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Abstract. 'Two notions of metric invariance entropy are constructed with respect to
conditionally invariant measures for control systems in discrete time and it is shown that
they are invariant under conjugacies.

1. Introduction

This paper proposes a notion of metric invariance entropy in analogy to the topological
notion of invariance entropy of deterministic control systems; cf. Nair et al [15] and the
monograph by Kawan [11]. We consider control systems in discrete time of the form

Xnt1= fxn,upn), neNyg={0,1,...}, (1.1)

where f: M x Q— M is continuous and M and 2 are metric spaces. Abbreviate
fo=f(, 0): M — M for w € Q and, for u = (up)pen, €U 1= QNo_ write the solutions
as

p:NoxMxU—->M, @O, x,u)=x,¢n x,u):=fy, 00 fyx) forn=>1.

The system should be kept in a given subset Q of M. (In the literature there are colorful
terms to describe this situation: one may think of M \ Q as a ‘trap’ or as a ‘hole’ in the state
space or leaving Q means ‘killing’ the system.) The notion of invariance entropy hiny (Q)
of a compact subset O C M describes the average data rate needed to keep the system in Q
(forward in time). It is constructed with some analogy to topological entropy of dynamical
systems. This is done in Nair et al [15] via the version of Adler, Konheim and McAndrews
[1] and in Kawan [10, 11] via the version due to Bowen and Dinaburg based on spanning
sets. In the presence of hyperbolicity conditions, the invariance entropy has been discussed
in da Silva and Kawan [4]. We refer, e.g., to Walters [18] and Downarowicz [7] for the
entropy theory of dynamical systems. A major difference of entropy in a control context
to entropy for dynamical systems is that the minimal required entropy for the considered
control task is of interest, instead of the total entropy generated by the dynamical system.
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Presumably, the earliest connection between control for deterministic systems and
ergodic theory has been established by Delchamps [S], who studied when quantized
feedbacks for stabilization lead to a non-trivial invariant measure. The contribution by
Mehta, Vaidya, and Banaszuk [14] considers measure-theoretic notions of entropy in the
context of fundamental limitations in control. Here, however, the uncertainty arises due to
disturbances, called conditional dither.

If one wants to construct a metric entropy, the choice of an appropriate probability
measure is crucial. The present paper proposes to use conditionally invariant measures
for this purpose. In the dynamical systems literature, conditionally invariant (also called
relatively invariant) measures have been introduced by Pianigiani and Yorke [17]; cf. the
survey by Demers and Young [6] and also Keller and Liverani [12]. For random systems,
the related notion of quasi-stationary distributions (or measures) is a classical topic; cf. the
recent monograph by Collett, Martinez and San Martin [2] and also Zmarrou and Homburg
[19]. Intuitively, quasi-stationary measures describe ‘the distribution of trajectories which
are on the verge of falling in the trap’ [2, p. 15].

Control system (1.1) may be viewed as a skew product dynamical system by considering
the left shift & on U/ given by

Ou)y :=upy1, neNy, foru=(u,) ecl. (1.2)

Then S: (u, x) — (Qu, f(x, up)) is a skew product map on & x M and its iterations
define a skew product dynamical system. Note that the product topology makes I/ = QMo
into a metrizable space, which is compact if € is compact. If one wants to keep the
system (1.1) in a closed subset Q C M, it appears appropriate to look at conditionally
invariant measures w for § on U x M with respect to U x Q. We construct a metric
invariance entropy with respect to such a conditionally invariant measure. This is done
using feedbacks and alternatively (open-loop) time-dependent control functions and results
in two versions of metric entropy, a feedback invariance p-entropy and a controlled
invariance p-entropy. It will be shown that each is invariant under appropriately defined
conjugacies.

The main contribution of the present paper is the construction of metric invariance
entropy. Also, the existence of quasi-stationary measures is briefly discussed; they yield
special conditionally invariant measures. The constructions for the metric invariance
entropy are conveniently done for general conditionally invariant measures. In the
monograph by Collett, Martinez and San Martin, other sufficient conditions for the
existence of quasi-stationary measures are derived; cf. [2, Proposition 2.10 and Theorem
2.11]. Demers and Young [6] showed that conditionally invariant measures always exist
and discussed their properties mainly for deterministic maps and with regard to absolutely
continuous conditionally invariant measures and their escape rates.

The contents of this paper are as follows: §2 discusses conditionally invariant measures
for maps and for control systems; here also quasi-stationary measures are considered and
notation is fixed. Section 3 constructs the metric invariance entropy and proves invariance
under conjugacies.
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2. Conditionally invariant measures
In this section, we collect some basic information on conditionally invariant measures and
fix some notation.

For a map S : X — X on a metric space (with metric d) and A C X, we let S™'A :=
{x e X|S(x) € A}.

Definition 2.1. Let S : X — X be a continuous map on a metric space X and consider a
closed subset ¥ C X. A probability measure ; on X endowed with the Borel o-algebra
B(X) is called conditionally invariant with respect to ¥ with constant p if 0 < p = p(u) :=
w(S~'yNny)<1and

_u(STANY)

wA) = w(S~lyny)

for all A € B(X).

