determine 
F by charge neutrality in the leads �or
bulk�. Tests with shifting its value from this position by
�0.5 eV �which simulates a gate effect� showed no signifi-
cant qualitative effects on the results. The position of the
Fermi energy with respect to the local electronic structure is
still very important. This is because, besides the elastic trans-
mission, the Fermi energy also fixes the “Fermi wave vec-
tor,” which again determines what vibrational modes can be
excited. In the present TB method, the use of bulk param-
eters and the charge neutrality procedure introduces some
uncertainty in relation to this point.

C. Longitudinal and transverse modes

Let us first discuss the basic observations using a simple
example, namely, a linear chain of four atoms in geometry A.
A schematic illustration of the vibrational modes is shown in
Fig. 7 for d=2.62 Å. There are four longitudinal modes and
eight transverse modes. However, due to the fourfold rota-
tion symmetry of the geometry around the axis of the wire,
the transverse modes are all doubly degenerate. The zero-
bias conductance is due to two partially open channels. The
main contribution �about 98% of G0� is due to a channel �C1�
formed from s, pz, and d3z2−r2 orbitals, which have the sym-
metry of the geometry. In addition, there is a small �less than
1% of G0� contribution from a second, doubly degenerate
channel �C2�, which consists of dxz, dyz, px, and py orbitals,
which have a lower symmetry. Thanks to the symmetry of
the C1 channel, only longitudinal modes have a finite cou-
pling constant in its subspace ��C1,C1

� �. In the subspace of the
C2 channel, also the transverse modes have a finite coupling
��C2,C2

� �. Thus we might expect that also the transverse
modes give a small signal in the current.

Figure 8 shows an analysis of the contribution from the

different modes to the differential conductance G�V�
=dI /dV. We divide this conductance into three parts accord-
ing to the three current contributions: G�V�=G0T0

+�Ginel�V�+�Gel�V�. Here G0=2e2 /h, �Ginel=dIinel /dV, and
�Gel=d�Iel /dV. It is seen that �Ginel gives always positive
contributions to the conductance steps, while �Gel gives
negative ones. As expected, we find that there is a finite step
in both �Ginel and �Gel due to all of the vibrational modes,
also the transverse ones, although the latter are quite small.
However, the contributions of �Ginel and �Gel for the trans-
verse modes almost perfectly cancel each other, such that
only steps due to the longitudinal modes are seen in the total
G�V�. This cancellation is apparently due to the exact four-
fold rotation symmetry, and the mirror symmetry with re-
spect to the plane cutting the wire in the middle. In less

FIG. 7. A sketch of the vibrational eigenmodes of a linear four-
atom gold wire, with energies corresponding to d=2.62 Å in geom-
etry A. The longitudinal modes �L� are all nondegenerate, whereas
the transverse modes �T� are all doubly degenerate.

FIG. 8. Decomposition of the conductance G�V� into G0T0, an
“inelastic” contribution �Ginel, and an “elastic correction” �Gel for a
four-atom wire. The geometry and the labels �a�–�h� correspond to
those of Fig. 7. Other parameters are T=0.01 K, �=0.002 meV.
The solid steplike curve shows �Ginel, and the dashed one shows
�Gel. The increases of �Ginel due to transverse modes are exactly
canceled by decreases in �Gel. The inset shows the elastic transmis-
sion �dashed line�, and the total conductance G�V� �solid line�. In
G�V� only drops due to longitudinal modes are seen.
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symmetric geometries the transverse modes can also give
finite contributions to G�V�.

In the case of zigzag wires, the distinction between lon-
gitudinal and transverse modes does not really exist, and all
modes are always seen as steps in G�V�. An example of this
is shown below. Furthermore, if the elastic transmission T0 is
very small, then also the transport coefficients T�

ec and T�
ecLR

tend to be small, since they all depend on the matrix

G̃r�RG̃a�L. In this way, for example, it may also be possible
to have large positive steps in G�V�, but we never see them
for the charge-neutral gold wires. For other materials, the
situation may be different.

Thus, we find that the conductance features depend in an
intricate way on the symmetries of the geometry, the sym-
metries of the vibrational modes, the coupling constants, as
well as the symmetries of the electronic states which are
relevant at the Fermi energy.

D. Conductance curves of linear wires

Here we discuss in more detail what our conductance-
voltage curves for linear wires look like. Figure 9 shows an
example for geometry A with a wire of Nch=4 atoms while
Fig. 10 is for a wire of Nch=11 atoms in geometry B. In both
figures, the left-hand panels are calculated at T=4.2 K and
with a small �, such that they are more or less in the exter-
nally undamped regime. The right-hand panels show two ex-
amples of the experimental results for a wire of approxi-
mately seven atoms taken at the temperature T=4.2 K.18

Comparing these to the theoretical curves on the left-hand
side, one immediately notices that if the conductance drop is
to be due to a single mode, then the �5 meV width of the
peak in the experimental dG /dV cannot be explained by tem-
perature alone.19 On the other hand, the energy distance be-
tween the vibrational modes is rather large �kBT, so that at
T=4.2 K, a peak consisting of several subpeaks can usually
be easily recognized. For example, the highest-frequency
peak in Fig. 10 actually consists of two peaks, and it is still

not wide enough. Also in Fig. 9 there are at least three sepa-
rate peaks visible.

