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In Situ Detection of Nucleation in

High-Temperature Solutions

Andreas G. F. Schneider, Paul Sass, Robert Schéndube, and Anton Jesche*

The state of a sample during crystal growth from high-temperature solutions
is not accessible in conventional furnace systems. An optimization of the
growth parameters often requires arduous trial and error procedures, in
particular, in the case of novel multicomponent systems with unknown phase
diagrams. Here a measurement technique based on lock-in amplification is
presented that allows for in situ detection of the liquidus and solidus
temperatures as well as structural phase transitions. A thin, metallic
measurement wire is mounted in close vicinity to the melt. Characteristic
anomalies in the time-dependent electrical resistivity of this wire allow for the
detection of latent heat release without using a reference crucible. The
method is implemented in a “feedback furnace” and enables an adjustment of
the temperature profile based on the occurrence or absence of phase
transitions. The absolute temperature serves as an additional source of
information. Obtained phase transition temperatures are in good agreement

with differential thermal analysis.

1. Introduction

High-temperature solutions, also referred to as flux, provide a
powerful tool for the single crystals growth of binary or higher
multicomponent compounds.'™ A melt composed of several el-
ements is deliberately cooled such that crystallization of certain
fractions of the melt and growth of monocrystalline grains of the
desired phase occur. The prediction of the temperature at which
the sought-after phase nucleates is problematic and inaccurate,
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as the phase transition temperatures are
rarely known in the case of novel mul-
ticomponent systems. Thus, after melt-
ing and homogenization of the sample
material, the mixture is cooled as slowly
as achievable over the critical tempera-
ture (liquidus temperature) determined
from the phase diagram (if available) or
from previous investigations. This pro-
cedure has the consequence that the ex-
act beginning of the crystallization can-
not be determined and the slow cool-
ing of a melt solution usually has to be
started 50-100 °C above the nominal lig-
uidus temperature. With cooling rates of
2°Ch™, the process can last several days
before the actual onset of nucleation and
crystal growth take place. This means an
enormous expenditure of time and en-
ergy, which can be even further increased
by supercooling of the melt. In the
temperature range close to nucleation and the early phase of
crystal growth, however, even smaller cooling rates of less than
2°Ch™" would be desirable in order to allow undisturbed forma-
tion of separated crystals without intergrowth.

Here, we present a novel method for controlling the heating
power of a furnace. The key idea is that the state of a sample
is no longer determined only by the nominal temperature in
the process chamber, but by the onset or absence of character-
istic signatures in the time-dependent temperature measured di-
rectly at the sample position. Those signatures are caused by the
latent heat associated with first-order phase transitions. Latent
heat anomalies in the time-dependent sample temperature are
detectable by high-precision measurements of the electrical resis-
tivity using a lock-in-technique. We succeeded in detecting tem-
perature anomalies smaller than 10~* of the absolute value by
phase-sensitive measurements in dilute alloys. The in situ de-
tection of nucleation makes it possible to cool below or oscillate
around the liquidus temperature at significantly slower rates than
previously practical.

The paper is organized as follows: we specify our furnace and
measurement setup followed by further experimental details on
materials and equipment. In the second part, we present results
on binary alloys: We show precise liquidus and solidus temper-
ature detection of Bi-rich and In-rich solutions, investigate the
development of the characteristic signatures upon successive di-
lution for Ni-Bi and describe detailed measurements of several
phase transitions in Pd-Bi solutions.
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Figure 1. Schematic sketch of the feedback furnace. Measurement wire
(tungsten) and thermocouple (T1) are directly attached to the growth cru-
cible, which is placed in an inert-atmosphere chamber.

