Computing the maximum blocking time for scheduling with deferred preemption”

Sebastian Altmeyer, Claire Burguiere, Reinhard Wilhelm
Compiler Design Lab
Saarland University
66041 Saarbriicken, Germany
{altmeyer,burguiere,wilhelm } @cs.uni-saarland.de

Abstract

Deferred preemption enables a trade-off between the
high dynamics of a preemptive schedule on the one hand,
and the predictability of a non-preemptive system on the
other hand. In addition to bounds on the execution time
and the context-switch costs, the schedulability analysis for
deferred preemption needs the maximum time a preemption
can be delayed, called maximum blocking time. Scheduling
theory is based on an abstraction level where these values
are assumed to be given. So, the related work focuses on
the scheduling analysis and not on the computation of the
maximum blocking time. In this paper, we propose a new
method to determine the maximum blocking time of a task
given a fixed set of preemption points. To derive a sound
upper bound, our approach also includes the safe determi-
nation of the context-switch costs which might increase the
maximum blocking time.

1 Introduction

Tasks within an embedded system are scheduled either
preemptively or non-preemptively. A preemptive schedule
enables a higher performance than a non-preemptive one.
Some task sets are even only schedulable preemptively. In
contrast, timing analyses deriving upper bounds on the exe-
cution time (WCET) usually assume uninterrupted task ex-
ecution. Timing analyses for preemptively scheduled tasks
are more complex and less precise. A trade-off between
both is given by deferred preemption, also called cooper-
ative scheduling, where preemption is only allowed at se-
lected points in the task. Preemptive and non-preemptive
scheduling can thus be seen as the two extremes of deferred
preemption, trading dynamics with predictability.

*This work was supported by ICT project PREDATOR in the European
Community’s Seventh Framework Programme, by Transregional Collab-
orative Research Center AVACS of the German Research Council (DFG)
and by ARTIST DESIGN NoE.

200

For the schedulability analysis of deferred preemption,
not only upper bounds on the execution times and context-
switch costs are needed, but also the maximum blocking
time, i.e., the maximum time by which a preemption can be
delayed. Techniques for the first two parameters are already
well studied and available. The last point, the determination
of maximum blocking time, however, has so far not been
discussed in detail: the main focus of related works is on
the analysis of cooperative scheduling. Often, tasks with
fixed preemption points are considered to be composed of
subtasks, which is on the one hand not always true (in case
of preemption points within loops) and on the other hand
requires a separate analysis of each such subtask.

In this paper, we propose a new method, using integer
linear programming [9], to compute the maximum blocking
time (MBT) of tasks given a fixed set of preemption points.
Our method uses an extended implicit path enumeration
technique (IPET, [13]), typically used to derive bounds on
the execution times of tasks. We only slightly increase the
complexity of IPET. We also consider the context-switch
costs due to preemption that might increase the maximum
blocking time. These costs are computed using the useful
cache block approach.

The paper is structured as follows. Related work is dis-
cussed in Section 2. Section 3 explains the techniques our
approach relies on and Section 4 describes the details of our
approach.

2 Related Work

In [5], Lee et al. propose scheduling with deferred pre-
emption. While the main contribution of their paper is the
scheduling theory for deferred preemption, they shortly de-
scribe a method to bound the maximum blocking time. This
method explicitly computes all possible subpaths between
preemption points using the extended timing schema [6].
They also restrict preemption to points where the context-
switch costs do not exceed a predefined limit. Hence,
they do not need to take this delay into account during the

computation of the maximum block time. However, large
non-preemptible areas or even completely non-preemptive
tasks may result from the strong constraints for preemption
points.

In [3], Kistner and Thesing propose an offline schedul-
ing method which takes into account inter-task cache ef-
fects. For this schedule, they split all tasks into sequences of
subtasks between preemption points and perform a timing
analysis for each of these segments separately. This separa-
tion also restricts the preemption points.

In contrast to the former approaches, our method im-
poses no restriction on the selection of preemption points
and directly accounts for the context-switch costs. Since
our approach uses the implicit path enumeration technique,
it does not suffer from the high complexity of explicitly an-
alyzing all paths or subtasks.

3 Basics

Programs under examination are represented as control
flow graphs (CFG). Nodes of the CFGs are basic blocks:
maximal scquences of instructions with exactly one entry
and one exit point. Therefore, if one instruction of a basic
block is executed, so are all others. The edges of the control
flow graphs represent the possible control flows.

Definition 1 (Control Flow Graph)
An analyzed program P is represented as a control flow
graph

CFG = (V,E,s,¢)
where V = {By, ... B, } denotes the set of basic blocks B;
of Pand E € V x V the corresponding edges connecting
them. The start node is denoted by s and the end node by e,
respectively.