Thus we conclude that in the experiment there are prob-
ably other broadening mechanisms at play besides tempera-
ture. In the right panels of Fig. 9 we compare the experiment
with a theoretical result broadened by a higher temperature,
while in the right panels of Fig. 10 we use the parameter � to
broaden the peaks. In the latter, the system is already in the
externally damped regime, with very little local heating: in
addition to the broadening, the damping is signified by a
smaller slope after the drop. In either case, the peaks due to
individual modes are smoothed out to form a single one, with
a width comparable to that seen in experiments. In this way,
it is possible to obtain a rather good quantitative correspon-
dence between theory and experiment.

FIG. 9. Comparison between theory and ex-
periment for Nch=4 in geometry A. The solid and
dashed curves correspond to theoretical results
for d=2.54 and 2.68 Å, respectively. On the left-
hand panels T=4.2 K, whereas on the right-hand
panels these curves have been broadened with a
larger temperature T=12 K; in both cases �
=0.02 meV. The experimental results L1 ��� and
L4 ��� correspond to the notation and results of
Fig. 1�d� of Ref. 18 with V�0. They are obtained
for a seven-atom chain at T=4.2 K.

FIG. 10. Comparison between theory and experiment for Nch

=11 in geometry B. All results are at T=4.2 K. The solid and
dashed curves correspond to theoretical results for d=2.64 and
2.78 Å, respectively. On the left-hand panels �=0.002 meV,
whereas on the right-hand panels the curves have been broadened
with a bath coupling �=5.0 meV. The experimental results L1 ���
and L4 ��� are as in Fig. 9.
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We have also studied systematically how the main fea-
tures of the conductance-voltage curves vary when linear
chains with atom numbers 3�Nch�11 are stretched. The
results for T=4.2 K and a small � are plotted in Fig. 11.
Here we show the zero-bias conductance G�V=0�, the volt-
age positions Vph of the main peaks in dG /dV, and the cor-
responding local maximum values of �dG /dV�. The peak
height is not the same as the peak area which is plotted in
Ref. 18, but is roughly proportional to it, since the width of
the peaks is �kBT, where the temperature is T=4.2 K.

In this figure, many features can be recognized. The
G�V=0� values fluctuate between 0.85 and 1.0, but there is
no clear “parity effect”—or at least the effect appears to
reverse its direction after Nch=8. The present method most
likely does not describe such parity effects correctly. How-
ever, also different ab initio approaches are known to give
conflicting results.7 In some calculations, the transmission
has been found to oscillate also with the stretching of a wire
with fixed Nch.

12

The positions of the peaks move to lower voltages when
the wire is stretched, as expected from the “softening” of the
bonds, and the resulting decrease in the vibrational frequen-
cies. There is also a clear trend toward lower frequencies
with increasing Nch. These findings are similar to what is
seen in the experiment.18 Also similarly, the peak heights
increase with stretching, and with increasing Nch, although
the increase with wire length Lch is not obviously linear as
for the simple chain models of Sec. V.20 There is also a
correlation between the zero-bias conductances and the peak
heights: when the conductance is low, also the stretching
behavior is rather anomalous �in particular in the cases of
five and ten atoms.�

The most visible difference between the results of Fig. 11
and the experiment is that we consistently see signatures of
several vibrational modes: typically there are two peaks vis-
ible in dG /dV. However, the higher peak is always at a
larger voltage and, as the number of atoms Nch grows, the
secondary peaks become less and less significant. For ex-
ample, for 11 atoms there is essentially only a single peak
visible �see Fig. 10�. This, however, is due to two close-lying
modes: the highest-frequency “ABL” mode, and the one next
to it in frequency. As explained above, this discrepancy of
several peaks can be corrected by increasing the parameter
�. Note also that this behavior was already present in the
chain model of Sec. V.

We also see that the largest conductance drops are system-
atically at too high voltages compared to experimental values
Vph�10–20 mV for a seven-atom chain. This is not surpris-
ing, given the simplified way in which we compute the vi-
brational modes. The frequencies of the vibrational modes
might be lowered, if we also allowed for the motion of atoms
outside of the chain. In other words, it is possible that the
lead coupling, done in a proper way, would lead to a “red-
shift” of the frequencies. As noted above, the electron-
vibration coupling gives such a redshift,29 but this effect may
be too small to explain the discrepancy.