Often the number p(u) is considered as an escape rate from Y. Putting A=Y in
Definition 2.1, one sees that the topological support of w given by

suppu := {x € X|u(N) > 0 for each open set with x € N}

is contained in Y. Hence, if we identify the probability measures on B(X) which have
support in Y with the set P(Y) of probability measures on the Borel o-algebra B(Y), a
measure i € P(Y) is conditionally invariant if and only if w(S~'Y) > 0and

(s

n(A) L 5-1Y)

forall A € B(Y).

Observe that we allow (S “lyny)=1fora conditionally invariant measure p on B(X)
and hence this includes invariant measures on Y.

The following proposition gives equivalent characterizations of conditionally invariant
measures.

PROPOSITION 2.2. Let S be a continuous map on X. Fix a closed subset Y of X and let
w € P(X). Suppose that p = u(S™'Y N'Y) > 0. Then the following are equivalent.

(1)  The measure u is conditionally invariant for S with respect to Y.

(11)  For every bounded continuous real function f € Cp(X) with f(x) =0forx e X \ Y,

,u(S_lYﬂY)/ fdu:/ foSdu.
Y Y
(iii) The measure  satisfies for every k € N and every A € B(Y),
w STy N nYu@)=wS*Ans*Dyn...ny). 2.1
If () (or (i1), (ii1)) holds, it follows that for all k € N,
w(SFYn---nY)=pnS~ly n)k = pk. (2.2)

Proof. Let u be conditionally invariant for Y. Then for every A € B(Y) the characteristic
function 14 satisfies

w(S™'A)  [(Aao08) -1ydu
n(S7ly) — w(S"'vyny)

[IA dp=p(A) =
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The same is true for all simple functions, and then also for all integrable and hence for all
bounded continuous functions. This shows that (i) implies (ii). The converse follows by
approximating characteristic functions by continuous functions.
For k = 1, assertion (2.1) reduces to (i). In order to see that conversely (i) implies (iii),
we proceed by induction. Suppose that (iii) holds for k. One finds for every A € B(Y),
w7 S*FAns Tk Dyn...ny)nyr)
=uS~*ans*yn...ns7(r)ny).
Applying this also to A =Y and using (i), one finds, as claimed,
pw(S~ Dy ns*tyn...ny)ud) =pu S~ ans*tyn...ny).
If (1) holds, assertion (2.2) is valid for k = 1, and if it holds for k it follows by (i) that
pn S~ Dyns*tyn...ny)=puS~lynuS*ryn.--ny)
=u(ST'Yy ny)H,

Remark 2.3. If we introduce the restriction Sy := S|y : Y — X, we can rewrite the
requirement for conditional invariance of p as ,u(S?Y),u(A) = [,L(S;I(A)), AeB(Y),
with p = u(Sy ly ) > 0. Furthermore, with a slight abuse of notation, formula (2.1) can be
written as

w(SF Y (A) = Sy A).
Thus, @ is a conditionally invariant measure for the map S;‘, with constant
ok =,u(S;kY). It is a trivial observation that [,L(S;kY) — 0 for k > o0 if p <.
Furthermore, p % i defines a probability measure on Sy ky.

The following proposition gives some information on the support of conditionally
invariant measures (cf. Demers and Young [6, p. 380]).

PROPOSITION 2.4. For a conditionally invariant measure p € P(X) with respect to a
compact set Y, one has

suppu C {x € Y|ST"(x)NY #£ @ for all n € N}.

Proof. We first show that for every n € N,

supppu C {x € Y|ST"(x) NY #£ @} (2.3)
The set E, :={x € Y|S™"(x) N Y = @} satisfies u(S," E,) = 0 and hence
Sy En)
(u(Sy ' 7))y
The complement of E, in Y is closed: consider x; — x in Y such that there are
vk € S7"(xx) N'Y and hence S (yr) = xx. Then a subsequence (yi,) converges to some
y € Y and hence S" (yx,) — $"(y) = x for i — oo. Thus, S7"(x) NY # . This shows

that E, is open and assertion (2.3) follows. Furthermore, o-additivity implies that
w(E) =0 for the open set

E:={xeY|thereisn e Nwith " (x)NY =0} = ] E,.

n>1

w(Ey) =
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In the rest of this section, we consider control systems. Control system (1.1) can be
described by the continuous skew product map S defined by

S:UXM—->UXM, (u, x) — (Bu, f(x,uo)), (2.4)

where the shift 6 is given by (1.2). Similarly to Remark 2.3, we also write Sg := S/ :
U x Q — U x M for the restriction. Thus, S™'(U x Q)N U x Q) = Sél(lxl x Q).

Definition 2.5. A conditionally invariant measure p for the map S defined in (2.4) with
respect to a closed subset Q of M is a probability measure on the Borel o-algebra of
Ux Msuchthat0 < p:=pu(S™'U x Q)N U x Q)) <1 and

pu(B) = [L(S_IB NU x Q)) forall Be B(U x M).

Thus, p is a special case of the measures specified in Definition 2.1 with Y =U x Q C
X =U x M. Any probability measure p with marginal v on U can be disintegrated in the
form

w(B) :/ / 1p(u, x)n,(dx)v(du), BeBU x M), (2.5)
uJIm

where 7, are probability measures on M and, for all A € B(M), the real map u +—> n,(A)
is measurable with respect to B({/). The measures 5, are uniquely determined v-almost
everywhere; cf. Génssler and Stute [9, p. 196].

As an example, we consider random maps of the form

Xn+1 = f(xn’ Up), (2.6)

where f: M x 2 — M is as above and a probability measure vy on the Borel o-algebra
B(2) of Q is fixed.