Timing analysis (see [2] for an overview) performs sev-
eral subanalyses on these CFGs: value analysis, loop-bound
analysis, low-level/micro-architectural analysis (including
cache analysis), and path analysis. Value analysis deter-
mines actual addresses of memory accesses and values for
registers and memory cells. These values are then used to
derive loop-bounds and to classify memory accesses as hits
or misses in the cache analysis. This classification used by
the low-level analysis to derive upper bounds on the execu-
tion times of basic blocks. In a last step, the path analysis
combines this information to find the path within the CFG
with highest execution time (IPET, detailed in Section 3.3).
Figure 1 shows the complete flow of a typical timing analy-
sis.

3.1 Useful Cache Block Analysis

Timing analysis typically assumes uninterrupted task ex-
ecution. If a task is preempted at some point, the execution

201

CFG

Value Analysis ’ Low-Level Analysis ‘

Loop Analysis
Path Analysis

WCET
Figure 1. Structure of the timing analysis.

time may be increased due to changes in the cache, i.e., due
to evicted cache entries. A standard approach to compute
context-switch costs is deriving the set of so-called useful
cache blocks (UCBs).

Definition 2 (Useful Cache Block)

A useful cache block C' at a given program point P is a
memory block which 1) is definitely cached at P and 2) may
be reused by some program point P’ that can be reached
from P.

An example of useful cache blocks is given in Figure 2.
The content of the data cache and UCBs are detailed for
each program line: cache blocks are useful when they are
cached and possibly reused later in the program execution.

In case the task is preempted at program point P, the
context-switch costs include the costs to reload all cache
blocks that could be reused [4]. This assumption is overly
pessimistic, such that the useful cache block approach can
be — and has been — improved, for example, by reducing
the set of the UCBs to those, which may be evicted by the
preempting tasks [8, 10, 11].

The useful cache block approach is only available for
direct-mapped and LRU caches and for processors without
timing anomalies [7].

Cache UCBs
- 0 [}
load a a a
. . a a
loadb | a,b a,b
Cache UCBs / Cache UCBs
a,b a - B) b
a,b a |loada loadb | a,b ()
a,bc a | loadc Sl ah)
a,b,c () |loada ab 0
a,b,c) -

Figure 2. Example of an UCB analysis (mem-
ory blocks a, b, c¢; cache content and set of
UCBs on each program point)

3.2 Deferred Preemption

Scheduling with deferred preemption offers a balance
between preemptive and non-preemptive scheduling by al-
lowing preemption only at specified preemption points [1].
Due to the decreased dynamics of the system, predictability
is increased. For the sake of simplicity, we assume preemp-
tion points directly at the beginning or at the end of a basic
block. The typical small size as well as the structure of the
basic blocks justifies this restriction; adjacent instructions
and semantic relationship within a basic block causes the
context-switch costs to be smaller at the boundaries of a ba-
sic block than within. Only in the rare case of large basic
blocks, this restriction increases the bound on the maximal
blocking time.

The maximum blocking time which we handle in this
paper is needed to guarantee the schedulability of a sys-
tem with deferred preemption. Figure 3 shows an example
on how the blocking time influences the system schedule.
Task T has the highest priority: it preempts task 75 two
times. However, the preemption is delayed until the next
preemption point is reached. This delay between task ac-
tivation and task execution, due to deferred preemption, is
the blocking time (BT). Note that the figure shows also the
context-switch costs that can be observed during the block-
ing time (and may increase it).

BT, ~BT ,
/A — ! — | —/]
T, |

————1 b/ O3

[= Context-Switch Costs
l = Task Activation
= Preemption Point

Figure 3. Example of scheduling with de-
ferred preemption

3.3 Implicit Path Enumeration

Implicit path enumeration (IPET, [13, 12]) is widely used
in the context of timing analysis. As indicated by the name,
IPET searches the longest execution path within a program
implicitly, avoiding a complex explicit enumeration. The
analyzed program is described by structural and flow con-
straints representing and constraining the possible control
flow. In combination with an optimization function (max-
imizing the sum of execution times of basic blocks times
the execution counts), we obtain an integer linear problem,
whose maximal value delivers an upper bound for the ex-
ecution time of all path through the program. As in the
original paper by Li and Malik, we introduce two types of

202

counters, one for the basic blocks and one for the edges:
z; € N denotes how often basic block B; € V is executed,
and y; € N denotes how often edge E; € FE is traversed.
These counters are the variables within the ILP. The coef-
ficients are given by a prior loop and micro-architectural
analysis: ¢; € N denotes an upper bound on the execution
time for basic block B;, and b; € N denotes an upper bound
on the number of iterations of loop [and, by this, how often
the loop is entered.