Although the steps in conductance are almost always
downward when G�V=0� is close to G0, sometimes also
weak increases in the conductance at low voltage can be
seen. These appear to be related to the longitudinal “center-
of-mass” mode. For linear chains, we do not find any signifi-
cant contribution from transverse modes, as explained previ-
ously.

E. Zigzag wires

We have also studied briefly the zigzag chains shown in
Fig. 1. Figure 12 shows a comparison between the signatures
of a zigzag chain and a linear chain in the conductance-
voltage curves G�V�. In this example, a chain of Nch=6 at-
oms in geometry A, and a large broadening of the vibrational
modes ��=5.0 meV� was used. However, very similar re-
sults were found for various different atom numbers. For
small values of d, the wire has a zigzag character, but at d
�2.42 Å, the wire becomes linear.

For the zigzag chain, there are two well-separated �series
of� conductance drops. The one at low bias is higher for
small d’s. As the chain is stretched, the height of the lower-
frequency step decreases, while that of the higher-frequency
one increases. For the linear chain, there is essentially only
one high-voltage drop, which is actually due to two different
longitudinal modes. In the case of a zigzag wire, the vibra-
tional modes have complicated symmetries, and practically
all of them are contributing to the current steps. However,
here their identities are completely smeared out due to the
broadening. This calculation provides a clear prediction of
how the zigzag-to-linear transition may be seen in experi-
ments.

VII. CONCLUSIONS AND DISCUSSION

We have studied the onset of dissipation by excitation of
vibrational modes in atomic gold wires, using a tight-binding

FIG. 11. Zero-bias conductances, voltage positions Vph, and the
local maxima of �dG /dV� for different wire lengths Lch and atom
numbers Nch, indicated by the numbers. The results are obtained for
linear wires in geometry B, with �=0.02 meV. The dashed lines
show the limits beyond which the wire breaks upon further stretch-
ing. On the left side of each curve, the wire has a nonlinear form,
and the peak structure may be different �see text�. The solid lines
correspond to the main peaks and the dotted lines to the second-
largest ones. Thickening of the lines indicates that the peak consists
of two close-lying modes.
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model. We have studied in a systematic way how the stretch-
ing of wires with different atomic numbers affects the con-
ductance steps, and find a reasonable agreement with experi-
ments. Previously such a study has only been done within
simple chain models.20 We have also considered two differ-
ent geometries, which yield qualitatively similar results. Fi-
nally, we studied the conductance signatures of zigzag-type
wires, and predict a double-step structure in contrast to the
single step of linear chains.

Our results for the linear chains agree rather well with
experiments and previous ab initio calculations, apart from
the incomplete “mode selectivity.” In this context, we have
pointed out the importance of taking into account the broad-
ening of vibrational modes due to their coupling to the leads,
especially in the limit where the vibrational mode distribu-
tion is assumed to be strongly damped. We derived equations
in the wideband limit, which take this into account in a phe-
nomenological manner. The wideband limit combined with
the lowest-order perturbation approach �presented in Sec. IV
and Appendix E� appears to provide a sufficiently good de-
scription of the phenomenology of electron-vibration inter-
action in atomic wires. To make further progress, more de-
tailed calculations of the lead-coupling of the vibrational
modes are needed.

As explained above, the condition which determines what
modes yield conductance drops is essentially that of momen-
tum conservation. We find numerically that the momentum-
conservation idea works well also for finite wires with 10
atoms or more. However, in shorter wires, the electronic
structure is very complicated, and the connection between
symmetries of excited modes and those of the electronic
states is hard to analyze.

Even if there is approximate momentum conservation,
there is no fundamental reason why only a single mode
would be excited, or that the highest-frequency �or other

ABL� modes should necessarily be involved. This remains
true also for very long wires, since at the same time when the
momentum conservation becomes more and more accurately
satisfied, also the energy density �and hence momentum-
space density� of the modes increases. It is thus more likely
that a large “wave packet” of several nearby phonon modes
is always excited. However, the charge neutrality of the wire
indeed appears to be favoring the highest-frequency modes,
just as predicted by the simple chain models discussed in
Sec. V. Nevertheless, it is important to note that small differ-
ences in details of the geometry or the implementation may
affect numerical values of results significantly. The band
structure of an infinite, linear gold wire is already quite
complicated,28,38 such that a small error in the Fermi energy,
and hence of the Fermi wave vector, will immediately shift
the resonance to slightly different vibrational modes.