Let p(x, A) :=vo{w € Q| f(x, w) € A}, x € M, A € B(M), be the associated Markov
transition probability. Recall that a stationary measure n € P(M) is a probability measure
such that

n(A) = / p(x, An(dx) forall A € B(M). (2.7)
M

It is well known that the stationary measures uniquely correspond to the invariant Borel
measures v X 1, v := v§ 0 of the skew product map S defined in (2.4); cf. Kifer [13].

Definition 2.6. Let Q be a closed subset of M. A quasi-stationary measure with
respect to Q for the random map (2.6) is a probability measure n on B(M) such that

0< [, p(x, Q)n(dx) < 1 and

[ . An(dx)
Jp P, Q)ndx)

Putting A = O, one sees that the support of 5 is contained in Q. Observe that
1-— f 0 p(x, Q)n(dx) is the average probability to exit in one step from Q. The measure
n 1is stationary if and only if fQ plx, O)n(dx) =1.

The following proposition shows that quasi-stationary measures correspond to
conditionally invariant measures for S. The proof is included for the reader’s convenience,
although it essentially coincides with the one in Zmarrou and Homburg [19, Lemma 5.2].

n(A) = for all A € B(Q).
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PROPOSITION 2.7. A probability measure n € P(Q) is quasi-stationary with respect to Q
Jfor the random map (2.6) if and only if the probability measure [ :=v X 0, v := v, 0 s

conditionally invariant with respect to Q for the skew product map S in (2.4). In this case,
it follows that p = u(Sg' U x Q) = Jo P, Q)n(dx).

Proof. For any probability measure n on M and A € B(M), one has

/P(X»A)n(dX)=/ fl{weﬂlf(x,w)eA}VO(da))n(dx)
M MJa

Zf f1{ueU|f(x,u0)eA}V(du)n(dx)
m Ju

:/ f lS—l(UXA)V(du)T](dX)
M JU
= x nNS~HU x A)). (2.8)

Suppose that v x 1 is conditionally invariant for S with respect to Q. Then 5 is quasi-
stationary, since formula (2.8) implies that for all A € B(Q),

Wx S~ Ux A)  Jo plx. An(dx)
A) = UxA= = — .
1D = D = T x 0 T, px, O

Conversely, suppose that n € P(Q) is quasi-stationary and hence

Jo Jo 1a(f (x, @)vo(dw)n(dx)
A) = for all A € B(Q). 29
= T ToU e avedayn A S 29)
Take a Borel set V x A with V C U/ and A C Q and compute

xSV xA)=wxn [ Juo} x V) x f7(A, uo))

upe2

=v(V)- x| Quol x £~ (A, uo))

upgeR

=v(V)- /Q /Q 14 (f (x, uo))vo(duo)n(dx).
Together with (2.9), this implies that

v(V) fo Jo 1a(f (x, @)vo(dw)n(dx)
wxn)(VxA)=v(V)nA) =
vU) [y Jolo(f (x, w)vo(dw)nd (x)
~wx)(STHV x A))
W xmSTIU X Q)
This is the assertion for Borel sets of the form B =V x A and hence it follows for all
B € B(U x Q). These arguments also prove the second assertion in the proposition.

Remark 2.8. For the random map (2.6), we obtain the following result for the iterates of

So. Define for x € Q and A € B(Q) the n-step transition probability p(Q”) (x, A) iteratively
by p@(x, A) = p(x, A) and

P = [ P o dperd. nzo.
0
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Then for a quasi-stationary measure 1 and for all A € B(Q) and n > 1,

Jp PY (. An(dx)

o Py (. Q)n(dx)
(2.10)

/Q Py (e, An(dx) = (v x n)(Sg" U x A)) and  n(A) =

Next we will briefly discuss the existence of quasi-stationary measures.

THEOREM 2.9. Let Q C M be a compact set and consider the random map (2.6) for a

probability measure vy € P(2) on the Borel o-algebra of .

(1) Assume that there is py > O such that for every x € Q one has p(x, Q) > po and
p(x, 0Q) =0. Then there exists a quasi-stationary measure 1 with respect to Q.

(i) If p(x, M\ Q) >0 for every x € Q, then there is no stationary measure n with
support contained in Q.

(ii1)) Let x € Q and suppose that p(x,-) has a density with respect to a probability
measure A with A(0Q) = 0. Then p(x, 0Q) = 0 follows.

Proof.
(i) Consider the map S: P(Q) — P(Q) given by

xS~ U x A))
wxmS~IU x Q)

In fact, Sn is a probability measure on Q, since it is a non-negative measure on Q and

(Sm(Q) =1.
The assumption p(x, Q) > po for all x € Q implies that

W x SPESTIU x Q) = (v x S {(u, )| f(x, uo)) € Q)
=f f L, 0)1f (x.u0)e 0y v (du) (Sn) (dx)
oJu

(Sn)(A) :=

A e B(Q).

