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Abstract
Mixed-criticality systems integrate components of different criticality. Different criticality levels
require different levels of confidence in the correct behavior of a component. One aspect of
correctness is timing.

Confidence in worst-case execution time (WCET) estimates depends on the process by which
they have been obtained. A somewhat naive view is that static WCET analyses determines
safe bounds in which we can have absolute confidence, while measurement-based approaches are
inherently unreliable. In this paper, we refine this view by exploring sources of doubt in the
correctness of both static and measurement-based WCET analysis.
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1 Introduction

Due the integration of multiple safety levels (A to E in DO178B for certification in avionics,
or A to D in ISO 26262, a functional safety standard for automotive), tasks of different
criticality may be executed on a shared platform. A naive approach to certifying such a
mixed-criticality system is to apply the certification methods corresponding to the highest
present level of criticality to all tasks. The drawback of this approach is that low-criticality
tasks become unnecessarily costly to validate and the system analysis potentially pessimistic.

Research in mixed-criticality scheduling targets the validation of these system assuming the
certification requirements are reflected in the execution time bounds, which vary depending
on the associated criticality. The original model by Vestal [35] suggests two levels of timing
estimations:
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C(HI) is a high-confidence WCET estimate, and
C(LO) is a lower confidence estimate of the WCET,

but there may be as many WCET estimations as safety levels.
The rationale behind this model is to guarantee schedulability of all tasks with their

C(LO) bounds, while ensuring that if a task exceeds its low criticality execution time bound,
the highly-critical tasks are able complete their execution within their deadlines as long as
their execution times do not exceed their C(HI) bounds. Intuitively, C(LO) ≤ C(HI) as
it is assumed in Vestal’s model. However, a more reliable WCET analysis provides higher
confidence in the validity of its estimation, but does not necessarily result in a greater bound.
Also, increasing the effort to analyse a task does not necessarily increase the bound, but may
even reduce it.

In this paper, we present our point of view on the sources of these different levels of
confidence in the WCET estimations. Our aim is to discuss the sources of doubt in the
correctness of WCET estimations. In contrast to [10], where confidence in WCET estimations
and monotonicity of WCET estimations with respect to the different certification levels have
already been shortly discussed, we highlight the problem from the perspective of timing
analysis. We first discuss confidence in static and measurement-based WCET analysis
methods, then focus on the impact of multi-core platforms on these sources of doubts and
specifically on the interferences on shared resources. We conclude with a discussion of open
problems.

Please note that we restrict our attention in this paper to deterministic approaches
currently used in industry (due to limited space). As future work, we plan to enlarge our
study to recently introduced probabilistic approaches.

2 On Confidence in Static WCET Analysis

2.1 Structure of Static WCET Analysis Tools
Static timing analyses compute bounds on a task’s execution time by analysing the task
characteristics and determining its behaviour on the target machine statically, i.e, without
executing the task on the target platform. The techniques employed by static timing analyses,
such as abstract interpretation or model checking, are borrowed from the related fields
compiler construction and verification and are meant to be sound by construction.

A static timing analysis typically consists of three phases, ISA-level analysis, microar-
chitectural analysis and path analysis. ISA-level analysis derives flow information of the
task, such as loop bounds, effective memory addresses of memory read or write and pointer
addresses. Microarchitectural analysis derives bounds on the execution times of each basic
block. Path analysis combines the information of the previous steps and determines the
longest execution path through the program.

Microarchitectural analysis has to resort to the level of the binary as only on this level
complete information about the task behaviour is available. ISA-level analysis can operate on
both, the high-level and on the binary, yet requires a control-flow graph representation of the
program. Consequently, additional steps are needed to bridge the gap between the different
representations and to establish a connection between the main phases of the analysis.

2.2 ISA-level Analysis
Some important supporting analyses depend only on the untimed, “functional” semantics
of the code. This includes program flow analysis, which attempts to find program flow
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constraints such as loop bounds, or infeasible path constraints. Also a conventional value
analysis is often needed, for purposes like bounding the possible addresses for memory
accesses.

There are several sources of uncertainty regarding these analyses. We focus mainly on
three points: uncertainty due to user annotations, uncertainty due to the analysis method,
and uncertainty due to the traceability of information from source level to binary level.