Studying different materials �Pt and Ir� with this same
method would be straightforward in principle. However, it
seems that the parameters available for these materials are
not very good for geometry optimizations of the wires. This
is because the overlap matrices easily lose their positive defi-
niteness when the validity range of the parametrization is
exceeded �with the gold parameters,25 such problems never
appeared�. Thus, as already implied in Ref. 28, one should
probably use more general ab initio methods, or at least pa-
rameters which have been specifically fit to work for chain
geometries with a large span of interatomic distances. Com-
pared to ab initio methods, TB still has the clear advantage
of being computationally efficient.
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APPENDIX A: CALCULATION OF THE COUPLING
MATRIX ELEMENTS

Here we describe our method of computing the matrix
elements Mij

k�= �i��k�H�j	, where the derivative is with re-
spect to the components �=x ,y ,z of the ionic coordinates

R� k. In an implementation making use of TB parametrization,
one has no direct access to either the basis states or �i	, or the
Hamiltonian H—only the representation Hij = �i�H�j	 and the

overlap matrix Sij = �i � j	 as a function of R� k are known. Thus,
the matrix elements must be calculated more indirectly. Be-
low we sketch a derivation, which follows, in some sense,
the ideas of Ref. 41. The derivation is not exact, as we only
consider an isolated central cluster.

Let �i	 , �j	 , . . . denote the atomic-orbital �AO� basis states,
and ��	 , ��	 , . . . the electronic eigenstates �molecular orbitals
�MOs�� of the central-cluster electronic Hamiltonian H. The
eigenstates satisfy

H��	 = 
���	 ,

FIG. 12. The difference between zigzag and linear wires of six
atoms in geometry A at T=4.2 K and with �=5.0 meV. The num-
bers in the legend indicate the parameter d �Å�, which describes the
amount of stretching. In the left panels the wire has a zigzag char-
acter, while in the right panels it is linear. In case of the zigzag wire,
practically all of the vibrational modes contribute to the observed
steps, but they form a clear double-step structure. In the linear wire,
the elastic transmission varies a lot under stretching in this example.
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����	 = ���. �A1�

If the expansion of the MOs in the AO basis is denoted ��	
=�i�i	Ci�, where Ci�= �c��i then we have the matrix equa-
tions

Hc� = Sc�
�,

c�
†Sc� = ���. �A2�

Let us also note the form of the completeness relation of the
MOs ����	���=1 in the AO basis: ��c�c�

† =S−1, while for
the AOs themselves �ij�i	�S−1�ij�j�=1. Since the basis states
also move with the ions, we should write more carefully
�i�Q�	, ���Q�	, H�Q�, Hij�Q�, etc., where Q is a shorthand for

the ionic displacements Q� k=R� k−R� k
�0�. The point in the

electron-vibration coupling is that moving an ion will induce
a perturbation of the form

H → H + H�Q ,

S → S + S�Q , �A3�

and one can calculate its effect on the state vectors c� and
eigenenergies 
� by means of simple first-order perturbation
theory. Here the prime denotes a derivative with respect
to Q.

Let us expand the basis states as �i�Q�	��i	+ �i�	Q, where
�i	 now denote the unperturbed basis. The matrix element
which we are looking for is really the quantity

Mij = ��i�H��Q��j	�Q=0. �A4�

This may be obtained by considering the expansion of
�i�H�Q��j	 in Q, since

�i�H�Q��j	 = Hij�0� + ��i�H��Q��j	�Q=0Q . �A5�

By inserting 1=�����Q�	���Q�� one easily finds

�i�H�Q��j	 = �
�

�i���Q�	
��Q����Q��j	 . �A6�

Then, by inserting ���Q�	=�i�i�Q�	Ci��Q�, expanding

��Q��
�+
��Q, Ci��Q��Ci�+Ci�� Q, and equating terms
linear in Q,

Mij = �
�

�
kl


SikCk�
��Cl�
* Slj + Sik�

�2�Ck�
�Cl�
* Slj

+ SikCk�
�Cl�
* Slj�

�1� + SikCk�� 
�Cl�
* Slj + SikCk�
�Cl��

*Slj� .

�A7�

Here we introduced the one-sided overlap derivatives
�S��1��ij = �i� � j	, �S��2��ij = �i � j�	, which satisfy S�=S��1�

+S��2�, and S��2�= �S��1��†.41

The result of Eq. �A7� may be simplified considerably by
inserting the expressions for 
�� and Ci�� , which are easily
derived. First, if we denote

M�� � �
kl

Ck�
* MijCl�, H��� � �

kl

Ck�
* Hij�Cl�,

S����1,2� � �
kl

Ck�
* Sij�

�1,2�Cl�, �A8�

and so on, one may show that

M�� = H��� − S����1�
� − 
�S����2�. �A9�

Then, using the completeness relations ���kSikCk�C j�
*

=���kCi�Ck�
* Skj =�ij one may transform back to the AO ba-

sis:

Mij = Hij� − �
�

�
kl


Sik�
�1�Ck�
�Cl�

* Slj + SikCk�
�Cl�
* Slj�

�2�� .

�A10�

This is the final expression for the matrix elements. The
overlap corrections due to the nonorthogonal basis often turn
out to be rather small in practice, and the orthogonal result
M=H� is a reasonable first approximation. The presence of
the corrections tends to make the conductance steps slightly
larger.