=f f 1{(w,x)|f(x,w))eQ}VO(dw)(Sn)(dx)
0Ja
= fQ p(x, Q)(Sn)(dx) = po,

since S 1 is a probability measure. It follows that the map S can be restricted to a map on
the convex set

P(Q, po) :={n € P(Q)(v x MS™ U x Q) > po).
The map associating to n € P(Q) C C(Q)* the measure
(wx (ST U x A), AeB(Q),

is weak™ continuous; cf. Walters [18, Theorem 6.7]. Furthermore, [18, Remark 3(iv) on
p. 149] shows that the map associating to n € P(Q) the real number (v x n)S‘l(Z/l x Q)
is continuous if, for every n € P(Q),

w xS~ @AW x 0)) =0. (2.11)
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Hence, the map S on P(Q) is weak™® continuous if (2.11) holds. By (2.4),

v xmSTHOU x Q) = (v x M{u, X)| f(x, up)) € 10}
= (vo x M{(w, x)| f(x, w)) € 10}

=[Q p(x. 8Q)n(dx) =0,

since by assumption 0 = p(x, d Q) for all x € Q. Thus, (2.11) holds and S is continuous
on the compact convex subset P(Q, pop) of alocally convex topological vector space. Then
the Schauder—Tychonov fixed point theorem (cf. Dunford and Schwartz [8, p. 456]) shows
that S has a fixed point n € P(Q, po). This fixed point is quasi-stationary.

(i1) If n is a stationary measure with support contained in Q, then f 0 px, Q)n(dx)
=1 and hence p(x, Q) =1 for p-almost all x € Q. Clearly, 1 = p(x, M) = p(x, Q) +
px, M\ Q) for every xe M. 1If p(x,M\ Q) >0 for all x € Q, it follows that
p(x, Q) <1 for all x € O and, hence, in particular for all x € suppn C Q. This
contradiction proves (ii).

(iii) If p(x,-) has a density k(x,-)e L'(Q, 1), then A(3Q)=0 implies that
p(x, Q) = [, k(x, y)A(dy) =0.

Remark 2.10. There are alternative constructions for conditionally invariant measures in
a variety of situations. Demers and Young [6] discussed this mainly for maps, without
taking into account a skew product structure, and with regard to absolutely continuous
conditionally invariant measures; cf. in particular [6, §5]. For the case of quasi-stationary
measures, Collett, Martinez and San Martin [2, Proposition 2.10 and Theorem 2.11] proved
a general result based on the analysis of an associated operator P; and required that P;
maps the space C(Q), Q compact, of continuous real-valued functions into itself (i.e., it
is Feller). For a random map of the form (2.6), this amounts to the following: define for
bounded measurable functions 4 : Q — R,

[P1()](x) 1=/ h(f(x, ®))vo(dw).
{weQlf(x,w)eQ}

If P; maps continuous functions 4 into continuous functions, a variant of a theorem due
to Krein (see Oikhberg and Troitsky [16, Theorem 4]) yields the existence of a positive
eigenvector for the dual operator which determines a quasi-stationary measure n. (The
theorem can be applied, since C(Q) is an ordered Banach space which has an element A
with [|ho|| = 1 such that hg > h for all & with ||h]| =1.)

More explicitly, the theorem implies that there is a positive measure 1 on Q such that
Pin = Bn. Thus, forall h € C(Q),

(P (h) = / (Pyh) dn = / / h(f (x, @)vo(d)n(dx) = B / hn(dx).
0 0 J{weQ|f(x,w)e0} 0

We may assume that n is a probability measure. Then, for every Borel measurable set
ACO,

f P(x, Ayn(dx) = f f vo(dw)(dx) = Bi(A).
0 0 J{weQ|f(x,w)eA}

It follows that g = f 0 P(x, Q)n(dx) and hence 7 is quasi-stationary.



Metric invariance entropy and conditionally invariant measures 929

The map P; leaves the space of continuous functions invariant in the following situation:
for h € C(Q), continuity of f guarantees that the map (x, w) — h(f(x, w)) is continuous.
If x, — x in Q, compactness of €2 implies that the Hausdorff distance df (A,, A) — 0 for
the compact sets A, := {w € Q| f(x,, w) € O} and A :={w e Q| f(x, w) € Q}. If, for
example,  C R™ and vy has a density g € L' () with respect to the Lebesgue measure,
it follows that vg(A, A A) = fA,,AA g(w)dw — 0. Thus, [P;(h)](x,) = [P1(h)](x) and
the desired continuity of P;h follows.

3. Metric invariance entropy

In this section, we construct two versions of metric invariance entropy in analogy to metric
entropy for dynamical systems: a feedback version and a version based on controllability
properties.

We consider control system (1.1) on M and suppose that Q is a closed subset of
M. Throughout this section, we fix a conditionally invariant measure p with constant
p = p(p) € (0, 1] for Q and the skew product map S on i/ x M; cf. Definition 2.5. Recall
that we write Sg 1= Syxp : U x Q — U x M for the restriction. Thus, for n € N, the
measure p is conditionally invariant for S’é with constant p”. Since u lives in U x Q,
we construct certain partitions for A/ x Q whose entropy with respect to u will be used
to define the metric invariance entropy. While this seems fairly straightforward for the
component in Q, more work will be needed for the {/-component.