2. Furnace Setup

We implemented the feedback method in custom-build furnace
produced by ScIDre.’! The tubular furnace consists of a quartz
process chamber (wall thickness 2.5 mm, diameter 50 mm,
length 350-360 mm), which is centrally wrapped with a FeCrAl
heating wire (diameter 1 mm, length 180 mm). Each end of the
quartz tube is plunged in a flange made of stainless steel and
sealed by an O-ring (FKM 80A). The lower flange is connected to a
vacuum pump and a protection gas supply while the upper flange
gets closed by a cover plate with several gas-tight feedthroughs.
The setup features two thermocouples, one lead into the furnace
by the upper side (Figure 1 — T1) and one by the bottom side
(Figure 1 — T2). T1 is fed through the cover plate reaching into
the center of the heating zone, where the crucible is located. To
this extend, the thermocouple is bent upward by 180° and the
crucible is placed on top. The crucible is placed slightly below
the center of the heating zone for providing a temperature gra-
dient of 20 °Ccm™!, measured by successively shifting the po-
sition of the thermocouple. Note that this value presents an up-
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Figure 2. Growth crucible. The measurement wire is mounted in a me-
andering fashion at the bottom of the growth crucible (left: bottom view,
right: side view). Grooves reduce the distance between melt and measure-
ment wire to 0.5 mm. An additional indentation allows to place a ther-
mocouple close to the measurement wire in order to scale resistivity to
absolute temperature.

per limit since thermal conductivity and convection in the melt
reduce the temperature gradient. Whereas T1 is used to mea-
sure the absolute temperature as close as possible to the sam-
ple material, T2 serves primarily as safety measure for avoiding
uncontrolled heating in case of faulty T1 readings. All processes
are performed under argon atmosphere at a pressure of roughly
500 mbar.

The crucible preparation deserves special attention as it is a
major component of our phase transition detection method. In
our setup, the actual resistivity measurement and thus the de-
tection of latent heat anomalies takes place within the bottom of
the crucible. In order to detect temperature changes of the sam-
ple material as precise as possible, a thin measurement wire has
to be placed as close as possible to the melt without direct con-
tact, covering as big part of the melt surface as possible. There-
for, we use a tungsten wire of typically 40 pm diameter which is
placed in a meandering way inside the crucible bottom (Figure 2).
Several grooves are sawn into the bottom of the crucible and the
measurement wire is covered by a ceramic glue. A shallow inden-
tation is drilled afterward into the bottom of the crucible where
thermocouple T1 is placed upon crucible installation within the
process chamber.

The filled crucible is loosely covered with an alumina cap and
placed in the furnace under argon atmosphere at a pressure of
500 mbar. A piece of Zr foil was placed on top as oxygen getter.
Note that materials with elevated vapor pressure could transport
and deposit outside the crucible. Growth attempts with Bi-rich
flux indicate that vapor pressures of ~3 mbar at T = 1000 °C [l
do not lead to measurable mass loss (neglecting transport active
species).

The thin tungsten measurement wire has two loose ends at
each side of the crucible. These ends are connected to two tung-
sten rods (3 mm diameter) that are lead through the cover plate
similar to T1 reaching into the heating zone. The wire ends are
connected to the rods by clamping them between the planar rod
tip and a screw head fixed by a hex nut from the other parallel
side. The electrical contact is stable up to at least 1000 °C.

Outside the furnace the rods are connected via coaxial cables to
alock-in amplifier. The resistivity at room temperature is given by
measurement wire (R~ 7 Q), tungsten rods (R = 5 m€Q) and coax-
ial cable (R ~ 70 m€). Accordingly, the total resistivity is domi-
nated by the voltage drop at the measurement wire (which is re-
ferred to as “lock-in voltage” or U(#) in the following).

© 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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3. Experimental Section

Investigated alloys were Sb-In (Sb: MaTeck, 99.9999%; In:
ChemPur, 99.999%), Au-In (Au: Edelmet. Recycling, 99.99%),
Pd-In (Pd: 99.95%, Agosi), Ni-Bi (Ni: 99.98%, GoodFellow; Bi:
99.9999%, ChemPur), Mn-Bi (Mn: 99.99%, MaTeck), and Pd-Bi
(Pd: 99.95%, Agosi; Bi: 99.999%, 5NPlus).

The used crucibles were made of aluminum (LSP Industrial
Ceramics Inc., diameter 12 mm, height 25 mm). The grooves for
the W wire were prepared at the Fraunhofer-Institut fiir Solare En-
ergiesysteme ISE, Wavering group in Freiberg (Germany) using a
high-precision multi-wire diamond saw. The tungsten rods were
obtained from ChemPur (99.95%), the tungsten measurement
wires from GoodFellow (99.95%). The wires were fixed at the
cruciblg/ by an aluminum-based glue (Polytec GmbH, 903 HP, «
=57 %),

For nrqr-lkeasuring the voltage drop at the contact wire, the lock-in
models 7280 DSP (Perkin & Elmer; data shown in Figures 7a—c,
9a,b) and MFLI 500kHz 60 MSa/s (Zurich Instruments; data
shown in Figures 4, 6, 7d—{, 8, 9¢, 11) were used.