APPENDIX B: POPULATION ANALYSIS AND
DERIVATION OF THE CURRENT FORMULA

Although the expression for the current is well known, its
derivation in the nonorthogonal basis is not entirely trivial.42

The current is the time derivative of charge transported from
L to C and on to R. However, while the total charge of the
full system is well defined, the partial charges of the distinct
regions are not—instead, there are different ways of doing
“population analysis.” To be more self-contained, we present
here a compact discussion of these issues.

Let us consider, for simplicity, a single orbital per atomic
site i. The total charge �particle number, actually� is given by

Q = �Q̂	 = �
j,k

P jkSkj , �B1�

where Q̂=� j,kdk
†Skjd j and we define the density matrix P jk

= �dk
†d j	. Partial charges may be introduced for example with

the following “Mulliken” population analysis43

Q = QL + QC + QR = �
j�L,k

P jkSkj + �
j�C,k

P jkSkj + �
j�R,k

P jkSkj .

�B2�

One may also define the quantities

Q
� = �Q̂
� 	 = �
j,k�


P jkSkj , �B3�

where Q̂
� =� j,k�
dk
†Skjd j, and 
=L ,C ,R ,C+R ,C+L. Here

C+L �C+R� refers to the combined system involving C and
L �C and R� regions. The charges QL,C,R� are good approxi-
mations to QL,C,R if the regions are all large, since the cor-
rections are proportional to the surface area of the interfaces.

What we want is the particle current Ĵ through a boundary
between two regions of space, L and C, for example. We
expect it to satisfy
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2Ĵ =
�

�t
�Q̂L� − Q̂C+R� � . �B4�

Let us rewrite Q̂
� = N̂
+� j,k�
,j�kdk
†Skjd j, where N̂


=� j�
N̂ j and N̂ j =d j
†d j for 
=L ,C+R. Now, in the Heisen-

berg picture the d j operators satisfy the equations of motion

i�ḋ j = �d j , Ĥe� and hence i��� /�t��kS jkdk=�kH jkdk. Using
ideas similar to Ref. 44, we find

�

�t
N̂ j = d j

†�
k�j

1

i�

H jk − S jki�

�

�t
�dk + H.c. �B5�

Next, considering the following quantity, we notice that all
hopping contributions except HLC and HLR cancel:

�

�t
�N̂L − N̂C+R� = �

j�L,k�C+R

d j
† 1

i�

H jk − S jki�

�

�t
�dk + H.c.

− �
j�C+R,k�L

d j
† 1

i�

H jk − S jki�

�

�t
�dk + H.c.

− �
j,k�L,k�j

d j
†S jk

�

�t
dk + H.c.

+ �
j,k�C+R,k�j

d j
†S jk

�

�t
dk + H.c. �B6�

When the last two overlap terms are moved to the left-hand

side, it becomes exactly what we called 2Ĵ. Thus the expec-
tation value is

2J = 2�Ĵ	 = �
j�L,k�C+R

1

i�
�
H jk − S jki�

�

�t
��d j

†�t��dk�t�	�
t�=t

− �
j�C+R,k�L

1

i�
�
H jk − S jki�

�

�t
��d j

†�t��dk�t�	�
t�=t

+ c.c.

�B7�

Now, assuming that HLR=SLR=0 and using i�d j
†�t��dk�t�	

=Gkj
+−�t , t��, we finally have

J�t� = −
1

�
Re Tr��GCL

+−�t,t��
HLC − SLCi�
��

�t
�

− 
HCL − SCLi�
�

�t
�GLC

+−�t,t����
t�=t

, �B8�

where the arrow means that the derivative operates to the
left. The charge current is then obtained as I=−2eJ, where
the factor 2 is the spin degeneracy. An analogous derivation
may be carried out for the current over the C-R boundary.

In stationary state all the propagators only depend on the
time difference t− t�, and this result may be Fourier trans-
formed into an energy representation, where one has to re-
place i�� /�t→
.

APPENDIX C: NEGF FORMALISM:
TECHNICAL DETAILS

Our notation differs slightly from what is the standard. In
particular, our functions G±� are equal to the G� functions
of Refs. 19 and 32, for example. Let us write the definitions
for the most important electron propagators:

Gij
r �t,t�� = − i�
di�t�,d j

†�t���	��t − t�� ,

Gij
a �t,t�� = i�
di�t�,d j

†�t���	��t� − t� ,

Gij
+−�t,t�� = i�d j

†�t��di�t�	 ,

Gij
−+�t,t�� = − i�di�t�d j

†�t��	 . �C1�

Similar expressions hold for the phonon functions
“D��t , t��.” In this case one must replace 
· , · �→ �· , · �, re-
place both di and d j

† with the Hermitian combination b�

+b�
† , as well as change the sign of D�

+−�t , t��. Below, all
Green’s functions appear Fourier transformed with respect to
t− t� into an energy representation.