For motivational purposes, consider a sequence of measurable partitions satisfying, for
some fixed T € N, forall n, m € N,

Q[n+m - an Vv S_nrg[m. (31)

It follows that %A, = ?:_01 STy for all n > 1. Recall that for a probability measure
w1 on a space X and measurable partitions 2, € and ©, the conditional entropy is, with
¢ (x) =xlogx, x € [0, 1], defined by

w(ANC) n(ANC)
H@O == w€) ) ¢ —rm= == D mANC)log—rm—
Cec Ael # Ae,CeC H
and H, AV E|D)=H,QD)+ H, (€A VD) (cf. Walters [18, Theorem 4.3(1)]).
Suppose that p is an invariant measure for a map S. Then, applying repeatedly this
formula, one finds forn € N,

n—1 i—1

n—1
Hy(n, 201) = Hy () =Y Hy, ST \/ S77% =) H, @il (3.2)
i=0 £=0 i=0

here, and in the following, conditioning for \/[zl0 is omitted and 2o := {X}. The last
equation in (3.2) follows, since for all i > 0,

Hy (Ui 1 1;) = Hy (ST v A ) = Hy (S77TA[24).

This will guide our definition of invariance entropy for a conditionally invariant measure .
The following definition is taken from Kawan [11, Definition 2.8].
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Definition 3.1. An invariant partition is a triple C = (P, t, F), where P is a finite partition
of Q into Borel measurable sets, Tt € N and F : P — Q7 is a map assigning to each set P
in P a control function such that ¢(k, P, F(P)) C Q forallk € {I, ..., t}.

Note that F should be considered as a (piecewise-constant) feedback.

Remark 3.2. Analogously, if P is an open cover of Q, the triple (P, 7, F) is called an
invariant open cover of Q. In the definition of topological feedback entropy by Nair et
al [15], invariant open covers replace the open covers used for topological entropy of
dynamical systems.

For an invariant partition C = (P, 7, F) with P ={Py, ..., P,}, we abbreviate F; :=
F(P)eQ',i=1,...,q, and define for every word a := [ag, aj, ..., an—-1], N €N,
with a; € {1,...,q}, a control function u, on {0,..., Nt — 1} by applying these

feedback maps one after the other:

(WUa)ir4k = Fg))r fori=0,...,N—1 and k=0,...,7—1. 3.3)

We also write u, = (Fyy, Fy,, ..., Fay_,). The word a is called admissible for C if there
exists a point x € Q with
p(it, x,uq) € Py, fori=0,1,..., N—1.

The admissible words for C describe the possible sequences of partition elements under
the feedbacks associated with C. For P € P, we define

A(P):={(u,x)eld x Q|lx e Pand p(k, P,u) C Qfork=1,..., 1} 3.4

and
A(C) :={A(P)|P € P} withunion AC) = | ] A(P).
PeP
Here and in the following, we will omit the reference to C if the considered invariant
partition is clear from the context. This union is disjoint and, in general, .4 will be
a proper subset of U x Q. For (u, x) € A(P), the controls u (on the relevant interval
{0, ..., T — 1}) should be considered as feedbacks since they are applied to all elements
of P. Observe that Sé’”%l is a measurable partition of the set § é’”A - Sé'” U x Q).
A sequence (Ao, ..., Ap—1) 1s called admissible if A; =A(P;) € and a=
lag, ..., ay,—1]is an admissible word, and we define
n—1
Dy=Aon---NS," A, e\ s, (3.5)
i=0
We also call intersections of the form D, admissible. Let
n—1
A, = D, € \/0 Sg' "Ula admissible , A, := UDE%(C) D. (3.6)
i=
Observe that 21 = 2l and, for convenience, we set Ao = U x Q. Furthermore, for all sets
D e, let

AF (D) :={A € AD N S Ais admissible}, Af(D):= U

An1(D) =D NSH""A(D),  Apy1(D):=D NS, AL (D).

9

AeF (D)
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Thus, for A € 2} (D,), the intersection
—(n—1 _
ApN---N SQ(" A1 NSy A

corresponds to an admissible word of length n 4+ 1 and hence is admissible. It is
immediately clear that 2,1 C 21, v Sé’”%ll and that, in general, this inclusion is proper.
Furthermore, A, is the disjoint union of the sets A, +1(D), D € 2,,.

The following lemma shows that the sequence 2, n € N, satisfies a condition similar
to (3.1).

LEMMA 3.3.
(i) Foralln,meN,
Wpm C Ay Vv Sé’”mm. (3.7)

More precisely, the collection U, consists of all intersections D n N S é'”Da[mJ,

where D i1 € 2y, corresponds to an admissible word a™ of length m such that the
word a = a™al™ is admissible.

(i) Assume that the invariant partition C = (P, t, F) satisfies the following property:
for every x € Q there are P € P and y € P such that ¢(t, y, F(P)) = x. Then for
every admissible word a™\ of length m there exists an admissible word a" such that
the word a = a"™al™ is admissible.

Proof. (i) Consider for an admissible word a,
ApM---N Sé(n-’_m_l)TAn—l—m—l € an—i-m

with A; = A(P,;). Then, clearly, ApN---N Sé("_l)tA,,_l is an element of 2, since
[ao, . .., ay—1]is an admissible word. Also, [ay, . . ., ay+m—1] is admissible, since

p(jT, o(nT, X, Uuq), 0" ug) = p((n + j)v, x, ug) € Py, forj=0,1,...,m—1.
It follows that
Sg" An - N ST AL
=855 (An N NS A ) € S5 U,
(i1) Let a™ be an admissible word of length m, i.e., there is x € Q such that

e(jT, x, ugm) € Pa[m] for j=0,1,...,m—1.
j

Then there are P = P,, ,,apointx_1 € P, , C Qandu_; = F(P,, ) € QF such that

n—1
o(t, x-1, F(Pg,_,)) = x.
Proceeding inductively, one finds xo € Q and an admissible word a!"! such that

p(nt, xo, uym) =x  and  @(iT, X0, Uyn) € Pal[n] fori =0,...,n—1.

