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Abstract. For a class of piecewise deterministic Markov processes, the supports
of the invariant measures are characterized. This is based on the analysis of control-
lability properties of an associated deterministic control system. Its invariant control
sets determine the supports.

1. Introduction. In this paper we determine the supports of invariant measures
for certain Piecewise Deterministic Markov Processes (PDMP) using controllability
properties of an associated deterministic control system. We refer to the monograph
Davis [11] for background on PDMP. The results extend some of those given by
Bakhtin and Hurth [4] and Benaïm, Le Borgne, Malrieu and Zitt [5], where the ergodic
case is treated. We will show that, under appropriate assumptions, the supports of
the invariant measures are determined by the invariant control sets. In particular, in
the ergodic case this reduces to one of the main results in [5] (in particular Proposition
3.17).

A technical di¤erence to the papers mentioned above is that, on the deterministic
side, we use control systems instead of di¤erential inclusions. This is due to the fact,
that we bring to bear the theory of control sets (maximal sets of complete approximate
controllability) for control systems (cf. Colonius and Kliemann [10]). This allows us
to develop many results in analogy to the theory for degenerate Markov di¤usion
processes (cf. Arnold and Kliemann [1, 2], Kliemann [12], Colonius, Gayer, Kliemann
[8]) and for certain random di¤eomorphisms (Colonius, Homburg, Kliemann [9]).

The contents of this paper is as follows: In Section 2 we recall and partially
strengthen some results on invariant control sets. Section 3 clari�es the relations
between PDMP and the associated control system, and Section 4 establishes the
relation between the supports of invariant measures for PDMP and invariant control
sets.

Notation. For a subset V � Rd the convex hull is denoted by co(V ). The
topological closure and the interior of V are denoted by clV and intV , respectively.
For subsets A � V , the closure relative to V is denoted by clVA. Since all considered
measures are probability measures, we just speak of measures. We write L1(R+; V )
for the set of v 2 L1(R+;Rd) such that v(t) 2 V for all t � 0:

2. Controllability properties. In this section we associate deterministic con-
trol systems to PDMP and discuss their controllability properties.

As in Benaïm, Le Borgne, Malrieu and Zitt [5] we consider PDMP of the following
form: Let E be a �nite set with cardinality m+1 = #E, say E := f0; 1; : : : ;mg, and
for any i 2 E let F i : Rd ! Rd be a smooth (C1) vector �eld. We assume throughout
that each F i is bounded, hence the (semi-)�ow given by the corresponding solution
map �i(t; x); t � 0, exists globally. Frequently, we will also suppose that there exists

1



a compact set M � Rd that is positively invariant under each �i, meaning that
�i(t; x) 2M for all t � 0 and all x 2M .

We will consider a continuous-time piecewise deterministic Markov process Zt =
(Xt; Yt) living on Rd � E. This process will be described explicitly below, here we
only remark that the continuous component Xt evolves according to the �ows �i; the
component on E determines which of the �ows �i is active (with random switching
times). Already here it is clear that, in a natural way, one may associate the following
deterministic control system to the PDMP,

_x(t) =
mX
i=0

vi(t)F
i(x); (2.1)

where the (piecewise constant or measurable) control functions v lie in L1(R+; S)
and

S :=
n
v = (vi) 2 Rm+1

���Xm

i=0
vi = 1 and vi 2 f0; 1g for all i

o
(2.2)

stands for the canonical basis of Rm+1: Thus only one vector �eld F i is active at any
time.