1. Electron propagators and self-energies

All expressions for the relevant electron Green functions
follow from the Dyson and Keldysh equations

Gr = ��gr�−1 − �r�−1,

G±� = �1 + Gr�r�g±��1 + �aGa� − Gr�±�Ga, �C2�

where the upper or lower signs can be chosen. Here the g
denote the Green’s functions for an uncoupled central part in
the absence of electron-vibration interactions and �r,±� are
the sums of all self-energies containing the effects of both
�see below�. The uncoupled functions are

gr = �
SCC + i�c/2 − HCC�−1,

g+− = − fC�gr − ga� ,

g−+ = − �fC − 1��gr − ga� . �C3�

Here fC is the equilibrium Fermi distribution. Note that �C
= i��ga�−1− �gr�−1�, which is an infinitesimal quantity.

The functions where the lead coupling is taken into ac-
count but electron-vibration coupling is still neglected are
given by

G̃r = �
SCC − HCC − �L
r − �R

r �−1,

G̃+− = − Gr��L
+− + �R

+− − i�CfC�Ga,

G̃−+ = − Gr��L
−+ + �R

−+ − i�C�fC − 1��Ga, �C4�

and G̃a= �G̃r�†. Here the lead self-energies and lead Green’s
functions for the L side are given by

�L
r = tCLgLL

r tLC,
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gLL
r = ��
 + i�L/2�SLL − HLL�−1,

�L = i��L
r − �L

a� ,

�L
+− = − tCLgLL

+−tLC = − i�LfL,

�L
−+ = − tCLgLL

−+tLC = − i�L�fL − 1� , �C5�

where tLC=HLC−
SLC and so on, with similar expressions
for R side. The infinitesimal �C is only needed for recovering
the correct result in the limit where the self-energies are
taken to zero—it may be neglected here. The parameters �L,R
are positive infinitesimals which, however, can be used to
introduce a finite broadening of the lead eigenstates.

These are enough for calculating the elastic current in the
absence of electron-vibration coupling. The full Green’s
functions including the effects of this coupling are

Gr = �
SCC − HCC − �L
r − �R

r − �e-vib
r �−1,

G+− = − Gr��L
+− + �R

+− + �e-vib
+− − i�CfC�Ga,

G−+ = − Gr��L
−+ + �R

−+ + �e-vib
−+ − i�C�fC − 1��Ga, �C6�

and Ga= �Gr�†. To second order in the coupling constant ��,
the electron-phonon self-energies are

�e-vib
±� �
� = − i�

�
� d�1

2�
D�

±���1����G±��
 − �1����

�e-vib
r �
� = i�

�
� d�1

2�

D�

±���1����Gr�
 − �1����

+ D�
r ��1����G�±�
 − �1����

− ��Tr�G+−��1����D�
r �0�� ,

�e-vib
a �
� = i�

�
� d�1

2�

D�

±���1����Ga�
 − �1����

+ D�
a��1����G�±�
 − �1����

− ��Tr�G+−��1����D�
r �0�� , �C7�

where the upper or lower signs are chosen.

2. Phonon propagators and self-energies

By our definition of the phonon propagators, the unper-
turbed ones �those in the absence of a lead coupling and
electron-vibration coupling� are given by

d�
r �
� =

1


 − 
� + i�/2
−

1


 + 
� + i�/2
=

2
�


2 − 
�
2 + i�
 − �2/4

,

d�
+−�
� = − 2�in�
����
� ,

d�
−+�
� = − 2�i�n�
� + 1����
� . �C8�

Here 
�=��� are the bare vibrational energies and n�
� is
the Bose distribution function. The quantity ��=−Im d�

r /� is

the bare phonon density of states, given by Eq. �8�. This
becomes ���
�=��
−
��−��
+
��, as �→0+. Note that the
Green’s functions satisfy �= i��da�−1− �dr�−1�.

Now, to be symmetric with the discussion for the electron
propagators, the next step should be the introduction of

propagators “D̃” which contain lead self-energies. For the
proper calculation of the lead self-energies, we should prob-
ably change to an atomic-displacement basis. Instead of do-
ing this, we model the lead coupling by giving finite values
to the infinitesimal quantity �, which will broaden the pho-
non density of states.31

The full phonon propagators appearing in the electron-
phonon self-energies are obtained from the Dyson and
Keldysh equations for phonons

D�
r = ��d�

r �−1 − ��
r �−1,

D�
±� = �1 + D�

r ��
r �d�

±��1 + ��
aD�

a� − D�
r ��

±�D�
a . �C9�

For self-energies, or “polarizations,” we use the second-order
approximations

��
±��
� = i� d�1

2�
Tr���G±���1���G�±��1 − 
�� ,

��
r �
� = − i� d�1

2�
Tr���G±���1���Ga��1 − 
�

+ ��Gr��1���G±���1 − 
�� ,

��
a�
� = − i� d�1

2�
Tr���G±���1���Gr��1 − 
�

+ ��Ga��1���G±���1 − 
�� , �C10�

where we have dropped some unimportant zero-frequency
terms. Again either the upper or the lower signs must be
chosen. Note that ��

±� are purely imaginary and satisfy the
symmetry ��

+−�−
�=��
−+�
�.