Hence, the word a = al™al™ is admissible.
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The converse inclusion in (3.7) is not valid, since a non-void intersection D N § é’”D’
with D € 21, and D’ € 2, may not correspond to an admissible word of length n + m.
Furthermore, the collection I, is not a partition of i/ x Q and p is not invariant for Sg.

We will use the following version of the notion of conditional entropy.

Definition 3.4. Let® and (D), D € ®, be finite families of measurable, pairwise disjoint
sets in a space X with probability measure m. Let £(D) :=Jg, ¢ E for De®, and
suppose that for every D € © the collection {D N E|E € &(D)} is a partition of D N E(D).
Then the conditional entropy of &(-) given ® is

DNE
Hm(E()|D) = Z m(D NE(D)) Z ¢ 1(1115 n S(D)))
Ded Ee&(D)

This differs from the usual definition of conditional entropy (it might be called
a conditional pseudo-entropy), since it refers to measurable families, not necessarily
partitions, and in the considered collections {D N E|E € E(D)} the collections of
allowed sets E may depend on D. For every D e 9, the conditional measure
m(D N -)/m(D N E(D)) is a probability measure on D N E(D), and we sum up the
corresponding entropies of the partitions induced by &(D) on D N E(D) with weights
m(D N E(D)). Thus, the entropy induced on the complement of the union of all elements
of ® is disregarded; and the weights m(D N £(D)) take into account only the probability
of the intersection of D with the union £(D) of the elements of (D). Naturally, this
conditional entropy can also be written as

m(DNE)
Hp(E()HD) = — DNE)log———————. 3.8
(E()|D) %E%}D)m )Ogm(Dﬂé’(D)) (3.8)

For the definition of invariance entropy, we will consider the conditional entropy
Hp—irM(SélTQ[?_('NQli) of the family {Sé’thlT"(D), D € 2l;} given the collection 2;
defined in (3.6). Note that for every D € 2;, the collection

(DN Sé”A|A e AT (D))
is a partition of D N Séi’A;r(D), and every D € 2l; can be extended to an admissible
intersection of length i + 1 by some element S éiTA. Furthermore, by Remark 2.3, ,o_i T
is a probability measure on Séi “(U x Q), and
pTT(D N SGTAT (DY N )
pITI(D N S AF (D))

defines a probability measure on D N § é”A;r (D). Thus, we sum up the entropies induced
on DN S, T AF(D), D €2, with weights given by o™ u(-),

H,-ir, (S5 ™A ()120)
w(DN Sé”A)
w(D NS5 AL(D))

==Y > pTudnSsyTA)log

DeR; AeAf (D)
p (DN S‘”A)
Pt (D N ST AL (D))

==Y pTTuDNS;TATD) Y ¢

De; AeS (D)
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Next we define the metric invariance entropy of an invariant partition in analogy to
condition (3.2).

Definition 3.5. For an invariant partition C = (P, t, F) of Q, the invariance p-entropy of
20(C) up to time nt is defined as the following sum of conditional entropies:

n—1
Hu(n, A(C) =Y Hpyir (S5 " AF ()120)), (3.9)
i=0

and the feedback invariance p-entropy of C is
fb .. 1
hy, (C) =liminf—H, (n, A(C)). (3.10)
n—oo nT

Formula (3.9) measures the average increase of information. Observe that only the
elements of the families Sé’ TQ[;"(D), D € 2;, determine the additional information in
every time step.

The following definition introduces the central concept of this paper.

Definition 3.6. For the skew product map S from (2.4) associated with control system
(1.1), the feedback invariance p-entropy of Q with respect to a conditionally invariant
measure [ 1S ‘

hi(Q, $) :=infhj"(©),

where the infimum is taken over all invariant partitions C = (P, t, F) of Q. If no invariant
partition exists, we set h,]:b(Q, S) =00

Remark 3.7. For an invariant partition C, the entropy H it u(S (_2”2[1?"(.)|Q[,~) can also be
written in a somewhat more concise form. Define

_ u(DNE)
Hpoiey @i [2) = —p ™ )y w(DNE)log —————s
Pt
De; EeUiy M(Al-l-l(D))

Then the entropy satisfies
H i), (i1 190) = H i, (S 72U (1200). 3.11)

In fact, for D N Sé”A with D € 2; and A € QL;F(D), one finds with

E:=DNSy A=AcN---NS;""VTA_ NSy TA U,

that DNE=DnN Sé”A and 4;1(D)=DnN Séi’Af(D). Conversely, let E € 2041
and D € 2; be given by

E=Ayn---nS," A nsgTAl, D=4gn---nS;" A
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Since A;4+; is the disjoint union of the sets A;;+1(D), D € 2;, it follows that there
is a unique D €2; with E=D NS, TA, AeAf (D). The sets A, A" in A (D) are
pairwise disjoint and hence D N Sé’ "A=Dn Sé’ 'A" # ¢ implies that A = A’. Thus,
there is a unique A € Ql;r(D) with DNE=DnN Sé”A, A€ Qll?L(D), and A;11(D) =
DN S, T Af (D). Then (3.11) follows.