Differential thermal analysis (DTA) measurements of binary
SbIn and PdBi (37:63) alloys were performed using a Netzsch
STA 449 C/3/F Jupiter DTA. An empty crucible was used as refer-
ence for Sbln, whereas the reference crucible of the PdBi sample
was filled with bismuth of the same mass.

Phase formation was verified by X-ray powder diffraction using
a Miniflex 600 diffractometer (Rigaku).

4. Detecting Liquidus and Solidus Temperature of
“Simple” Binary Alloys

Growth process, data collection and analysis are presented in de-
tail for Sb-In. Lumps of antimony and indium were mixed in a
molar ratio of Sb:In = 1:9. According to the binary alloy phase
diagram,! two well-separated phase transitions (at liquidus and
solidus temperature) are expected for this composition (Figure 3).
The sample was heated up to 400 °C and kept there for 1 h in or-
der to homogenize the melt. Afterward the heating was turned
off and the solution allowed to cool down without further exter-
nal influence.

The sample temperature as a function of time, T1(t), is con-
tinuously measured by thermocouple T1. Changes in tempera-
ture cause a change of the electrical resistivity of the tungsten
measurement wire. This change in resistivity is directly propor-
tional to the voltage drop, U(t), measured by the lock-in amplifier.
With time as an implicit parameter, U(t) can be directly related
to T'1(t). A plot of U as a function of T1 reveals a basically linear
dependence as expected for a metal. Fitting a second-order poly-
nomial to account for small deviations from linearity yields an
analytic expression for the temperature of the measurement wire
T(t) = f(U(t)). The time-dependent temperature T'(t) obtained for
the Sb-In alloy is shown in Figure 4: the solidus is apparent and
also the liquidus is observable with the naked eye (see upper in-
set). The thermocouple readings T1 offer a much lower resolu-
tion and do not allow for a reliable detection of the phase transi-
tions (lower inset in Figure 4).

The anomalies emerging at phase transitions are better observ-
able in the difference curves AT(t) = T(f) — Ty () where Tyc (1)
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Figure 3. Binary alloy phase diagram of Sbin after Sharma et al.’l The
composition of the starting materials is indicated by the vertical red line.
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Figure 4. Cooling process of an Sbyylngy alloy. The temperature profile
was obtained from the lock-in voltage of the measurement wire. The
corresponding values of the thermocouple temperature (T1, lower inset,
red line) show identical time dependence with significantly lower resolu-
tion and were used to convert lock-in voltage to temperature. Significant
anomalies emerge at liquidus (inset) and solidus temperatures.

describes the time dependence of temperature that is not related
to phase transitions. Additional measurements on empty cru-
cibles confirmed the monotonic and featureless behavior of the
background contribution. The following steps present one possi-
bility to determine Ty (t) (see Figure 5a—c):

a) The derivative d T (t)/dt allows to estimate liquidus and solidus
temperature (as well as possible other phase transitions).

© 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 5. Background determination Ty (t), which reflects time depen-
dence of temperature unrelated to phase transitions. a) Derivative of the
temperature T () for an Sbyglngg alloy (see Figure 4). b) Interpolation of
T(t) from above and below the phase transition temperatures yields Ty (t)
(dashed line). c) Difference curves AT (t) = T(t) — Tgg (t) obtained with
and without considering additional data points in between liquidus and
solidus temperature in order to fit Tz (t), from top to bottom: no addi-
tional data points, t = 45 — 50 min, t = 35 — 40 min, and t = 25 — 30 min.

b) Part of the data set above liquidus and below solidus tem-
perature are selected that show a time dependence that is
not affected by phase transitions (here t =5— 11 min and
t =69 — 74 min, see data points in dark grey). Those data
points were fitted to the following (empirical) function.

T(t) = at + bt* + T, + (T, — T,,) exp(—t/7)

with five free parameters a,b, T, , T,, and 7. The obtained
curve is shown by the black, dashed line. Additional data
points can be considered that are not affected by nucleation
and solidification (see, e.g., colored data points in regions
t = 25— 30 min, t = 35 — 40 min, and ¢ = 45 — 50 min).
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Figure 6. Comparison of an Sbyylngq alloy cooled in the feedback furnace
with a conventional DTA measurement. a) Temperature profile obtained
by the measurement wire (see Figure 4) after background subtraction. b)
Time-dependent thermovoltage measured by DTA.