Equations �C10� close the system of equations, and we are
done. However, from a physical point of view, it is interest-
ing to develop the equations slightly further. Using the sym-
metry D�

r −D�
a =D�

−+−D�
+−, one finds that Eqs. �C9� may be

rewritten in the form

D�
r �
� =

2
�


2 − 
�
2 + i�
 − �2/4 − 2
���

r �
�
,

D�
+−�
� = − 2�iN��
����
� ,

D�
−+�
� = − 2�i�N��
� + 1����
� , �C11�

where we define the phonon density of states

���
� = −
1

�
Im D�

r �
� , �C12�

which satisfies ���−
�=−���
�. The quantity N��
� is the en-
ergy distribution function of the vibrational quanta. In equi-
librium N��
�=n�
�, the Bose distribution. In general N��
�
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=n�
�+�N��
�, where �N��
� is a voltage-dependent non-
equilibrium correction.

By reshuffling the Keldysh equations one may write

D�
+−�
� = − D�

r �in
�/
� + ��
+−�D�

a ,

D�
−+�
� = − D�

r �i�1 + n�
�/
� + ��
−+�D�

a . �C13�

Since �D�
r �2=Im D�

r / �Im ��
r �
�−�
 /2
��, comparing these

with Eqs. �C11� it is easy to obtain explicit expressions for
the distribution function N�:

N��
� = −
1

2

Im ��
+−�
� + n�
��
/
�

Im ��
r �
� − �
/2
�

=

−
1

2

Im ��
−+�
� + �1 + n�
���
/
�

Im ��
r �
� − �
/2
�

− 1. �C14�

To get to the last line, we used ��
r −��

a =−���
−+−��

+−�. Note

that we have not made any approximations to get to this
result. Using Eqs. �C10�, one finds that the following
symmetries are valid: N��−
�=−�N��
�+1� and �N��−
�
=−�N��
�.

APPENDIX D: CURRENT CONSERVATION

The inelastic parts of the current in Eqs. �4� look very
asymmetric in their L or R indices. Nevertheless, in station-
ary state the currents calculated at L and R boundaries should
be equal: IL= IR. There also appears to be some confusion as
to what sort of approximations are needed for current
conservation.19,36 Here we outline a proof of this property for
our approximation. For Iel it is obvious, so we consider only
the inelastic current.

Inserting the self-energies from Eq. �C7� into the expres-
sion for Iinel

L �Eq. �3��, one finds

Iinel
L =

2e

�
�
�
� d


2�
� d�1

2�
2�����1��Tr�Ga

 −

�1

2
���Ga

 +

�1

2
��L

 +

�1

2
�Gr

 +

�1

2
���Gr

 −

�1

2
��L

 −

�1

2
��

� � fL

 +
�1

2
��N���1� + 1� − � fL

 +

�1

2
� + N���1�� fL

 −

�1

2
��

+ Tr�Ga

 −
�1

2
���Ga

 +

�1

2
��L

 +

�1

2
�Gr

 +

�1

2
���Gr

 −

�1

2
��R

 −

�1

2
��

� � fL

 +
�1

2
��N���1� + 1� − � fL

 +

�1

2
� + N���1�� fR

 −

�1

2
��� . �D1�

Here the first term may be shown to vanish as follows. Since
Fermi and Bose functions f and n satisfy f�x��n�y�+1�
− �f�x�+n�y��f�x−y�=0, we have

fL�x��N��y� + 1� − �fL�x� + N��y��fL�x − y�

= �N��y��fL�x� − fL�x − y�� . �D2�

Now, noting that �N��−
�=−�N��
� and ���−
�=−���
�, and
additionally assuming that all matrices under the trace are
symmetric �GrT=Gr, ��L�T=�L, etc.� it is seen that the inte-
grand is odd and thus the energy integral vanishes. This is
true also if �N��
� has a�1/
 divergence at 
=0, since the
product in Eq. �D2� remains finite.

The second term in Eq. �D1� is clearly symmetric upon
interchanging L and R, and changing the overall sign. Note
that the proof does not rely on things like a mirror symmetry
of the geometry, and remains unchanged if we replace

Gr→ G̃r. Thus our expressions are always “current conserv-
ing,” as defined by the condition IL= IR.