Remark 3.8. One may wonder why a general time step T € N is used above, while T = 1
might appear as the natural choice. We look at itineraries of trajectories in the elements of
the partition P at integer multiples it, i € N. Then on some fixed time interval from O to
T the choice T > 1 yields fewer itineraries than 7 = 1.

In Definition 3.6, the metric invariance entropy A Zb(Q, S) is defined using the infimum
over all invariant partitions C = (P, t, F) and hence also over all T € N. All constructions
are equally valid if we would take the fixed time step T = 1 throughout. The same is true
if we require that the limit for T — o0 is considered, i.e., we could take the infimum over
all invariant partitions C = (P, t, F) for a fixed T € N and then take the limit inferior for
T — o0o. The definitions above are given for general T € N in analogy to feedback entropy
as defined in Nair et al [15]. Also, Kawan’s proof of Theorem 3.14 cited below uses in an
essential way general time steps t. His proof also shows that for the topological invariance
entropy it suffices to take arbitrarily large time steps 7.

In the following, we argue why a straightforward generalization of the definition of
entropy to conditionally invariant measures leads to a trivial notion. Recall the definition
of 2, from (3.6) and define for all n € N partitions of &/ x Q in the following way:

ﬁ[n =2, U{Z,}, where Z, := U x Q) \ UDte D.

We will show that lim,, o (l/n)H,L(ﬁln) —0if p < 1. In view of Ay n C Ay Vv Sémmm,
consider

—HyQim) = (W Zngm) = Y p(u(AgN ST AD)
A()Ean,Aléglm

— Z 1(Ag N S, Ay) log i(Ao)
AgeRl,, A1e,,
w(Apg N Sa”Al)
u(Ao)

+ Y w(AgN Sy A)) log
AgeRl,, A1,

Observe that 2, is complemented to the partition 2, of & x Q. The corresponding
summands will be negative and hence the first sum is bounded below by

Y w(AgN SG"T U x Q) log n(Ag) = —Hy (Ay).
A()EQ[”
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For the second summand, denote the elements of ©® = § é’”ﬁlm by D. We obtain, using
convexity of ¢ and conditional invariance, that it is bounded below by

u(Ag N Sa"Al)
u(Ao)

Z (A9 N S, " A1) log

AOEQ}m
Altem

H(Ao N S5" A1)
H(Ao)

= Y uAoé

AOEQ}I’M
Altem

> Y 6 D n(ANSFTA) = Y (ST AD)
AIEle Aoeéln Aleﬂm
=p"" ) m(A)log u(A) + p" log p"".
Aell,,
Then, with b, := p"* log p""* — ¢ (u(Zy+m)), it follows that
Hy (Upm) < Hy () + p"" Hy () — by

Note that w(Z,4+m) —> 1 for n— oo, since the sets in 2,4, are contained in
Sé(ner)(Z/{ x @). Thus, the term b, tends to O for n — co. A modification of the
subadditivity lemma in Walters [18, Theorem 4.9] shows that this implies, as claimed,
that limy, o0 (1/1) H,, (A,) = 0.

Next we introduce a variant of Definition 3.6, where we omit the feedback property
required in A(P). For an invariant partition C = (P, 7, F) and P € P, define

B(P):={(u,x)eld x Qlx e Pand p(k, x,u)e Qfork=1,..., 1t} (3.12)
and let
B(C) :={B(P)|P € P} with union B(C) = U B(P).
PeP

This union is disjoint and, in general, B will be a proper subset of &/ x Q. Observe
that Sé” "B is a measurable partition of the set | Jpep S é"TB (P) C Sa"(l/{ x Q) for all

n eN. A sequence (By, ..., B,—1) is called admissible for C if B; = B(P,;) €5 and
a =lap, ..., a,—1]1s an admissible word, and we define
n—1
Do=BoN---nSy" "B, _1e\/ 5,78 (3.13)
i=0
and let

n—1
B, = {Da € \/ Sé”%m admissible} .
i=0
Observe that B8; = B. Furthermore, for all sets D € B,,, let
B,y (D) := (B €B|DNS,"" B is admissible}.

As in Lemma 3.3, one shows that
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Definition 3.9. For an invariant partition C = (P, t, F) of Q, the invariance p-entropy of
B(C) up to time nt is defined as the following sum of conditional entropies:

n—1
Hy(n, BC) =Y Hy-ir,(S5"" B ()B)) (3.14)
i=0

and the controlled invariance p-entropy of C is
1

hff(C) =liminf—H,, (n, B(C)). (3.15)
n—>oo nt

This leads to the following notion of metric invariance entropy.

Definition 3.10. For the skew product map S from (2.4) associated with control system
(1.1), the controlled invariance w-entropy of Q with respect to a conditionally invariant
measure [ is

h(Q,8) = igfhff(C),

where the infimum is taken over all invariant partitions C of Q. If no such invariant
partition exists, we set ;7 (Q, S) := 00.

Next we consider the behavior of the metric invariance entropies under appropriate
conjugacies. For notational simplicity, we suppose that the sets of control values coincide.

Definition 3.11. Consider two control systems of the form (1.1) on M; and M,
respectively, given by

Xn+1 = fl (Xp, up) and Yn+1 = fZ()’nv up) with (u,) €.

