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By merging single-site typical medium theory with density-functional theory, we introduce a self-consistent
framework for electronic-structure calculations of materials with substitutional disorder which takes into
account Anderson localization. The scheme and details of the implementation are presented and applied to
the hypothetical alloy LicBe1−c, and the results are compared with those obtained with the coherent potential
approximation. Furthermore, we demonstrate that Anderson localization suppresses ferromagnetic order for a
very low concentration of (i) carbon impurities substituting oxygen in MgO1−cCc and (ii) manganese impurities
substituting magnesium in Mg1−cMncO for the low-spin magnetic configuration.
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I. INTRODUCTION

The unusual electronic properties of disordered metals and
alloys [1–3] result from the absence of translational invariance
in such systems. To calculate the physical properties of disor-
dered solids and, in particular, to determine their electronic
structure is still a challenging problem which involves the
sampling of random configurations followed by a quantum-
mechanical computation for each disorder configuration. Dis-
ordered systems are usually modeled numerically by large su-
percells in real space, where the results must then be averaged
over different realizations of the disorder. This increases the
cost of electronic-structure calculations of disordered systems
considerably.

In this paper, we introduce a computational approach
which merges effective-medium approximations with the
density-functional theory [4–8] (DFT) to investigate struc-
turally disordered solids. The effective medium is calculated
by means of a statistical approach, which takes into account
the strength of the disordered alloy potential. The latter can be
decomposed into a sum of contributions from the individual
atomic scatterers, such that the electron propagation can be
viewed as a succession of scatterings from these atomic

*Deceased.

potentials. The essence of the effective–medium theory is
the self-consistent treatment of the multiple-scattering events:
The scatterers are viewed as embedded in an effective medium
whose properties still have to be determined. If the average
scattering from a single impurity in the presence of the
effective medium is set to zero, one obtains the well-known
coherent potential approximation (CPA) [1,9]. The CPA was
introduced by Soven [10] and Taylor [11] to study electronic
and vibrational properties of random alloys, respectively. It
was then further developed and extensively applied to disor-
dered solids [1–3,9,12]. To investigate the electronic structure
of realistic materials Győrffy [13] formulated the CPA in the
framework of multiple scattering theory by using the Green’s
function technique.

Even today the CPA is one of the most widely employed
methods to calculate the electronic structure of random alloys.
Numerous applications [14–23] have shown that within this
approximation one can calculate lattice parameter, bulk mod-
ulus, mixing enthalpy, etc., with an accuracy similar to that
obtained for ordered solids. At the same time the applicability
of the CPA is limited since it is a single-site approximation.
For example, CPA neither takes into account disorder–induced
short-range correlations, nor the effects of Anderson local-
ization [2]. Furthermore, systems with a large size mismatch
between the alloy components are difficult to treat within
CPA because of the local lattice relaxations. The search for
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a generalization of the CPA has proven to be difficult. There
have been numerous attempts to overcome the main short-
comings of the CPA by incorporating the missing nonlocal
physics, e.g., by employing the molecular CPA [24,25] and
the dynamical cluster approximation (DCA) [26] in model
Hamiltonian calculations, and the KKR-nonlocal coherent
potential approximation (KKR-NLCPA) [27–30], where the
DCA coarse graining approach is applied.

The purpose of the present paper is to introduce an al-
ternative choice of the effective medium, which is able to
take into account the effects of Anderson localization even
in a real disordered material, by formulating it within the
framework of DFT. As pointed out by Anderson [31], the key
quantity to study in a disordered system is the amplitude of
the electronic wave functions. At the localization transition
the Hamiltonian spectrum in the vicinity of a given energy
changes from continuous to discrete (dense-pointlike) in the
thermodynamic limit and the typical, i.e., the most probable
value of the local density of states (LDOS) at this energy,
vanishes. The typical value of the LDOS is well represented
by the geometric average [32] ρtyp(E ) = exp[〈ln ρi(E )〉],
where 〈...〉 represents the arithmetic average over disorder
and ρi(E ) is the LDOS at site i for the energy E [33]. This
technique was successfully applied to model Hamiltonians
and is referred to as typical medium theory (TMT) [34–40].
The TMT can describe signatures of Anderson localization in
the spectral function, i.e., on the one-particle level, but does
not capture short-range order effects.

Recently, the typical medium dynamical cluster approx-
imation (TMDCA) [41,42] was introduced, which extends
the single-site TMT to a finite cluster and allows for a
systematic inclusion of the nonlocal multisite correlations.
It was shown that the TMDCA overcomes many shortcom-
ings of the TMT since it allows one to identify effects of
Anderson localization in higher-order correlation functions,
e.g., the conductivity. This method has also been extended
to models with off-diagonal disorder [43], multiband systems
[44], and interactions [45]. To go beyond model studies
and also ultimately investigate real materials, the TMDCA
was subsequently formulated within the framework of mul-
tiple scattering theory [46]. However, so far this frame-
work was only applied to model Hamiltonians [41,42,44].
While some of these models were extracted from first-
principles calculations [44,47,48], no self-consistent feedback
between the models and the typical medium analysis was
considered.