One concern are the assumptions that often have to be made about the environment in
which the code runs. Analysis tools typically allow the user to specify properties that can
affect the outcome of the analysis, like limitations on value ranges for inputs, or whether some
variables should be considered volatile. There is always a risk that such manually-specified
properties are false.

Another potential source of uncertainty is if the analysis is indeed unsound. A value- or
program-flow analysis must always rely on some assumptions on the semantics of the code:
if there are situations where these are not fulfilled, then value ranges or program flows may
be underestimated which in turn can yield an unsafe WCET estimate. For instance it is not
uncommon that analyses consider numbers to be unbounded, “mathematical” numbers when
indeed they have a finite representation in the software. Fig. 1 shows an example where a
loop bounds analysis that rests on this assumption will fail. Such an analysis will find that
the loop body can be executed only one time, whereas in reality i, which is an 8-bit unsigned
number, will wrap around from 254 to 0 when incremented by 2 causing a non-terminating
loop.

unsigned char i;
i = 254;
while (i <= 255) do {

i = i + 2;
}

Figure 1 A simple example of a
code with wrap-around.

Analyses that involve floating-point numbers can suffer
from unsoundness since it may be hard for a tool to support
all the varieties of floating-point arithmetics that different
processors use. It is therefore common that analysis tools
use some standard floating-point arithmetics such as IEEE
floating-point arithmetics, or the native arithmetics of the
computer where the tool executes. However, this may not
be the arithmetics used by the target machine, which then
can yield an unsound analysis.

In a similar fashion, if low-level code is analysed, the analysis can become unsound if it
assumes the wrong endianness of the target architecture.

A final potential source of unsound analysis are pointers. If the analysis cannot bound a
pointer in a program point where the pointer yields the address for a write, then a sound
analysis must assume (very pessimistically) that the write may occur anywhere in the memory
(possibly including, for instance, the program code). Thus, after such a write, basically all
information about what may happen next in the program is lost. It is therefore common that
analyses assume that writes using such unbounded pointers cannot be more than “reasonably”
out of bounds: for instance, it is commonly assumed that they cannot modify the program
code.

For maximal confidence, value- and program flow analyses must be performed on the
linked binary code. However, analyses can be hard to perform on this level due to lack
of information about types, syntactic structure, etc. Therefore it is not uncommon that
these analyses are attempted at the source code level instead, with the results subsequently
being mapped to the binary level with the aid of debug information or alike. However,
even the results of an analysis that is sound on the source level may not be sound for the
compiled binary due to compiler optimisations changing the structure of the code. Even
if optimisations are turned off, some compilers may still perform code transformations like
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turning while-do loops into do-while loops. Work has been done how to trace program
flow constraints through compiler optimisations [16, 24], but production compilers do not
implement these solutions.

2.3 Microarchitectural Timing Models

The low-level analysis step computes the worst-case execution times of code fragments, such
as basic blocks. It is based on a cycle-accurate model of the target platform which specifies
the hardware behavior when executing a sequence of instructions. There exist several ways
to build such a model:

The hardware timing model can be specified by the tool designer or by the end-user from
the processor manual that is usually publicly available from the processor manufacturer.
As mentioned in [27], this task is both time-consuming and error-prone due to: (a)
missing or even incorrect documentation (user manuals generally focus on specifying the
programming models but do not provide a detailed view of the processor internals nor
accurate instruction timings), and (b) human errors when translating the natural-language
description of the processor architecture given by the manual into a formal model. The
reliability of such hand-crafted timing models is difficult to assess and this is even more
true when the processor features complex hardware mechanisms, which are usually poorly
documented.
Measurement techniques can also be used to reverse engineer hardware parameters. In [14],
monitoring registers are used while running specifically-designed micro-benchmarks to
identify the processor’s write and cache replacement policies. Similar techniques are used
in [5] to investigate translation look-aside buffers (TLBs). New variants of the pseudo-LRU
replacement policy implemented in the Intel Atom D525, the Intel Core 2 Duo E6750, and
the Intel Core 2 Duo 8400 but not publicly documented could be discovered by application
of automata learning [1] in case of of the Intel Atom and a combination of automatic
measurements and human insight [2] in the other two cases. In [36], micro-benchmarking
is used to discover the behavior of various components of an Nvidia GPU architecture,
such as the warp scheduling policy. Note that all these approaches need manual work
to (a) design micro-benchmarks that can exhibit hardware parameters, which might
be particularly difficult in the presence of a totally original scheme that would not be
described in the literature, and (b) interpret the results to determine how the processor
or memory hierarchy works. In that sense, such techniques cannot provide fully reliable
models but they can confirm, deny or complement the processor’s description provided in
the manual. In the first case, confidence in the model is increased.
The timing model can be derived (semi-)automatically from a formal description of the
hardware in a hardware description language, i.e., the microarchitecture’s VHDL or
Verilog model [28]. This hardware description contains the complete information required
to build the microarchitectural timing model for timing analysis. Then, cumbersome and
often error-prone reverse engineering is not required. Correctness of the timing model
relative to the VHDL or Verilog model can be achieved and shown with comparably little
effort. Due to the complexity of the hardware description and the various abstraction
levels used to describe the microarchitecture, a completely automatic derivation is not
possible. The timing model must be tight so as not to inflate the complexity of the
microarchitectural analysis. The main obstacle remains the availability of the hardware
description. Processor manufacturers are very reluctant to provide detailed hardware
descriptions out of fear of plagiarism.
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2.4 Microarchitectural Analysis
Given a microarchitectural timing model and a program, the task of microarchitectural
analysis is to determine bounds on the execution times of program fragments. The main
challenge for modern processors is that execution times of individual instructions strongly
depend on the state of the microarchitecture. As an example, a memory instruction that
causes a cache miss may easily take 100 times as long as one that causes a cache hit.

To correctly estimate the execution time of a program fragment, microarchitectural
analysis thus needs to determine the set of states that the microarchitecture can be in
when executing the program fragment. To do so microarchitectural analysis needs to take
into account all possible program executions and initial states that may lead to a program
fragment. To cope with the potentially very large number of cases, abstraction is employed
where possible. Precise and efficient abstractions have been found for caches [8], whereas less
structured components such as pipelines are mostly analyzed concretely, often leading to
a very large number of states to be explored. Such analyses can be proven correct relative
to a concrete model using the theory of Abstract Interpretation [7]. Such proofs have been
carried out in paper and pencil proofs for caches and branch target buffers. Due to the lack
of “strong” abstractions, beyond abstracting register and memory values, such proofs have
been omitted for pipeline analyses.

To counter state-space explosion in microarchitectural analysis, it is tempting to only
consider the local worst cases. Due to timing anomalies [20, 25], however, this is generally
unsafe. It is an open problem to prove freedom of timing anomalies for models of realistic
microarchitectures, while some success has been achieved in simplified scenarios [26].

Another approach to reduce analysis cost and possibly even improve precision is to analyze
different components separately. For instance, one might attempt to analyze the pipeline
separately from the cache. In the case of multicores a common approach is to separate
the analysis of the bus blocking from the WCET analysis. Such approaches assume timing
compositionality [11], i.e., that execution time can be safely decomposed into contributions
from different components. As is the case with timing anomalies, some microarchitectures
are conjectured to be timing-compositional [38], but none has formally been proven so.

A number of projects have focused on designs of or design principles for timing-predictable
microarchitectures. This includes CompSOC [12], JOP [29], MERASA [33], Predator [38],
and PRET [19]. Timing models for microarchitectures developed based on the principles
identified in these projects are often simpler than those for commercial microarchitectures.
This enables more precise and efficient analysis, and it also increases confidence in their
correctness.

2.5 Path Analysis
Path analysis is the final step in WCET analysis. In this step, the results of microarchitectural
analysis and ISA-level analysis are combined to reason about all possible program executions
and their timing. Often, a program’s control-flow graph (CFG) is used to bridge the gap
between the two analysis levels:

Microarchitectural analysis delivers bounds on the execution times of program fragments
like the basic blocks of the CFG.
ISA-level analysis delivers constraints on the possible paths that can be taken through
the CFG, such as loop bounds.

The goal of path analysis is then to identify the worst-case execution path given the constraints
obtained by ISA-level and microarchitectural analysis. Instead of explicitly exploring all
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paths, state-of-the-art WCET analyzers rely on an Implicit Path Enumeration Technique
(IPET). Possible paths and their execution time bounds are expressed as the solutions of a
set of integer linear constraints. The solution maximizing the execution time can then be
found by an integer-linear programming (ILP) solver. Other path analysis approaches that
have been considered are based upon SAT modulo theory or model checking.