¢) The phase transition temperatures appear as sharp anomalies
in AT(t) and do not depend on whether or how additional data
points were used to fit Ty (t). Since the details of AT(t) in the
region between liquidus and solidus depend on the amount of
latent heat released during the growth of SbIn, additional data
points are required for higher precision. Given that AT(#) is
supposed to be positive, the most reliable estimate is obtained
by incorporating the region closest to the solidus (green data
points, in accordance with the increasing slope of the liquidus
line, see Figure 3).

We want to emphasize that the presented determination and
subtraction of Ty (t) was primarily performed in order to allow
for a direct comparison of feedback furnace results and DTA mea-
surements (see below). It is not necessary for an optimization of
the growth procedure, which can be done by directly using the
lock-in voltage U(#) for the detection of nucleation as well as for
controlling the heating power of the furnace.

Figure 6a shows AT(t) obtained for the Sb-In alloy (Tys()
determined from above liquidus, below solidus, and t =45 —
50 min). In order to compare the signatures observed in T(t),
a DTA measurement was performed in a similar fashion (Fig-
ure 6b). There is good agreement in the shape of characteris-
tic signatures and the resolution of the different measurement
techniques are comparable. In the feedback furnace, liquidus
and solidus temperatures are determined to be 307 and 149 °C,

© 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 7. Temperature profiles after background subtraction collected for
several binary alloys (transition metal:Bi/In = 1:9). a) Ni-Bi, b) Pd-Bi, c)
Mn-Bi, d) Sb-In, e) Au-In, f) Pd-In, and g) Gd-Al (temperature converted
from lock-in voltage by the readings of thermocouple T1).

respectively. The respective temperatures measured in the DTA
system are 332 and 156 °C. The liquidus temperatures differ due
to different degrees of supercooling and are in reasonable agree-
ment with previously reported values of 315 °C ¥l and ~ 340 °C.l"

X-Ray powder diffraction was performed on ground Sbln sin-
gle crystals. Those were separated from the flux by heating the
solution above the eutectic and centrifuging afterward.” The for-
mation of the binary SbIn and small residuals of In-rich flux
is confirmed.

Comparable results were achieved with the six other binary
systems Ni-Bi — NiBi,,[1% Pd-Bi — PdBi,,™ Mn-Bi - MnBi,!!4
Au-In - Auln,,8) Pd-In »PdIn,,* and Gd-Al -Al,Gd™ (the
compound denoted after — crystallizes upon cooling below the
liquidus temperature). The starting materials were mixed in the
ratio transition metal/Gd:Bi/In/Al = 10:90. The solutions of Ni-
Bi, Mn-Bi, Au-In, and Pd-Bi were homogenized for 60 min at
600 °C, the solution of Pd-In at 800 °C, and the solution of Gd-Al
at 1000 °C. Figure 7 shows the obtained signatures at liquidus
and solidus temperatures after background subtraction. Signifi-
cant variations are observed in the shape of the anomaly that is
associated with nucleation: AT (t) increases step like for Ni-Bi and
Pd-Bi at T =437° and T = 282°, respectively (Figure 7a,b) and
even the overall slope of T(t) (not shown) is positive indicating
strong supercooling. This behavior was reproduced in four addi-
tional cooling procedures performed for both compounds. Mn-Bi

Cryst. Res. Technol. 2020, 55, 1900109 1900109 (5 of 8)

www.crt-journal.org

a) 400

390
O 380
= 370

3604

350

18 20 22 24 26
t (min)

Figure 8. Anomalies in the vicinity of the liquidus temperature recorded
by the measurement wire in five consecutive runs (for clarity, curves are
shifted horizontally keeping the order of measurements). a) Mixture of
Au:ln = 1:9 with (run 1,2) and without (run 3,4,5) signatures of supercool-
ing (indicated by sharp upturn in temperature). b) Mixture of Pd:In = 1:9
with alternating absence and occurrence of supercooling.

and Sb-In (Figure 7c,d), on the other hand, show a comparatively
smooth increase in AT (t) at the liquidus temperature in all five
measurements performed. The absence or at least a significantly
lower tendency for supercooling is inferred.