Let ;1 and py be conditionally invariant measures with respect to closed subsets Q1 C M|
and Q» C M», respectively. A bimeasurable bijection 7 : Q1 — Q> is called a conjugacy
of these systems if

7(f1(x, w)) = fa(mrx, w) forallwe Qandx e Q0 (3.16)
and idyy x m:U x Q1 — U x Qp maps 1 onto ua, i.e.,
wi((idy x 7)Y (B)) = ua(B) forall B e BU x 0»). (3.17)
In terms of the solutions, conjugacy condition (3.16) means that
w1 (n, xo, u) = @a(n, mxg, u) foralln>0.

With the associated skew product maps S; (u, x) = (Qu, fi(x, ug)), i = 1, 2, one obtains
the skew conjugacy condition for (u, x) e 4 x Q1,

(idy x m) o Si(u, x) = (idy x 7w)(Ou, fi(x, uo)) = Ou, fo(mwx, uo))
= 87 o (idy x m)(u, x). (3.18)
Since we may interchange the roles of S, 1 and S», 2, respectively, conjugacy is an

equivalence relation. The metric invariance entropies turn out to be invariant under this
conjugacy relation.
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THEOREM 3.12. Suppose that there is a conjugacy m of two control systems of the form
(1.1) on My and My with associated skew product maps S| and Sy and conditionally
invariant measures jL1 and [y for closed sets Q1 C M| and Q) C M», respectively. Then
the feedback invariance p-entropy and the controlled invariance p-entropy satisfy

hIP(Q1, 1) =hf2(02. 8) and K (Q1. $1) = (02, $2).
Proof. First observe that conjugacy properties (3.17) and (3.18) imply that Q> = 7 Q1 and

p1=pm1(S;THU x 01) = ua(S; U x 02)) = pa.

Consider an invariant partition C; = (Py, 7, F1) of Qi. Then {w(P)|P € P} is a
measurable partition of Q> = w Q1 and every measurable partition of O, can be written in
this form. For P € Py and u € U with ¢ (k, P, u) C Qi fork=1, ..., 7, one finds that

¢k, tP,u)y=moi(k, P,u)) C Qp forallkefl,...,}.

Thus, id; x 7 maps the invariant partition C; = (Py, 7, F) to the invariant partition
Cy = (P, t, F1) and the collection 2A(Cy) of U x Qp is mapped to the corresponding
collection A(Cy) of U x Q»,

A(Cy) = {(idy x m)AJA € A(C1)}.
One finds for the entropy

Hy, (n, AC) = Hyy (0, AC2)), neN, and hlPeC)=nl2C).

It follows that 7,”(Q1, $1) = 112 (05, $1).
These arguments also show that h,ﬁ’(Ql, S1) = oo if and only if h,{f(QQ, S$7) = o0.
For the controlled invariance p-entropy, one argues analogously.

Finally, we briefly discuss the relation of metric invariance entropy to other notions of
invariance entropy. In Kawan [11, Definition 2.2 and Proposition 2.3(ii)], the following
notion is considered.

Definition 3.13. Consider system (1.1) with skew product map S and let Q C M be a
compact controlled invariant set, i.e., for every x € Q there is w, € Q with f(x, wy) € Q.
For t e N a set, R C U is called (z, Q)-spanning if for all x € Q there is u € R with
en,x,u)ye Q foralln=1,..., 1. By ripy(r, Q), we denote the minimal number of
elements such a set can have (if no finite (r, Q)-spanning set exists, riny (T, Q) := 00).
The invariance entropy is defined by

) 1
hiny(Q, ) := tlggo - log riny(7, Q).

Write Wi (C) for the set of all admissible words of length N of an invariant partition C

and let
log #Wy (C) — inf log #WWn (C)

h(C):= lim
N—o00 Nt NeN Nt

The following characterization of invariance entropy is given in [11, Theorem 2.3].
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THEOREM 3.14. For a compact and controlled invariant set Q,
hinV(Q’ S) - lgf h(C),
where the infimum is taken over all invariant partitions C of Q.

The metric entropies h'[:b(Q, S) and A;’(Q, S) in the present paper have been
constructed in analogy to this result. Instead of counting the sequences corresponding
to admissible words, the conditionally invariant measure has been used to associate a
probability to them, and then a corresponding notion of entropy is considered. One might
expect that the additional information provided by a conditionally invariant measure would
reduce the entropy, i.e., that h{;b(Q, S) and hff’(Q, S) are bounded above by hin (Q, S).
This would require us to estimate the terms in (3.9) by the number of admissible words.
At present it is not clear to us what the relation is between metric invariance entropies and
hiny(Q, S). The relation of Ay (Q, S) to feedback invariance entropy (cf. Nair et al [15])
has been clarified in Colonius, Kawan, and Nair [3].

For given invariant partition C, the feedback invariance p-entropy describes the
information associated with itineraries in P of the corresponding trajectories under
feedbacks (leaving the partition elements in Q). Controlled invariance p-entropy describes
the information associated with itineraries in P of trajectories for arbitrary controls.
Concerning the relation between these two notions of metric invariance entropy, one
immediately sees that for an invariant partition C every set A(P) defined in (3.4) is
contained in the corresponding set B(P) defined in (3.12). It is not clear if this induces a
corresponding inequality for the conditional entropies up to time nt (cf. (3.9) and (3.14)).

Finally, it would be important to compute the metric invariance entropy for special
classes of systems and for specific classes of conditionally invariant measures (e.g., for
those generated by quasi-stationary measures) and to determine relations to the escape
rate p(w) and to a corresponding Perron—Frobenius operator.
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