The aim of our paper is to extend this methodology from
models to realistic three-dimensional muffin-tin systems by
merging the single-site TMT with DFT.

The paper is organized as follows. In Sec. II, we introduce
two effective medium theories which have been formulated
to compute electronic structures using Green’s functions. In
Sec. III, we review the theory using the exact muffin-tin
orbitals (EMTO) basis set and present the form of the Green’s
function and path operators. The CPA- and TMT-Green’s
function condition for the self-consistency of the effective
medium are discussed in Sec. III B. The method is then ap-
plied to compute the electronic properties of the hypothetical
LicBe1−c alloy and the dilute MgO1−cCc and Mg1−cMncO
alloys. The Li-Be system is used as an illustrative example to

compare CPA vs TMT calculations, and to discuss signatures
of the precursor of the Anderson localization transition. In the
dilute MgO1−cCc and Mg1−cMncO alloys, we investigate how
magnetism is influenced by weak disorder (within CPA) and
strong disorder (within TMT), respectively.

II. SINGLE-SITE EFFECTIVE-MEDIUM THEORIES

We begin with a general description of the effective-
medium theory of realistic multiatom alloys. To this end, we
consider a substitutional alloy AaBbCc..., where the atoms A,
B, C,... are randomly distributed on the underlying crystal
structure. Here a, b, c, ... stand for the atomic fractions
(concentrations) of the A, B, C,... atoms, respectively. In
the alloy, it is assumed that the potential of the atoms at
any lattice site is completely random and can be described
by a probability distribution function (PDF) P(ε1, ...εN ) for
local energy levels εi, where N is the total number of atoms
in the sample. This allows us to determine the expectation
value of an observable A(ε1, ..., εN ) as the arithmetic average
over different disorder realizations with this PDF, i.e., Ã =
〈A〉arith = ∫ ∞

−∞
∏N

i=1 dεiA(ε1, ..., εN )P(ε1, ..., εN ).
There are two major approximations in the single-site

effective medium construction: (i) the local potentials around
one type of atoms forming the alloy are assumed to be
the same, i.e., the effect of the local environment is ne-
glected. Therefore, the PDF is uncorrelated and has a prod-
uct form, where the PDF for each type of atom is given
by PA, PB, PC, ..., respectively [49], and (ii) the system is
replaced by a monoatomic effective crystal described by the
site-independent “effective medium potential” D̃. One there-
fore approximates the Green’s function g of a real system by
an “effective medium Green’s function” g̃, and for each alloy
component j = A, B, C,... a single-site Green’s function gj

is determined. The construction of such a single-site effective
medium involves the following steps:

(1) The effective Green’s function is calculated from the
effective potential using an electronic structure method. For
example, within the Korringa-Kohn-Rostoker (KKR) [25,50–
54] or linear muffin-tin orbital (LMTO) [55,56] methods, one
has

g̃ = [S − D̃]−1, (1)

where S denotes the KKR or LMTO structure constant matrix
corresponding to the underlying lattice.

(2) Next, the Green’s functions g j of the alloy components
are determined by substituting the real atomic potentials Dj

by their value computed with respect to the effective medium
potential D̃. Mathematically, this condition is expressed by the
real-space Dyson equation

g j = g̃ + g̃(Dj − D̃)g j, j = A, B, C.... (2)

(3) Finally, the average of the individual Green’s functions
should reproduce the single-site part of the effective medium
Green’s function, i.e.,

g̃ = g̃[gA, gB, gC, ...]. (3)

This functional relation needs to be specified for each type
of effective medium theory.
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Equations (1)−(3) are solved iteratively, and the output
functions g̃ and g j are used to determine the electronic struc-
ture, charge density, and the total energy of the random alloy.

If g̃ is determined by the arithmetic average the results
are equivalent to the CPA and are insensitive to Anderson
localization. By contrast, the geometric average leads to the
TMT, which is capable of describing disorder-driven Ander-
son localization effects. In the next section, we will present
this construction for the TMT explicitly.

III. EFFECTIVE MEDIUM THEORY USING EXACT
MUFFIN-TIN ORBITALS

The EMTO theory [57,58] formulates an efficient and at
the same time accurate muffin-tin method for solving the
Kohn-Sham equations [4,5] of the DFT [4–8]. By using large
overlapping potential spheres, the EMTO approach describes
the exact crystal potential more accurately than any other
conventional muffin-tin method. In the EMTO approach,
while keeping the simplicity and efficiency of the muffin-tin
formalism, the one-electron states are determined exactly for
the model potential.

A. Effective medium potential

Within the overlapping muffin-tin approximation, the
Kohn-Sham effective potential v(r) for a real alloy is approx-
imated by spherical potential wells v

j
R(rR) centered on atomic

sites R, where the subscript j denotes the alloy component
at site R, supplemented by a constant interstitial potential v0,
i.e.,

v(r) ≈ vmt(r) ≡ v0 +
∑

R

[
v

j
R(rR) − v0

]
. (4)

Here we introduced the notation rR ≡ r − R ≡ rRr̂R, where
r̂R = rR/|rR|, and rR = |rR|. In the following, we will omit
the explicit vector notation for simplicity.