Rather unexpected observations were made for the Au-In and
Pd-In alloys, with strong supercooling shown in Figure 7e,f: suc-
cessive cooling procedures indicate strong supercooling in some
cases whereas no such signatures are observed in other runs.
This is best seen in the raw data prior to background subtraction
(Figure 8, the temperature T'(t) is obtained by converting the lock-
in voltage). Note that those runs were performed consecutively
without adjusting the measurement technique or opening the
growth chamber. In the Au-In cooling curves 1 and 2 (Figure 8a),
a change of slope emerges at T = 386 °C and marks the liquidus
temperature. In runs 3, 4, and 5, on the other hand, the temper-
ature increases in a step-like fashion at significantly lower tem-
perature of T = 370 °C. Both, shape of the anomaly and reduced
temperature, indicate supercooling (by roughly 16 °C). Even al-
ternating behavior is observed for Pd-In (Figure 8b). A relation
between characteristic temperature and shape of the anomaly is
recognizable: strong supercooling in runs 2 and 4 as evidenced
by the lowest characteristic temperature and a strong increase in
T (t) at the nucleation. Runs 1 and 3 show the anomaly at signifi-
cantly higher temperature (+16 °C) and no increase in T'(t). Inter-
mediate behavior is observed in run 5 with a moderate increase
in temperature at intermediate characteristic temperature.

So far, the presented phase transitions took place at rather low
temperature, with events all below T = 600 °C. As shown in Fig-
ure 7g for an Al-rich solution, successful detection is possible at
significantly higher temperature of T ~ 900 °C.

5. Resolution Limit

Dilution experiments were performed on a Bi-rich flux with the
starting elements mixed in a ratio of Bi:Ni = 9:1. After detect-
ing the nucleation of NiBi, in several runs, the Bi content was
increased by adding Bi pieces to the crucible, such that the Ni
concentration decreased to Bi:Ni = 92:8, 94:6, and 95:5. The
obtained time-dependent temperatures at the crucible T'(t) (ob-
tained by converting the lock-in voltage) are shown in Figure 9a.
As expected from the binary alloy phase diagram,l'% the liquidus

© 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 9. Resolution limit of the feedback furnace. a) Temperature profile
recorded by the measurement wire for a series of Ni-Bi alloys mixed in ra-
tios Ni:Bi = 10:90 (black curves), 8:92 (green curves), 6:94 (blue curves),
and 5:95 (brown curves). The expected decrease of the liquidus tempera-
ture for increasing Bi concentration['% is apparent (for clarity, curves are
shifted horizontally keeping the order of measurements). b) Ni-Bi binary
phase diagram expanded for the Bi-rich sidel'® with liquidus temperatures
obtained in the feedback furnace shown by open, red symbols. c) Magni-
tude of the anomaly in AT (£) at the liquidus temperature as a function of
the Ni concentration (error bar represents the variation over the four runs,
the line is a fit to a hyperbolic function—see text). d) Solidification of 46 mg
InatT=151°C.

temperature decreases with increasing Bi concentration. Further-
more, the anomaly appears weaker due to the smaller amount
of precipitating material. With the data at hand, we cannot un-
ambiguously tell whether the tendency to supercooling is also re-
duced or an increase in T/(t) at the nucleation is unobservable due
to the smaller amount of latent heat. A comparison of obtained
liquidus temperatures with the binary alloy phase diagram[!% in-
dicates weaker supercooling for lower Ni content (Figure 9b).

In order to estimate the lowest Ni concentration that still al-
lows for the detection of NiBi, nucleation, we analyzed the de-
pendence of the anomaly in AT(t) as a function of the Ni concen-
tration (after background subtraction). The obtained step height

at the anomaly, AT, , is shown in Figure 9c. The error bar rep-
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Figure 10. Binary alloy phase diagram of PdBi.'""'8 The composition of
the starting materials is indicated by the vertical, red line.

resents the variation over the four runs (standard deviation). The
solid line is a fit toa hyperbolic function [ATy;, = ax/(f — )] that
describes the expected decrease of the anomaly with decreasing
Ni concentration. Given that relative changes in temperature (ob-
tained from the lock-in voltage) are detectable on a level of 1074,
the resolution limit is reached for an estimated Ni concentra-
tion of roughly 0.25 at.-%. In addition, the resolution limit was
investigated by measuring a small piece of In (m = 45.8 mg).
A clear signature in AT() is observed at the solidification at
T = 151°C (Figure 9d) in good agreement with the melting tem-
perature of T = 156 °C.["®l The step in AT(t) amounts to 0.26 °C
and is roughly ten times larger than the noise level. With the en-
thalpy of fusion of In, A, H = 28.6 J/g,!'”) we estimate that phase
transitions with latent heat release of > 100 m] are detectable
with the naked eye.