The main source of doubt in path analysis comes from the fact that execution time is
estimated in numbers of machine cycles. This is an integer value that is estimated by solvers
using finite number representations. Some research verified the solution for LP and/or SMT
solvers: the main idea is to verify the certificate corresponding to the optimum [9, 4]. As far
as we know, these studies have not yet been extended to ILP: such a verification appears
possible, but the problem to solve is larger.

2.6 Confidence in Tool Implementations

A potential source of uncertainty, which is common to more or less all analysis stages, is the
possibility of bugs in the tool implementations. One way to reduce the uncertainty stemming
from this is to make a formal verification of the algorithm, or the code of the implementation,
using a proof assistant. By reducing the trusted code base, i.e., the part of the code that is
not verified and thus has to be trusted, confidence can be gained.

One such effort has been done in the context of the CompCert certified compiler. Ma-
roneze [22] developed a static WCET analysis tool, using previously known techniques, in
the CompCert environment and provided a formal proof of correctness for those parts of
this tool that correspond to ISA-level analysis and path analysis. Correctness proofs for the
microarchitectural analysis were left as future work. This work demonstrates that this kind
of formal verification is within reach also for complex WCET analysis tools.

3 On Confidence in Measurement-based WCET Analysis

Measuring a task’s execution time is an alternative approach towards timing verification. It
provides a simple and straightforward method to derive execution time estimates. Besides
the simplicity of the measurement-based approach – which is in contrast to static timing
analysis – no microarchitectural model is required. Measurements can be derived for the
actual binary running directly on the target architecture, thus eliminating a prominent source
of uncertainty. The very same hardware used in the embedded system can also be used for
the measurement.

A fundamental drawback reduces the overall confidence in measurement-based approaches:
It is practically infeasible to obtain measurements that cover the complete input space and
the complete set of initial processor states, let alone interferences occurring during run-time.
Exhaustive measurements are simply not possible for realistically-sized tasks and modern
microarchitectures.

3.1 End-to-end Measurements

End-to-end measurements represent the most naive approach towards measurement-based
timing verification. The execution time from task dispatch to completion is measured for
a set of program inputs and initial processor states, and based on the highest measured
execution times, WCET bounds are derived. These bounds are then multiplied by a safety
margin to account for potential optimism in the measurements. This safety margin was
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the original motivation for mixed-criticality systems. A higher safety margin increases the
WCET bound and so, also the confidence in it.

Path coverage techniques [39] are traditionally used to increase confidence in end-to-end
measurements by automatically generating the set of test-cases. The automatically generated
test vector is claimed to either cover all paths, or to cover at least the worst-case path. As
these methods only treat the task input and not the initial processor states, doubt remains.

3.2 Hybrid Approach
Hybrid approaches [37, 17, 18, 31] use measurements to obtain estimates of the worst-case
timing of program fragments. These are then combined during path analysis as in static
WCET analysis tools to obtain an estimate of the WCET. There are two main approaches
to obtain the timing of program fragments by measurements:

By instrumenting the program code to obtain timestamps before and after executing each
program fragment [37].
By performing end-to-end measurements through different program paths, from which
the execution time of each fragment can then be estimated [17, 18, 31].

Both approaches require the generation of inputs that drive execution through a given
program point. Any unreachable code needs to be proven to be so, which may be difficult
for deeply nested code.

The first approach may not deliver faithful execution-time estimates on pipelined pro-
cessors, because timing is distorted through instrumentation. A too fine-grained instru-
mentation may also be impossible due to the large amount of trace data that must be
captured at high pace. The second approach avoids these problems since it identifies the
fine-grained timing models from end-to-end measurements. The approach in [18] works also
for complex architectures, and can identify timing models with context-dependent costs
for better precision. Both approaches may underestimate the WCET whenever execution
times of program fragments depend on input data values or on the execution history, as
the measurements will usually only cover strict subsets of the possible cases. On modern
processors with deep pipelines, branch predictors, and caches this is the case. Exceptions are
highly timing-predictable microarchitectures such as PRET machines [19].