Given a control flow graph CFG = (V, E,s,e). The
objective function is given in Equation (1). Equation (2)
and (3) bound the number of executions of the first, resp.
last node. Each node is executed as often as it is entered (4)
and left (5). Equation (6) represents the loop bound, where
E; denotes the first edge in the loop body and b; the loop
bound. An example of IPET (CFG with the corresponding
constraints) is given in Figure 4.

maXZ:c,-ci (1
i
x; =1, where B; = s 2)
x; =1, where B; = e 3)
>y =k, where S = {j|E; = (L. By)} 4
jes
r =Y y;, where S = {j|E; = (Bi,)} (5)
j€s
y < bl(z y;) where S = {j|E; loop entry edge} (6)
jes
I=z1 1=y +y;
Y1+ Ya = T2 T2 = Y3+ Ys;
Y2 =3 T3 =Ys;
Y3 = T4 T4 = Y4
Ys Y =T Ts=1;
ys < by - yi;

max E TiC;i
i

Figure 4. Control Flow Graph and the corre-
sponding ILP

4 Computing Maximal Blocking Time

In this section, we proposc an extension to IPET to de-
rive the maximum blocking time given the set of preemption

points. These preemption points can not be seen as graph
separators dividing the control flow graph into a set of sub-
graphs, as Figure 5 shows. Hence, we can not apply the
simple method of analyzing tasks with preemption points
as a sequence of smaller tasks.

In our approach, we treat preemption points as additional
start/end nodes. As mentioned before, we allow preemption
points only at the beginning, resp. the end of a basic block.
If a preemption point is located at the entrance of a basic
block B;, we introduce an artificial node B}' directly before
B; (upper part) and, if it is located at the end, we introduce
an artificial node Bf directly after B; (lower part).

Note that we do not need to change the control flow
graph itself. Just the implicit path enumeration technique,
the last step of the timing analysis, is extended, and so, the
set of constraints and the objective function are modified.
For each preemption point, we introduce exactly one new
variable, the number of constraints remains unchanged. The
described changes to the control flow graph are introduced
only to explain our method.

Definition 3 (Sets of Preemption Points)
The set

Up = {B;| preemption point at beginning of B;}

contains all basic blocks with a preemption point at the
head, the set

Lo = {B;| preemption point at end of B;}
at the end.

Figure 5 shows the extension to the control flow graph
and the sets Lo and Up. Preemption points are at the begin-
ning of basic block B3 and at the end of block By4. There-
fore, the nodes BY and B} are introduced.

Lo = {34} Up = {Bg}

Figure 5. Original and Modified CFG with Pre-
emption Points.

203

Structural Constraints The path we are interested in
starts from the lower part B! of one of the preemption points
or from the start node. It ends either in the upper part B;* of
one of the preemption points or in the end node. By setting
the sum of the execution counters to one, Equation (7) and
Equation (8) restrict the blocking path to exactly one start
node and one end point.

rot Y al+ Y =1 7
Bi;€Lo B;eUp

xe—t—Zx;‘—f—Zmi:l 8)
B;eUp B;€Lo

As in the original implicit path enumeration technique,
each node is entered (9) and left (10) as often as is its exe-
cuted. Preemption points cut the control flow graph, hence
the relation between incoming and outgoing edges is also
cut. In case preemption occurs at the beginning of basic
block By, all incoming edges enter B}¢. In case preemption
occurs at the end of basic block By, all outgoing edges leave
B,lc. No constraint connects By, to B} and B,lc, respectively.

o xp if B, cUp
Z Yi = x, otherwise ©)
jes
where S = {j|E; = (-, Bx)}
L.
. xyp ifBp€e Lo
Z Yi = xp otherwise (19)

jes
where S = {j|E; = (Bg,-)}

Flow Constraints Equation (11) represents the loop con-
straint in the extended IPET. The constant b; denotes the
loop bound and E is the first edge in the loop body.

<t | Yy

jes

an

where S = {j|E; loop entry edge}

The non-preemptive path with the highest execution time
determines the maximum blocking time. Since the execu-
tion time of the basic blocks does not contain cache-reload
times due to preemption, we have to account for them sep-
arately. Therefore, the maximum blocking time is deter-
mined on the one hand by the length of the path from a pre-
emption point (or the start node) to a preemption point (or
the end node) and on the other hand by the context-switch
costs at the beginning of the path.

Definition 4 (Context-Switch Costs)

The context-switch costs at the beginning of a basic block 1
are denoted by C}*, while we denote context-switch costs at
the end of a basic block i by C!

Objective Function The objective function to compute
MBT is thus given by the sum of execution counter z;
times execution time ¢; for each basic block B; and by the
context-switch costs. These costs either occur due to a pre-

emption point at the end of a basic block > z!C! |, or

B;eLo

at the beginning > z; C’g‘) .