6. Results on Pd;;Big;

A more complex series of phase transitions is expected for PdBi
mixed in a ratio of Pd:Bi = 37:63 as inferred from the binary al-
loy phase diagram shown in Figure 10.'!l Even though the tar-
get compound PdBi melts congruently and can be grown by the
Bridgman technique, 2 flux growthl??! offers several advan-
tages: free growth of faceted crystals in the natural habit, “in situ
purification” of the starting materials, (potentially) higher diffu-
sion rates, and the use of comparatively small amounts of ma-
terial. We have chosen PdBi primarily because it offers a phase
diagram of intermediate complexity and structural phase transi-
tions in addition to liquidus and solidus.

In contrast to the previous processes, regular heat pulses of
1200 ms every 10 s were used for heating instead of controlling
the temperature by a setpoint. This resulted in a temperature
profile that is not bound to a predetermined slope and, more
importantly, that does not mask the anomalies caused by phase
transitions. Large heating rates are employed and the maximum

© 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



ADVANCED
SCIENCE NEWS

CRYSTAL
Research&Technology

www.advancedsciencenews.com

a) 1 1 1 1
700 L
600+ B-PdBi+L — L

G 500{B-B,Pd - L+B-PdBi ! —
= _ _06 ’
400 o2 B-Bi,Pd /@ -
o3
3004 0.0 i
©
300 600 _ 900
200 2s)
0 500 1000 1500
t(s)
b) 1 1 1 1
700 L
G 480\ L2 B-PdBi+L
600 : 4601------D i
B-PdBi+L
S 500 ¥ 440 g i pd i
e 600 800 1000
" 400+ £(s) -
B- — a-Bi,Pd
3004 T -
200 L
0 1000 2000 3000

t(s)

Figure 11. Temperature profile of Pd:Bi = 37:63 recorded in the feedback
furnace. a) Structural phase transition (« — f Bi,Pd) and melting of Bi, Pd
manifest in well-defined kinks in T(t). The liquidus temperature is observ-
able in the derivative dT (t)/dt (inset). b) Significant supercooling is indi-
cated by the sharp increase in T (£) (inset) and the lowering of the transition
temperature by ~ 40° when compared to the heating curve. Solidification
and structural phase transition of Bi,Pd are well resolved.

Table 1. Detected and assigned phase transitions of Pd-Bi (37:63) acquired
by feedback furnace and DTA (heating:1, cooling:|).

Transition Lit. [°CI" Furnacet [°C] DTA?[°C] Furnacel [°C] DTA| [°C]
a < f-PdBi, >380 376 378 333 328
p -PdBi, < L 485 476 485 458 474
p-PdBi < L 520 510 522 473 478

temperature of 700 °C is reached in roughly 27 min. Accordingly,
the absorption of latent heat takes place over comparatively small
periods in time and the associated anomalies in T(t) are better
observable. Note that furnace cooling requires roughly 1 h for
reducing temperature from 700 to 200 °C.

Figure 11a,b shows the temperature profiles obtained in the
feedback furnace. All phase transitions have been assigned ac-
cording to the PdBi binary phase diagram.['!] The extracted tran-
sition temperatures are shown in Table 1 together with the re-
sults obtained by conventional DTA (see below) and literature
data.'] Phase formation was confirmed by XRD measurements
on ground single crystals. Flux removal was performed by cen-
trifugation above the melting point of Bi,Pd using a frit-disc
crucible.”) Residual flux was removed by polishing the crystals
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Figure 12. DTA measurement of Pd:Bi = 37:63 performed with heating
and cooling rates of 20 °C min"'. Phase transition are assigned according
to the binary alloy phase diagram. a) Liquidus temperature. b) Melting and
solidification of f-PdBi,. c) Structural phase transition PdBi,. d) Melting
and solidification of Bi in the reference crucible.

before the grinding. The diffraction pattern showed the presence
of a-PdBi as main phase with traces of PdBi,.