While hybrid approaches are not guaranteed to be sound, and it is hard to quantify
confidence in its results, they can also be pessimistic. The path analysis phase may combine
observed worst-case timings of program fragments which may not occur together during a
single program execution, which may be avoided in static analysis [32].

4 Beyond WCET Analysis – The Impact of Interference on Shared
Resources

The WCET analysis exposed in previous sections considers a task that runs in isolation on
the platform: its execution time is assumed not to be impacted by any external source. In
practice, this assumption is rarely true: the task might be interrupted, or preempted by the
scheduler for the benefit of a concurrent task, and the hardware state (e.g. cache contents)
might be changed by the interrupt service routine or the preempting task; it may also be
delayed by a hardware-level operation (e.g. a DMA transfer) or a task running on another
core (in a multicore platform) that compete for shared resources (bus, memory, etc.). These
last years, several approaches have been proposed to account for such interferences.

Techniques to estimate the cache-related preemption delay (CRPD), i.e. the number
of additional cache misses due to context switching or periodic/sporadic interrupts, have
received much attention recently [3, 6]. Most of the approaches use static code analysis
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techniques and suffer the same confidence issues as static WCET analysis: the model and/or
its implementation might be flawed.

Multithreaded/multicore platforms raise additional issues: a task can experience increased
latencies upon accesses to shared resources, due to conflicts with simultaneously running
tasks; and the contents of shared storage resources, such as shared L2 caches, can be evicted
by co-running tasks all along the task’s execution, not only at preemption points. Evicted
cache contents may result in additional delays to reload information that is still in use
by the task. To estimate additional latencies due to interferences from other tasks, two
strategies are possible: the blind approach assumes the worst possible co-running task set
and considers absolute worst-case latencies [23, 15]; the scheduling-aware approach restricts
the analysis of possible conflicts to the set of tasks that can effectively run together with the
task under analysis [13, 21]. Both approaches require that the sharing control policy allow
upper bounding delays; this is the case for a round-robin bus arbiter, for example. In the
same way as for single-core architectures, the documentation of COTS multicores might not
provide enough guarantees in the sharing scheme description to be fully confident in estimated
delays. For this reason, designs for time-predictable multicores have been developed in recent
projects, such as T-CREST [30] or parMERASA [34]. Note that a common assumption for
most of the works on this topic is that the system features timing compositionality [11],
which allows analysing each component separately. Unfortunately, this property is not easy
to prove.

5 Discussion and Open questions

We have discussed possible sources of errors in different WCET analysis methods: static,
measurement-based, and hybrid methods, and how the potential for such errors will affect
the confidence in the result. The motivation comes from the need to quantify the confidence
in WCET estimates for safety-critical systems, e.g., to select C(HI) and C(LO) in Vestal’s
model for scheduling of mixed-criticality systems.

All WCET analysis methods have potential sources of errors. For methods like static and
probabilistic analysis, which rely on mathematical models, the risk that the models do not
comply with reality must be taken into account. For methods that include measurements
an additional source of uncertainty is the quality of the test vectors, and the ability of the
method to find inputs provoking the longest execution traces with the highest instruction
execution times.

Identifying sources of reduced confidence in WCET estimates is not difficult. Quantifying
the confidence is much harder, and we do not attempt to make any detailed assessment of
the different techniques in this regard. Having said that, we do believe that static analysis
methods have an edge as regards the potential to obtain high confidence in that (1) given that
the underlying models are correct, the methods are provably safe, and (2) since the methods
are not based on measured data, confidence can be obtained by a thorough validation of
the models against the real systems, and by verifying the correctness of the algorithms
and tool implementations that build on the models. The latter can be done either by a
formal verification, or by a run-time verification where checking of correctness certificates is
integrated in the tools.

For methods that rely on measurements, confidence also rests on the quality of the test
data. Better criteria are needed to assess this quality with respect to timing. Traditional
coverage criteria, like path coverage, do not consider hardware effects on timing: we would
need more refined coverage criteria that take hardware states, like cache contents, into
account.
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However, although hard, quantified confidence in WCET analysis methods is essential if
models like Vestal’s model are to be applied in the design of mixed-criticality systems. Our
aim is to start a discussion on how this can be done.

Acknowledgements. This paper has been initiated in the Dagstuhl Seminar 15121 – Mixed
Criticality on Multicore/Manycore Platforms.
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