Next we consider a substitutional alloy with a fixed un-
derlying lattice. We denote the positions of the atoms of the
underlying lattice by R, R′, etc. in a given unit cell. Within
the unit cell we can have one of the atoms from the NR

components forming an alloy, e.g., for a binary-alloy NR =
2. The atomic fractions of the components determine the
concentrations c j

R ( j = 1, 2, ..., NR). The individual spherical
potentials in Eq. (4), denoted by v

j
R(rR), are defined within

the potential spheres of radii s j
R. We note that these potentials

are not exactly the same as the spherical potentials present in
a real alloy because of different local environments. Within
effective medium theories, we assume that all potential-
dependent functions, such as the partial waves, logarithmic
derivatives, normalization functions, etc., belonging to the
same kind of atom within a given unit cell, are the same.

The effective medium is described by a site-dependent ef-
fective potential (subscript R), which possesses the symmetry
of the underlying crystal lattice.

B. Effective medium Green’s function

In the EMTO formalism, the effective potential is intro-
duced via the logarithmic derivative D̃RL′RL(z) of the effective

scatterers. Therefore, the coherent Green’s function or the
path operator Eq. (1) is given by [58]∑

R′′L′′
aR′ [SR′L′R′′L′′ (κ2, k) − δR′R′′D̃R′L′R′L′′ (z)]

× g̃R′′L′′RL(z, k) = δR′RδL′L, (5)

where l, l ′, l ′′ � lmax, and SR′L′R′′L′′ (κ2, k) are the elements of
the EMTO slope matrix for complex energy κ2 = z − v0 and
Bloch vector k from the Brillouin zone (BZ). The logarithmic
derivative of the effective scatterers is site-diagonal with
nonzero L′ �= L off-diagonal elements.

The local part of the Green’s function of the alloy com-
ponent gj

RL,RL′ is calculated as an impurity Green’s function
embedded in the effective medium. In the single-site approx-
imation, this is obtained from the real-space Dyson equation
[Eq. (2)] as a single-site perturbation on the coherent potential
as

gj
RLRL′ (z) = g̃RLRL′ (z) +

∑
L′′L′′′

g̃RLRL′′ (z)

× [
D j

Rl ′′ (z)δL′′L′′′ − D̃RL′′RL′′′ (z)
]
gj

RL′′′RL′ (z). (6)

Here D j
Rl (z) is the logarithmic derivative function for the

jth alloy component and g̃RLRL′ (z) = ∫
BZ g̃RL,RL′ (z, k)dk is

the site-diagonal part of the k-integrated effective medium
Green’s function. The condition of zero average scattering
leads to a functional relation between g̃RLRL′ (z) and the
Green’s functions of alloy components, namely,

g̃RLRL′ (z) = g̃
[
gj

RLRL′ (z)
]
, (7)

which still needs to be specified for different types of effective
medium theories (see below). Equations (5), (6), and (7) are
solved self-consistently for D̃(z), g̃(z, k), and gj (z). Note that
the Green’s functions for the alloy component and effective
medium denoted as gj and g̃, respectively, carry the infor-
mation about the poles. Using the partial waves, the Green’s
functions are properly normalized.

As discussed earlier, there are two possibilities for deter-
mining properties of the effective medium:

(i) The coherent potential condition provides an expres-
sion for the coherent path operator g̃ as the algebraic average
of the alloy-component path operators gj for an arbitrary
complex argument z, i.e.,

g̃RLRL′ (z) := gCPA
RL,RL′ (z) =

∑
j

c j
R gj

RL,RL′ (z). (8)

Obviously, the same algebraic condition is simultaneously
fulfilled by the real and imaginary parts of this coherent path
operator.

(ii) By contrast, the typical medium condition is formu-
lated along the real energy axis, i.e., the geometrical average
is given by

ρTMT
RL (E ) :=

∏
j

[
ρ

j
RL(E )

]c j
R . (9)

Since the LDOS is defined only for real energies E , it has
to be computed at each iteration of the typical medium self-
consistency loop. This makes it necessary to perform analytic
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continuations between the complex-plane point z and the real-
axis point E . To avoid the repetitive and CPU time consuming
analytic continuation, we perform the geometric averaging in
the current implementation in the complex-plane and define
the path operator as

gTMT
RL,RL (z) :=

∏
j

[
gj

RL,RL (z)
]c j

R . (10)

Along the real axis Eq. (10) multiplied with the normalization
of the partial waves (which is real on the real axis) provides
the LDOS ρ

j
RL(E ). We note that in general the condition ex-

pressed by Eq. (10) is an approximation to the TMT condition
Eq. (9).