The values of the detected phase transitions get fortified by
DTA measurements presented in Figure 12. The reference cru-
cible was filled with elemental bismuth that caused additional
anomalies during melting and solidification. The cooling rate of
20 °C min' was similar to the one present in the feedback fur-
nace prior to the liquidus temperature. The reported structural
phase transition from p-PdBi to a-PdBi at T = 210°!"® remains
elusive in DTA and feedback furnace.

7. Discussion

In the following, we discuss the advantages and development po-
tential of the feedback furnace by elaborating on the difficulties
associated with the standard procedure of collecting and using
information on phase transitions prior to the growth process in
standard laboratory furnaces. DTA and the related differential
scanning calorimetry (DSC) are well-established techniques for
detecting phase transitions in various kinds of condensed mat-
ter. Starting from the 1940s,* methods and implementations
were constantly improved.?* The application of DTA and DSC
results to solution growth is, however, not straightforward and
connected with various challenges. First of all, the actual spread
of determined phase transition temperatures given in phase dia-
grams can be larger than anticipated from the (normally) smooth
lines plotted; see, for example, a detailed study on the Li-N sys-
tem published by Sangster and Pelton/®! and compare with the
standard presentation shown in the renowned phase diagram
collections.??! Various further problems are encountered in the
application of DTA to crystallization from high-temperature so-
lutions in particular for reactive materials.*”:28]

Furthermore, it is well known that the actual tempera-
ture of the melt can significantly deviate from the nominal
temperature displayed by standard laboratory furnaces. Accord-
ingly, even highly accurate DTA/DSC results are not always ap-
plicable with nominal precision in particular when aging of ther-
mocouples and temperature dependence of gradients are taken

© 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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into account. We avoid these problems by utilizing the feedback
method: The hitherto crucial measurement of the absolute tem-
perature merely serves as an additional source of information.
The state of a sample is determined not by the nominal tem-
perature in the process chamber, but by the onset or absence of
characteristic signatures directly originating in the crystallization
processes of the sample material.

Supercooling presents another difficulty that hampers the ap-
plication of knowledge on liquidus temperatures determined by
DTA/DSC. The degree of supercooling can depend on purity of
starting materials, crucible material and crucible shape. The feed-
back furnace allows estimating the tendency for supercooling by
the shape of nucleation anomalies and comparing heating and
cooling curves directly in the crystal growth setup. This enables
extremely slow cooling rates or extended hold times in a barely
supercooled state. Detecting the nucleation and estimating the
degree of supercooling opens the possibility to perform “seed se-
lection” by oscillating the temperature around the liquidus.

8. Summary

We present a novel phase transition detection method and its im-
plementation in a crystal growth setup for solution growth in
controlled atmospheres at temperatures up to 1000 °C. A thin
measurement wire is mounted in close vicinity to the melt and
acts as highly precise, resistive thermometer. Anomalies in the
time-dependent temperature are associated with phase transi-
tions in the sample material. In contrast to established DTA and
DSC measurements, there is no reference crucible employed
allowing for an efficient and symmetric design of the growth
chamber. The feedback furnace combines crystal growth with a
thermal analysis of the sample material. Both heretofore locally
and temporally separated processes take place in the same cru-
cible at the same time, as the furnace detection method gets ap-
plied at the actual solution growth sample, showing the same
anomalies without a necessary transfer from detection to growth
apparatus.

Liquidus and solidus temperature were successfully detected
in seven different binary alloys in good agreement with DTA re-
sults. An additional structural transition was detected in Bi,Pd.
Shape of the characteristic anomalies and comparison of heat-
ing and cooling curves allow to estimate the degree of supercool-
ing. Given that there is no direct contact of measurement wire
and melt, there are no restrictions on the choice of the (ceramic)
crucible material beyond standard requirements. An optimized
version of the feedback furnace is going to be available.?l With
the in situ detection in the feedback furnace, a method has been
established that offers a considerable increase in efficiency and
accuracy for various solution growth processes. Further improve-
ments of sensitivity and precision by higher sampling rates and
advanced, real-time data analysis are anticipated.
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