We also consider system (2.1) with convexi�ed right hand side where the control
range is the unit m-simplex

co(S) :=
n
v 2 Rm+1

���Xm

i=0
vi = 1 and vi 2 [0; 1]

o
: (2.3)

The corresponding set of control functions is L1(R+; co(S)):
Remark 2.1. We may write v0(t) = 1� v1(t)� � � � � vm(t). Then system (2.1)

with control range S is equivalent to the following control system

_x = F 0(x) +
mX
i=1

vi(t)
�
F i(x)� F 0(x)

�
(2.4)

with controls having range inn
v 2 Rm

���Xm

i=1
vi � 1 and vi 2 f0; 1g for all i

o
: (2.5)

Analogously, (2.1) with control range co(S) is equivalent to (2.4) with convex control
range n

v 2 Rm
���Xm

i=1
vi � 1 and vi 2 [0; 1] for all i

o
: (2.6)

System (2.4) (and hence (2.1)) is a special case of control-a¢ ne systems of the
form

_x = f0(x) +
mX
i=1

vi(t)fi(x); (vi) 2 V := L1(R+; V ) (2.7)

with Lipschitz continuous vector �elds fi on Rd and compact control range V � Rm.
Next we discuss some properties of the general class of systems of the form (2.7). We
assume that (unique) global solutions '(t; x; v); t � 0, exist for controls v and initial
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condition '(0; x; v) = x. This certainly holds in a compact set M which is positively
invariant, i.e., satisfying

'(t; x; v) 2M for all x 2M;v 2 V and t � 0:

We will call a subset M of Rd invariant if

f'(t; x; v) jx 2M and v 2 V g =M for all t � 0:

De�ne for x 2 Rd and T > 0 the reachable and controllable sets of (2.7) up to time T
by

O+�T (x) := f'(t; x; v) jt 2 [0; T ] and v 2 V g;
O��T (x) := fy jx = '(t; y; v) for some t 2 [0; T ] and v 2 V g; (2.8)

and the reachable and controllable sets by

O+(x) :=
[

T>0
O+�T (x);O

�(x) :=
[

T>0
O��T (x):

Similarly let O+pc(x) denote the subset of O+(x) which can be reached by piecewise
constant control functions (i.e., having only �nitely many discontinuities on every
bounded interval), and analogously for the other notions introduced above.

We note the following standard properties of control systems.
Theorem 2.2. Consider a control system of the form (2.7). Then the following

holds:
(i) For every trajectory '(t; x; v); t 2 [0; T ]; of (2.7) there exists a sequence (vn)

of piecewise constant controls with '(t; x; vn)! '(t; x; v) uniformly for t 2 [0; T ].
(ii) For every trajectory '(t; x; v); t 2 [0; T ]; of (2.7) with control values in co(V )

there exists a sequence (vn) of controls with values in V such that '(t; x; vn) !
'(t; x; v), uniformly for t 2 [0; T ].

(iii) The trajectories '(t; x; v) of (2.7) with control values in co(V ) coincide with
the (absolutely continuous) solutions of the di¤erential inclusion

_x 2
n
f0(x) +

Xm

i=1
vifi(x) j(vi) 2 co(V )

o
: (2.9)

Proof. For assertion (i) see Sontag [15, Lemma 2.8.2]. For assertion (ii) see,
e.g., Berkovitz and Medhin [7, Theorem IV.2.6]. In assertion (iii) it is clear, that
every trajectory of (2.7) with control values in co(V ) is a solution of the di¤erential
inclusion above, which has compact convex velocity sets depending continuously (in
the Hausdor¤ metric) on x. The converse follows by a measurable selection theorem,
cp., e.g., Aubin and Frankowska [3, Theorem 8.1.3].

Remark 2.3. A consequence of this theorem is that the points in the reachable
and controllable sets de�ned in (2.8) can be approximated using only piecewise constant
controls.

We proceed to de�ne maximal subsets of complete approximate controllability
(for some background see Colonius and Kliemann [10] and Kawan [13]).

Definition 2.4. A nonempty set D � Rd is a control set of system (2.7) if (i)
it is controlled invariant, i.e., for every x 2 D there is v 2 V with '(t; x; v) 2 D for
all t � 0 (ii) for every x 2 D one has D � clO+(x) and (iii) D is maximal with these
properties. A control set C is called an invariant control set if clC = clO+(x) for all
x 2 C.
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Invariant control sets need not be closed, as seen by the simple example

_x = x(1� x)v(t); v(t) 2 [�1; 1]: (2.10)

Here x = 0 and x = 1 are �xed points for every v 2 [�1; 1]. Thus the sets f0g; f1g
and also the open interval C := (0; 1) are invariant control sets.