With this prescription of how to determine the effective
medium in terms of the path operator, the expression for the
LDOS for a specific impurity j at site R is determined from

ρ
j
RL(z) ≡ − 1

π
	
{∫

BZ

∑
R′L′

g̃RLR′L′ (z, k) aR′ ṠR′L′RL(κ2, k)dk

− gj
RLRL (z)Ḋ j

Rl (z) − G j,p
Rl (z)

}
, (11)

where the overdot denotes the energy derivative. The off-
diagonal (R �= R′) elements of the coherent Green’s func-
tion g̃R′L′RL(z, k) are calculated from Eq. (5) with the self-
consistently determined logarithmic derivative D̃RL′RL(z) of
the effective scatterers. The first and second terms on the right-
hand side of Eq. (11) assure the proper normalization of the
one-electron states for the optimized overlapping potential.
The third term in Eq. (11) removes the unphysical pole of the
logarithmic derivative. This is a specific step in the EMTO
implementation [58]. Altogether, the three terms provide the
EMTO Green’s function of the effective medium. The search
for the Fermi level is similar to the standard CPA procedure
as implemented in the EMTO [58].

IV. APPLICATIONS

We now apply the CPA-EMTO and TMT-EMTO theories
to the hypothetical alloy LicBe1−c as well as to MgO1−cCc

and Mg1−cMncO in the dilute limit (low concentrations c)
and compare the results. The motivation to study the LiBe
system comes from the fact that it represents a simple cubic
system with one atom per unit cell, for which the different
effective-medium averaging procedures can be tested readily.
At the same time, it also allows one to identify features of the
LDOS which can be traced back to effects of Anderson local-
ization. Our choice of MgO is motivated by the relatively large
insulating gap. Spin-polarized in-gap states are formed upon
carbon and manganese substitutions in MgO, an effect that
is sometimes linked to the so-called d0 magnetism [59,60].
We will show that such an effect can be reproduced within
the CPA. However, self-consistent TMT calculations provide
a different picture, namely, that fluctuations in the number
of particles influence the magnetic stability. In addition to
localization, the spin polarization is significantly reduced.

A. LicBe1−c alloys: An illustrative example

In pure Li and Be, the atomic s orbitals form a single
band. In Be, by partial substitution with Li, the local energies
become statistically independent (random) variables with a
distribution function

P(εi ) = cLiδ(εi − εLi) + cBeδ(εi − εBe),

where cLi and cBe are the concentration of Li and Be in
the alloy, respectively. The bandwidth is determined by the
magnitude of the intersite hopping and the coordination num-
ber. Anderson [31] discovered that when the width � of the
distribution P(εi ) is smaller than a critical value � < �c, states
in the middle of the band are extended, while for � � �c all
states in the band are localized. It has been shown [61–64]
that localized states can also exist in the tails of the DOS of
disordered materials. Based on these arguments, Mott [65]
conjectured the existence of a threshold energy (“mobility
edge”), at which a sharp transition from localized to extended
states occurs.

In Fig. 1, we show the results for the average DOS ρ(E ) =
cLiρ

X
Li + cBeρ

X
Be which is computed from the alloy components

ρLi and ρBe, where X = CPA or TMT. Figure 1(a) corre-
sponds to the DOS obtained for X = CPA, where the alloy
components are obtained from the CPA effective medium.
The concentration varies in the range from 1% to 50%, and
the bandwidth corresponds to a fixed value of the Wigner-
Seitz radius rWS = 3.50 a.u. In the binary substitutional alloy
LicBe1−c the Li component has a reduced weight in com-
parison to the Be component for concentrations c � 0.5. In
Fig. 1(b), we compare the DOS obtained for X = CPA and
X = TMT.

The general structure of the DOS shown in Fig. 1 consists
of two main DOS centered at εLi and εBe, respectively. For the
concentration range under consideration Be states form the
“majority” (main) subband. As the concentration c is reduced,
the impurity subband is split off from the main subband
[Fig. 1(a)]. The same effect is also seen when the average
DOS is computed from the alloys components provided by
the TMT effective medium [Fig. 1(b)].

In our self-consistent framework, the total number of elec-
trons is computed from the average DOS ρ(E ) of the alloy
components. Therefore, the Fermi level calculated within the
CPA is different from the value obtained when the typical
medium is used. Within the CPA, Fig. 1(a), the Fermi level
is pinned by the maximum of the impurity band, while using
the typical medium, Fig. 1(b), the Fermi level lies between
the main and the split-off band, and a pseudogap develops
around EF . We note that due to the charge redistribution, no
split band can be seen in the average DOS calculated with the
TMT. Instead, the shift accounts for the conservation of the
total number of electrons. For all concentrations studied here,
the width of the subbands are found to be reduced compared
to the CPA results, which already indicates the appearance of
localized states at the band-edges.

An important quantity monitoring the effects of Anderson
localization [33–35] is the DOS obtained by the TMT (TMT-
DOS) [33–35]. It corresponds to an order parameter of the
metal-to-insulator transition and is calculated according to
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FIG. 1. (a) Average DOS of LicBe1−c alloys calculated within
CPA for different concentrations c for a given atomic Wigner-
Seitz radius rWS = 3.50 a.u., corresponding to a lattice parameter
of 5.64 a.u. (= 2.98 Å). (b) Average DOS computed from the
typical medium alloy components used in the charge self-consistent
calculations.