APPENDIX E: GENERAL PERTURBATIVE
CURRENT FORMULAS

Here we shall write down the perturbative current formu-
las of Eqs. �5� in a slightly different form, which will make
the so-called wideband approximation more transparent.
However, here we shall be making no approximations in ad-
dition to the second-order perturbation theory which we have
already introduced. Nevertheless, it must be stressed that,
due to the second-order approximation, all higher-order
terms in the following expressions are strictly speaking not
warranted. This concerns the approximations made for the
vibrational density of states �� and the distribution N�, which
should in principle both be of zeroth order in the electron-
vibration coupling constant. In the approximations which we
use for N�, this is not necessarily the case. Thus our ap-
proach is not purely lowest-order perturbation theory. How-
ever, the self-consistent Born scheme is not really any better
in this respect.

The inelastic current Iin and the elastic parts Iel
0 and �Iel

are obtained from Eqs. �5�. Inserting the self-energies �Eqs.
�C7�� into these formulas, they may be rewritten as follows:

Iel
0 =

2e

h
� d
 T0�
��fL�
� − fR�
�� , �E1�
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�Iel =
2e

h
� d
�

�
�

 =±1
 �

0

�

d�1����1�
T �
ec �
,�1�N�� �1�

+ T �
ecL�
,�1�fL�
 �� + T �

ecR�
,�1�fR�
 ���

� �fL�
� − fR�
�� +
2e

h
� d
�

�


− J�
L�
� − J�

R�
�

+ T �
II�
��J�

IIL + J�
IIR���fL�
� − fR�
�� , �E2�

Iinel
L =

2e

h
� d
�

�
�

 =±1
 �

0

�

d�1����1�T  �
in �
,�1�

�
N�� �1�fL�
��1 − fR�
 ���

+ N��−  �1�fR�
 ���1 − fL�
��� , �E3�

where 
 �=
+ �1. The elastic transmission is given by

T0�
� = Tr�G̃r�
��R�
�G̃a�
��L�
�� �E4�

and the inelastic prefactor by

T �
in �
,�1� = Tr�G̃r�
 ���R�
 ��G̃a�
 ��

���G̃a�
��L�
�G̃r�
���� , �E5�

while the factors in the elastic correction are

T �
ec �
,�1� = 2Re Tr�G̃r�
��R�
�G̃a�
�

��L�
�G̃r�
���G̃r�
 ����� ,

T �
ecL�
,�1� = Im Tr�G̃r�
��R�
�G̃a�
��L�
�G̃r�
�

���G̃r�
 ���L�
 ��G̃a�
 ����� ,

T �
ecR�
,�1� = Im Tr�G̃r�
��R�
�G̃a�
��L�
�G̃r�
�

���G̃r�
 ���R�
 ��G̃a�
 ����� . �E6�

The most complicated parts are the integrals

J�
L�
� =� d�1

2�
2 Re�D�

r ��1��

�Re Tr�G̃r�
��R�
�G̃a�
��L�
�G̃r�
���G̃r�
 − �1�

��L�
 − �1�G̃a�
 − �1���� fL�
 − �1� ,

J�
R�
� =� d�1

2�
2 Re�D�

r ��1��

�Re Tr�G̃r�
��R�
�G̃a�
��L�
�G̃r�
���G̃r�
 − �1�

��R�
 − �1�G̃a�
 − �1����fR�
 − �1� , �E7�

and the coefficients coming from the last term in Eq. �C7� for
�r,

T�
II�
� = 2Re Tr�G̃r�
��R�
�G̃a�
��L�
�G̃r�
���� ,

J�
IIL = D�

r �0�� d�1

2�
Tr�G̃r��1��L��1�G̃a��1���� fL��1� ,

J�
IIR = D�

r �0�� d�1

2�
Tr�G̃r��1��R��1�G̃a��1���� fR��1� .

�E8�

In the equations above, the phonon density of states ���
�
includes all possible broadening effects and shifts of the bare
vibrational frequencies. Without these effects ���
�=��

−����−��
+����, and Eqs. �E7� must be evaluated as prin-
cipal part integrals.

In the so-called wideband limit, discussed in the text, the

 and �1 dependences of the coefficients T0, T �

in, T �
ec, and

T �
ecL,R may be dropped and they may be simply evaluated at

the Fermi energy. Then the integrals over products of Fermi
functions in the corresponding current terms can be done
analytically. One also finds that all terms of �Iel which do not
involve Eq. �E7� or Eq. �E8� yield conductance contributions
�Gel�
�=d�Iel /dV which are symmetric in the bias:
�Gel�−V�=�Gel�V�. We call the sum of these terms �Iel

sym, and
Isym= Iel

0 +�Iel
sym+ Iinel. The same may be done to the trace ex-

pressions in Eqs. �E7�, and one finds that the corresponding
part in the current �Iel yields the asymmetric current Iasy.36

The contribution of Eqs. �E8� to the current is typically
very small in the small-voltage limit that we are considering.
Furthermore, since they do not introduce any relation be-
tween the voltage and the vibrational frequencies, they can-
not give a contribution to the conductance steps. Therefore,
we drop them for the sake of simplicity.
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