Proposition 2.5. (i) Let M be a positively invariant subset of Rd. An invariant
control set C � M is closed relative to M , i.e., clMC = C, if for every x 2 @C \M
the set O+(x) has nonvoid interior. In particular, an invariant control set C is closed
if for every x 2 @C the set O+(x) has nonvoid interior.

(ii) The compact invariant control sets coincide with the minimal compact invari-
ant sets, i.e., the compact invariant subsets M � Rd which do not contain a proper
compact invariant subset.

Proof. (i) We use repeatedly that on every bounded time interval the solution
of a di¤erential equation depends continuously on the initial value. One �nds that
clO+(x) � clC for all x 2 clC \M . In particular, for x 2 @C \M with intO+(x) 6= ;
it follows that intO+(x) � clC \M , hence there is y 2 O+(x)\C. Then every z 2 C
is in clO+(x). By the choice of x one also has x 2 clO+(z) for all z 2 C. Then
one sees that C [ fxg satis�es the properties (i) and (ii) of a control set, hence the
maximality property of C implies that x 2 C.

(ii) Let C be a compact invariant control set. Then cl
�S

x2C O+(x)
�
� C, and

hence Lamb, Rasmussen and Rodrigues [14, Proposition 3.2] implies that C contains
a minimal compact invariant set M . We want to show now that M = C. If M ( C,
then, since both sets are compact, there exists a y 2 C nM with dist(y;M) > 0.
Since for all x 2 M , one has C = clO+(x), in particular y 2 clO+(x), the set M
is not invariant, which is a contradiction, so C is a minimal compact invariant set.
Conversely, every minimal compact invariant subset M satis�es clO+(x) �M for all
x 2 M . By continuous dependence on the initial value, the set clO+(x) is positively
invariant, hence it contains a minimal compact invariant subset which by minimality
of M coincides with M .

Remark 2.6. The result from [14, Proposition 3.2] used above is formulated
for set valued dynamical systems. For control systems it means that in a compact
positively invariant set M there is a compact subset N with

f'(t; x; v) jt � 0; x 2 N; v 2 V g = N;

containing no proper subset with this property. This is proved as follows: Consider
the collection

K := fA �M jA is compact with '(t; x; v) 2 A for all t � 0; x 2 A; v 2 V g:

This collection is partially ordered by set inclusion and every totally ordered subcol-
lection has a lower bound in K given by the intersection of its elements. Then Zorn�s
Lemma implies that there exists at least one minimal element in K which turns out
to be a minimal compact invariant set.

Control system (2.7) is called locally accessible in x 2 Rd if for all T > 0 and all
neighborhoods N of x

intO+�T (x) \N 6= ; and intO��T (x) \N 6= ;: (2.11)

It is called locally accessible on a subset M � Rd (or M is locally accessible) if it is
locally accessible in every point x 2M . Recall that the Lie algebra LA(F) generated
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by a family F of vector �elds is the smallest vector space containing F that is closed
under Lie brackets

[f; g] :=
@g

@x
f � @f

@x
g:

The analysis of controllability properties is simpli�ed in the following situation.
Theorem 2.7. Consider a control system of the form (2.7) and suppose that the

Lie algebra LA = LAff0 +
Pm

i=1 vifi jv 2 V g satis�es for some x 2 Rd

fg(x) jg 2 LAg = Rd. (2.12)

Then the system is locally accessible in x and the condition in (2.11) even holds
for the reachable and controllable sets O�pc;�T (x) corresponding to piecewise constant
controls.

We note that condition (2.12) is also necessary for local accessibility, if the involved
vector �elds are real analytic; cf. Sontag [15, Theorems 9 and 12] for a proof of
Theorem 2.7 and the necessity statement.

Remark 2.8. For control system (2.1) (or (2.4) with control range (2.5) or (2.6))
the Lie algebra LA from Theorem 2.7 coincides with the Lie algebra generated by the
vector �elds F 0; : : : ; Fm.