Eq. (9) as

ρ(E ) = [ρLi(E )]cLi · [ρBe(E )]cBe . (12)

Results are shown in Fig. 2. By decreasing the concen-
tration of Li, the bandwidth is reduced due to Anderson
localization. However, even for 1% of Li, the TMT-DOS at
EF does not reach zero. In the inset of Fig. 2, we present
the comparison of the logarithms of CPA-DOS with that
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FIG. 2. The typical medium DOS (order parameter) of the
LicBe1−c alloy for different concentrations c of Li at the same value
of rWS = 3.50 a.u. (same bandwidth).

of the TMT-DOS. We see that at a concentration of 0.1%,
the TMT-DOS is reduced by an order of magnitude. In this
low concentration range, the shape of the TMT-DOS closely
resembles that of bulk Be below 0.01%, see Fig. 2. Reducing
the concentration further decreases the value of the TMT-DOS
at EF even more (see inset of Fig. 2).

In Fig. 3, we show the dependence of the TMT-DOS on
the Wigner-Seitz radius (rWS). Increasing rWS corresponds
to a larger lattice parameter. Expanding the unit cell leads
to narrower bands. For rWS in the range of 2.5 to 3.0 a.u.
[Fig. 3(a)] the TMT-DOS is nonzero at the Fermi level, while
a significant reduction is obtained for even larger values of
rWS [Fig. 3(b)].

B. Magnetism in doped MgO

The question whether, and how, impurity doping can sta-
bilize band ferromagnetism has been extensively studied in
the search for novel diluted magnetic semiconductors [66,67].
On general grounds, a substitution by an atom with reduced
valency leads to hole doping which can shift the Fermi level
into the valence band of the insulator or semiconductor. If
the shift is sufficiently strong such that the Stoner criterion is
fulfilled, spontaneous spin polarization sets in. Alternatively,
substitution may introduce spin-polarized impurity states in
the gap. When the concentration is increased the impurity
states form bands, which remain spin-polarized. In the fol-
lowing, we illustrate this second scenario in the case of carbon
substitution at the oxygen sites (Sec. IV B 1) and manganese
substitution at the magnesium sites (Sec. IV B 2) in MgO.
For the sake of completeness, we mention that there are
other mechanisms beside spin polarization that may lift the
degeneracy at the Fermi level, such as polaron formation
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FIG. 3. The typical medium DOS (order parameter) of the
LicBe1−c alloys for different lattice parameters rWS (different band-
widths) at the Li concentration c = 1%. Note the factor five between
the scales corresponding to the smaller (a) and larger (b) rWS.

[68]. However, in the present paper we do not address this
mechanism.

MgO is commonly employed as a substrate for thin-
film growth of materials such as metals [69], nitrides [70],
graphene [71], and high-Tc superconductors [72]. It also finds
use as a barrier in magnetic tunnel junctions [73,74]. This
makes MgO an important material for nanotechnologies and
spintronic applications. Deviations from perfect crystallinity
in MgO can have detrimental effects on its functionality.
It was shown that poor-quality MgO substrates gives rise
to poor-quality thin films [70], while defects and impurities
can lead to a degradation of the superconducting properties
in high-Tc superconductors [72,75]. On the other hand it is
known that doping Fe/MgO/Fe tunnel junctions with carbon
impurities increases the output voltage and reduces noise
[76,77].

Under ambient conditions MgO crystallizes in the rock-
salt (B1) structure with a measured lattice parameter aexp =
4.216 Å, and has a large direct electronic band gap of about
7.8 eV [78–80]. In the following calculation, the experimental
lattice parameter is used. The O-2s and O-2p states as well
as the Mg-3s states are treated as valence states. In a simple
picture the two valence s-electrons of Mg fill the O-2p shell.
The bottom of the conduction band has almost pure Mg-3s
character at the �-point, where the p-bands reach their max-
imum, making MgO a direct-gap insulator. While the local
density approximation (LDA) is known to underestimate the
gap of insulators and semiconductors [81], we obtain a direct
band gap of 4.50 eV which is consistent with values from
other investigations using similar approximations [82].

The EMTO method was successfully used to study the
elastic and magnetic properties of pure and Fe-doped MgO
[83]. We now explore other doping effects.
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FIG. 4. Total DOS of MgO1−cCc for c = 1%, 2%C. In the inset
the TMT-DOS is compared with the DOS obtained using the effec-
tive medium of the CPA.