B;eUp

Z zlet + Z z;C}

B;€Lo B;cUp

n
max Z(m,cz) +
i=1

An example of extended IPET (CFG with the corre-
sponding constraints) is given in Figure 6. The number
of constraints remains unchanged compared to Figure 4.
Equation (7) ensures that at most one time context-switch
costs contribute to the maximum blocking time.

T +r3+al=1;
1 =24+ x5 + 2%;

T1 = Y1+ Y2;
Y1+ Y4 = T2 T2 = Y3+ Ys;
Y2 =T33 TH = Ye;

Y3 = T4; :zrfl = Ya;
Ys + Y6 = Ts;
y3 < byy;

maxz Tic; + :I:fle + 23C}
i

Figure 6. Extended IPET schema to compute
the maximum blocking time

5 Conclusions

In this paper we have proposed a new method to max-
imize the blocking time due to deferred preemption. We
use the implicit path enumeration technique to implicitly
describe all possible paths that can be executed during a
blocking time. By introducing exactly one variable per
preemption point while keeping the number of constraints
fixed, compared to the number of constraints to compute
the WCET, we keep the complexity low. In addition, our
method accounts for the context-switch costs that might in-
crease the blocking time.

As future work, we plan to develop a method to deter-
mine optimal preemption points with respect to the context-
switch costs and/or maximum blocking time. To cvaluate
different sets of preemption points, we need a fast and sound

204

method to bound the maximum blocking time of each set —
such as the method presented in this paper.

References

[1] R. J. Bril, J. J. Lukkien, and W. K. J. Verhaegh. Worst-
case response time analysis of real-time tasks under fixed-
priority scheduling with deferred preemption revisited. In
ECRTS ’07: Proceedings of the 19th Euromicro Conference
on Real-Time Systems, pages 269-279, Washington, DC,
USA, 2007. IEEE Computer Society.

J. Gustafsson. WCET challenge 2006 - technical report.
Technical report, January 2007.

D. Késtner and S. Thesing. Cache aware pre-runtime
scheduling. Real-Time Syst., 17(2-3):235-256, 1999.

C.-G. Lee, J. Hahn, Y.-M. Seo, S. L. Min, R. Ha, S. Hong,
C. Y. Park, M. Lee, and C. S. Kim. Analysis of cache-related
preemption delay in fixed-priority preemptive scheduling.
IEEE transactions on computers, 47(6), June 1998.

S. Lee, C.-G. Lee, M. Lee, S. L. Min, and C.-S. Kim. Lim-
ited preemptible scheduling to embrace cache memory in
real-time systems. In LCTES '98: Proceedings of the ACM
SIGPLAN Workshop on Languages, Compilers, and Tools
for Embedded Systems, pages 51-64, London, UK, 1998.
Springer-Verlag.

S.-S. Lim, Y. H. Bae, G. T. Jang, B.-D. Rhee, S. L. Min,
C. Y. Park, H. Shin, K. Park, S.-M. Moon, and C. S. Kim.
An accurate worst case timing analysis for risc processors.
IEEE Trans. Softw. Eng., 21(7):593-604, 1995.

T. Lundqvist and P. Stenstrom. Timing anomalies in dynami-
cally scheduled microprocessors. In RTSS "99: Proceedings
of the 20th IEEE Real-Time Systems Symposium, page 12,
Washington, DC, USA, 1999. IEEE Computer Society.

H. S. Negi, T. Mitra, and A. Roychoudhury. Accurate esti-
mation of cache-related preemption delay. In CODES+ISSS
'03: Proceedings of the 1st IEEE/ACM/IFIP international
conference on Hardware/software codesign and system syn-
thesis, pages 201-206, New York, NY, USA, 2003. ACM.
A. Schrijver. Theory of Linear and Integer Programming.
John Wiley and Sons, 1986.

J. Staschulat and R. Ernst. Multiple process execution in
cache related preemption delay analysis. In EMSOFT "04:
Proceedings of the 4th ACM international conference on
Embedded software, pages 278286, New York, NY, USA,
2004. ACM.

Y. Tan and V. Mooney. Integrated intra- and inter-task cache
analysis for preemptive multi-tasking real-time systems. In
In Proceedings of the 8th International Workshop, SCOPES
2004, in: Lecture Notes on Computer Science, LNCS3199,
pages 182—-199. Press, 2004.

H. Theiling. ILP-based interprocedural path analysis.
In Proceedings of the Workshop on Embedded Software,
Grenoble, France, October 2002.

Y. tsun Steven Li and S. Malik. Performance analysis of em-
bedded software using implicit path enumeration. In in Pro-
ceedings of the 32nd ACM/IEEE Design Automation Con-
Serence, pages 456461, 1995.

(2]
(3]
(4]

(31

(6]

(7

(8]

[9]

[10]

(1]

[12]

[13]