1. Carbon-doped MgO(MgO1−cCc)

The electronic and magnetic properties of vacancies and
nonmagnetic impurities in MgO have been investigated in
detail for large impurity concentrations [84,85]. In particular,
the polarization of the valence states of MgO by the sub-
stitution of oxygen with p-type impurities such as C and N
[59,84] has been widely discussed. The typical experiments
involve a high concentration of impurities. Consequently, the
ferromagnetic interaction is mediated by partially occupied
spin-polarized impurity states. In other words, the impurity
states should be extended to mediate ferromagnetism, and at
the same time the band width should be small enough such
that the Stoner criterion is satisfied [60,86]. We note that
in LDA and the generalized gradient approximation (GGA),
the impurity 2p-states are too extended and the magnetism
is overestimated for high concentrations [87,88]. Attempts
to improve these results by including a Hubbard U within
a Hartree mean-field decoupling (LDA + U or GGA + U
approximations) or, alternatively, by including self-interaction
corrections produce a splitting of the 2p-impurity levels and
thereby lead to ferromagnetism. However, the local distortions
around the defects due to the relaxation of the crystal structure
inhibit magnetism [88,89]. A different mechanism for the
formation of a magnetically ordered state, valid in the high
concentration regime, is the formation of impurity pairs [84].

We now explore the opposite limit of very low concen-
trations (0.01% � c � 2%) when impurity states are well
isolated. Then the question arises whether ferromagnetism is
also found when localization effects are taken into account
through the TMT approach. In Fig. 4, we show the DOS
of MgO with 1% C impurities calculated for the CPA and
TMT effective medium, respectively. Using the CPA effective
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medium a nonvanishing value of the DOS at EF is obtained.
By contrast, a significantly reduced value of the DOS at the
Fermi level is found in the TMT. In the inset of Fig. 4, the
order parameter (TMT-DOS) is compared with the CPA-DOS
for c = 1% and 2% C. At both concentrations the TMT-DOS
is already zero, indicating an insulating state. At higher carbon
concentrations, MgO has a magnetic ground state [84]. We
notice that already for 2% carbon doping the ferromagnetic
phase is lower in the total energy than the nonmagnetic one.

In Fig. 5, we show the DOS for MgO0.98C0.02 in the
ferromagnetic phase computed within CPA together with
the nonmagnetic solution obtained by the TMT. The inset
of Fig. 5 shows a comparison of the CPA results in the
nonmagnetic and ferromagnetic phase, respectively. In the
ferromagnetic state, LDA predicts that the carbon acquires a
nonzero magnetic moment of about 0.55 μB, which increases
in GGA to about 0.95 μB. At 2.5% C the GGA produces an
almost totally spin-polarized state with spin-up DOS merging
the main band. By contrast, for the typical medium a stable
magnetic solution was neither found in LDA or GGA.

2. Manganese-doped MgO(Mg1−cMncO)

A half-metallic state was predicted for Mn-doped MgO,
with Mn replacing Mg [90]. Both a high-spin (S = 5/2)
and a low-spin (S = 1/2) state can be stabilized, with the
high-spin state being insulating and the low-spin state being
half-metallic [91]. The high-spin state is relevant for quantum
information science since the system has been used to host
qubits [92].

Doping with d electrons raises the question regarding the
influence of p − d hybridization upon the magnetism in the
Mg1−cMncO alloy. On general grounds, the p and d bands
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Mn-doped MgO. Brown/green curves correspond to Mg/Mn partial
DOS, respectively. (b) TMT spin resolved partial DOS. Inset (c):
Geometric average of the partial DOS (order parameter).

are coupled by the hybridization and disorder effects through
the effective medium potential. Quite generally, the hybridiza-
tion determines the relative band shifts, while disorder broad-
ens the shifted bands. Magnetism depends on the d occupa-
tions. Due to the disorder, the fluctuation of the number of
particles will influence the propagation of electrons and thus
change the DOS. Since the fluctuation is spin dependent, it
affects the spin-up and -down DOS differently and thereby
directly influences the spin asymmetry.

In Fig. 6(a), the spin-resolved DOS for MgO doped with
1% Mn as computed with CPA (upper panel) and TMT (lower
panel), is shown. The Mn d-states are located in the gap of
MgO and are split according to the cubic crystal field: the
triply degenerate t2g states are located at about −0.2 Ry and
the doubly degenerate eg states at about −0.1 Ry. In this case,
the ground state corresponds to the high-spin solution with
both spin-up t2g and eg states being completely filled, while
the spin-down t2g and eg states are shifted above the Fermi
level. Note that the partial Mg and Mn DOS obtained within
the CPA shows overlapping maxima at the same energies as a
consequence of significant p − d hybridization. The position
of the maxima corresponds to the shifted one-particle energies
because of hybridization. The value of the Mn magnetic
moment is 3.8 μB and corresponds to the S = 5/2 state. By
contrast, the DOS obtained within the TMT, Fig. 6(b), shows
no overlap of p and d orbitals, and the total DOS within
the gap is determined only by Mn d-orbitals. The absence of
hybridization leads to a shift of the t2g and eg states. The Mn
total magnetic moment is 3.8 μB. The inset of Fig. 6(b) shows
the geometric average of the LDOS (at the Mg site), which
represents the order parameter. On the level of the DOS, the
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self-consistent TMT effective medium calculation leads to a
cancellation of the p − d hybridization.

Figure 7(a) shows the CPA solution for the low-spin state
in the case of 6% Mn doping. Here the majority t2g states
are completely filled and the minority t2g states are partially
occupied. The eg states are empty in both spin channels.
The resulting state is half-metallic with a spin S = 1/2. No
low-spin magnetic configuration is found within the TMT.
Instead, by fixing the total spin to the expected low-spin
solution (0.06 μB), the TMT converges to a state with a DOS
shown in Fig. 7(b). Since the fixed-spin solution was allowed
to relax, the system converges to a non-magnetic solution [see
Fig. 7(c)]. In both TMT computations, Figs. 7(b) and 7(c), no
overlap between the p and d orbitals is found.

We now summarize the comparison between the CPA and
TMT results in the case of Mg1−cMncO. The question if,
and how, the p-d hybridization contributes to the magnetic
properties of this alloy can indeed be answered. In the case
of CPA the p-d hybridization is present and both the low-
and high-spin magnetic configurations are possible. However,
within the TMT, the high-spin state remains magnetic with
no significant difference compared with the corresponding
CPA solution, despite the suppressed p-d hybridization. Fur-
thermore, no low-spin magnetic configuration is obtained
using the TMT effective medium. The destabilization of the
low-spin solution results from the spin-dependent particle
fluctuations between p and d states, due to disorder. In
fact, both CPA and TMT have such effects included through

the effective medium “self-energy” which renormalizes the
quasiparticle DOS. This renormalization can be analyzed in
terms of band broadening and band shifts. The interband
fluctuations are found to have considerable influence on the
magnetic properties of the low-spin configuration. Namely,
these weak magnetic effects remain for weak disorder (CPA),
but are suppressed by strong disorder (TMT).

V. CONCLUSION

We implemented the effective TMT within the DFT by
employing the EMTO-basis set and compared the results ob-
tained thereby with those of the CPA. The framework was then
applied to study the evolution of the impurity band appearing
in the hypothetical LicBe1−c alloy, a simple cubic system
with one-atom per unit cell. This alloy system was studied
within DFT and different effective medium theories. The DOS
results show signatures of Anderson localization effects, band
narrowing and split-off impurity bands. We also discussed the
effect of charge self-consistency and the determination of the
Fermi level EF . The search for EF is implemented in a similar
way as in the CPA case, with the difference that the average
DOS is constructed from the alloy components computed with
the typical medium path operators. Furthermore, we studied
the magnetic properties of dilute MgO1−cCc and Mg1−cMncO
alloys. In contrast to the carbon substitution in MgO, the
Mn substitution brings into the discussion the presence of
d orbitals and their contribution to the magnetism of Mn
impurities. We found that disorder-induced interband particle
number fluctuations suppress magnetism together with the
p-d hybridization in the case of low-spin configurations. In
the charge self-consistent calculations, the system lowers its
energy by particle fluctuations. Since these fluctuations are
spin dependent, they influence the magnetic stability of the
system.

The implementation of the effective TMT within the DFT
presented in this paper can be generalized to include electronic
correlation effects through the dynamical mean-field theory
(DMFT). This opens the possibility for ab initio studies
of correlated electron materials in the presence of disorder
beyond CPA.
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Rev. Lett. 107, 137203 (2011).

[86] H. Peng, H. J. Xiang, S.-H. Wei, S.-S. Li, J.-B. Xia, and J. Li,
Phys. Rev. Lett. 102, 017201 (2009).

[87] D. A. Papaconstantopoulos, W. E. Pickett, B. M. Klein, and
L. L. Boyer, Phys. Rev. B 31, 752 (1985).

[88] J. A. Chan, S. Lany, and A. Zunger, Phys. Rev. Lett. 103,
016404 (2009).

[89] A. Droghetti, C. D. Pemmaraju, and S. Sanvito, Phys. Rev. B
78, 140404(R) (2008).

[90] V. Sharma, G. Pilania, and J. E. Lowther, AIP Adv. 1, 032129
(2011).

[91] S. Meskine, A. Boukortt, R. Hayn, and A. Zaoui, Phys. Status
Solidi B 251, 845 (2014).

[92] S. Bertaina, L. Chen, N. Groll, J. Van Tol, N. S. Dalal, and I.
Chiorescu, Phys. Rev. Lett. 102, 050501 (2009).

[93] K. Byczuk, W. Hofstetter, and D. Vollhardt, Phys. Rev. Lett. 94,
056404 (2005).

[94] K. Byczuk, W. Hofstetter, and D. Vollhardt, in Fifty Years of An-
derson Localization, edited by E. Abrahams (World Scientific,
Singapore, 2010), p. 473 [reprinted in Int. J. Mod. Phys. B 24,
1727 (2010)].

014210-10

https://doi.org/10.1021/jp108616h
https://doi.org/10.1021/jp108616h
https://doi.org/10.1021/jp108616h
https://doi.org/10.1021/jp108616h
https://doi.org/10.1063/1.104137
https://doi.org/10.1063/1.104137
https://doi.org/10.1063/1.104137
https://doi.org/10.1063/1.104137
https://doi.org/10.1038/nmat1256
https://doi.org/10.1038/nmat1256
https://doi.org/10.1038/nmat1256
https://doi.org/10.1038/nmat1256
https://doi.org/10.1063/1.2976435
https://doi.org/10.1063/1.2976435
https://doi.org/10.1063/1.2976435
https://doi.org/10.1063/1.2976435
https://doi.org/10.1143/JJAP.45.L419
https://doi.org/10.1143/JJAP.45.L419
https://doi.org/10.1143/JJAP.45.L419
https://doi.org/10.1143/JJAP.45.L419
https://doi.org/10.1063/1.2172717
https://doi.org/10.1063/1.2172717
https://doi.org/10.1063/1.2172717
https://doi.org/10.1063/1.2172717
https://doi.org/10.12693/APhysPolA.121.981
https://doi.org/10.12693/APhysPolA.121.981
https://doi.org/10.12693/APhysPolA.121.981
https://doi.org/10.12693/APhysPolA.121.981
https://doi.org/10.1103/PhysRev.159.733
https://doi.org/10.1103/PhysRev.159.733
https://doi.org/10.1103/PhysRev.159.733
https://doi.org/10.1103/PhysRev.159.733
https://doi.org/10.1063/1.1709313
https://doi.org/10.1063/1.1709313
https://doi.org/10.1063/1.1709313
https://doi.org/10.1063/1.1709313
https://doi.org/10.1016/0038-1098(77)90101-6
https://doi.org/10.1016/0038-1098(77)90101-6
https://doi.org/10.1016/0038-1098(77)90101-6
https://doi.org/10.1016/0038-1098(77)90101-6
https://doi.org/10.1103/PhysRevLett.51.1884
https://doi.org/10.1103/PhysRevLett.51.1884
https://doi.org/10.1103/PhysRevLett.51.1884
https://doi.org/10.1103/PhysRevLett.51.1884
https://doi.org/10.2138/am-1997-1-207
https://doi.org/10.2138/am-1997-1-207
https://doi.org/10.2138/am-1997-1-207
https://doi.org/10.2138/am-1997-1-207
https://doi.org/10.1016/j.pepi.2007.06.012
https://doi.org/10.1016/j.pepi.2007.06.012
https://doi.org/10.1016/j.pepi.2007.06.012
https://doi.org/10.1016/j.pepi.2007.06.012
https://doi.org/10.1103/PhysRevLett.105.267203
https://doi.org/10.1103/PhysRevLett.105.267203
https://doi.org/10.1103/PhysRevLett.105.267203
https://doi.org/10.1103/PhysRevLett.105.267203
https://doi.org/10.1103/PhysRevLett.107.137203
https://doi.org/10.1103/PhysRevLett.107.137203
https://doi.org/10.1103/PhysRevLett.107.137203
https://doi.org/10.1103/PhysRevLett.107.137203
https://doi.org/10.1103/PhysRevLett.102.017201
https://doi.org/10.1103/PhysRevLett.102.017201
https://doi.org/10.1103/PhysRevLett.102.017201
https://doi.org/10.1103/PhysRevLett.102.017201
https://doi.org/10.1103/PhysRevB.31.752
https://doi.org/10.1103/PhysRevB.31.752
https://doi.org/10.1103/PhysRevB.31.752
https://doi.org/10.1103/PhysRevB.31.752
https://doi.org/10.1103/PhysRevLett.103.016404
https://doi.org/10.1103/PhysRevLett.103.016404
https://doi.org/10.1103/PhysRevLett.103.016404
https://doi.org/10.1103/PhysRevLett.103.016404
https://doi.org/10.1103/PhysRevB.78.140404
https://doi.org/10.1103/PhysRevB.78.140404
https://doi.org/10.1103/PhysRevB.78.140404
https://doi.org/10.1103/PhysRevB.78.140404
https://doi.org/10.1063/1.3625411
https://doi.org/10.1063/1.3625411
https://doi.org/10.1063/1.3625411
https://doi.org/10.1063/1.3625411
https://doi.org/10.1002/pssb.201349098
https://doi.org/10.1002/pssb.201349098
https://doi.org/10.1002/pssb.201349098
https://doi.org/10.1002/pssb.201349098
https://doi.org/10.1103/PhysRevLett.102.050501
https://doi.org/10.1103/PhysRevLett.102.050501
https://doi.org/10.1103/PhysRevLett.102.050501
https://doi.org/10.1103/PhysRevLett.102.050501
https://doi.org/10.1103/PhysRevLett.94.056404
https://doi.org/10.1103/PhysRevLett.94.056404
https://doi.org/10.1103/PhysRevLett.94.056404
https://doi.org/10.1103/PhysRevLett.94.056404
https://doi.org/10.1142/S0217979210064575
https://doi.org/10.1142/S0217979210064575
https://doi.org/10.1142/S0217979210064575
https://doi.org/10.1142/S0217979210064575