In order to derive some further properties of control sets we adapt the following
lemma from Colonius and Kliemann [10, Lemma 4.5.4].

Lemma 2.9. Let x 2 Rd and v 2 V with '(T; x; v) 2 intO+�T+S(x) for some
T; S > 0 and assume that the system is locally accessible at '(T; x; v). Then

x 2 intO��T+2S('(T; x; v)):

Proof. We �nd an open neighborhood N(y) � intO+�T+S(x) of y := '(T; x; v).
Local accessibility at y implies that there is z 2 N(y)\ intO��t0(y) for every t0 2 (0; S]
small enough. Then there are a control v and a neighborhood N(x) of x such that
N(x) is mapped in a time T1 � T + S via the solution map corresponding to v onto
a neighborhood N(z) of z contained in N(y) \ O��t0(y). We obtain

x 2 N(x) � O��T1+t0(y) � O
�
�T+2S('(T; x; v)):

Theorem 2.10. Consider system (2.7) and assume that it is locally accessible
on a positively invariant subset M � Rd.

(i) There are at most countably many invariant control sets Cr; r 2 I � N in
M . They are closed relative to M and have nonvoid interiors. The invariant control
sets C and their interiors are positively invariant. Furthermore, clM (intC) = C and
for all x 2 C one has intC � O+(x) and C = clMO+(x). If the Lie algebra rank
condition (2.12) holds on intC, then it even follows that intC � O+pc(x) for all x 2 C.

(ii) Let K � M be compact. Then there are at most �nitely many invariant
control sets C such that C \K 6= ?.

Proof. (i) Closedness relative to M follows by Proposition 2.5(i). For every
invariant control set C, the interior of C is nonvoid, since O+(x) � C; x 2 C, has
nonvoid interior. This implies that there are at most countably many invariant control
sets, since the topology of Rd has a countable base.

Furthermore, it is clear that clM (intC) � C. In order to see the converse inclusion,
consider a nonvoid open subset U � intC. Then for every t > 0 and v 2 V the set
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f'(t; x; v) jx 2 U g is open, and the assertion follows, since O+(x) is dense in C. Note
that this argument does not use local accessibility, hence it shows that for any invariant
control set either the interior is void or dense.

Let x 2 C and y 2 intC. Then there is T > 0 with intO��T (y) � C and hence one
can steer the point x to some point z 2 intO��T (y). Concatenating the corresponding
control with a control steering z to y one �nds that y 2 O+(x) implying intC � O+(x)
and also C � clMO+(x) for all x 2 C. If (2.12) holds on C, Theorem 2.7 allows us to
replace intO��T (y) by intO

�
pc;�T (y) in this argument. By the approximation property

in Theorem 2.2(i) one can steer the point x into intO�pc;�T (y). Hence intC � O+pc(x)
for all x 2 C.

In order to show positive invariance of intC suppose that there are x 2 intC; T0 >
0 and v0 2 V with '(T0; x; v0) 62 intC. Let

T1 := supft 2 [0; T0] j'(s; x; v0) 2 intC for all s 2 [0; t]g:

Then it follows that y := '(T1; x0; v0) 2 (C \M) n (intC) � clMC = C. Hence there
are � > 0 and v1 2 V with '(�; y; v1) 2 intC. Observe that every neighborhood of y
intersects f'(t; x; v0) jt 2 (T1; T0]g\M . By continuous dependence on the initial value
a neighborhood of y is mapped into the interior of C and hence there is T2 2 (T1; T0]
such that for all t 2 [T1; T2) the intersection O+('(t; x; v0)) \ intC is nonvoid. Then
it follows that the point x 2 intC is in O+('(t; x; v0)) � O+(x). This easily implies
that also all points '(t; x; v0); t 2 [T1; T2) are in intC contradicting the de�nition of
T1. It follows that intC is positively invariant. Similar, but simpler arguments show
that also C is positively invariant.

(ii) If the assertion is false, one �nds in�nitely many invariant control sets Cn; n 2
N and points xn 2 clCn\K. This sequence has a cluster point and every cluster point
x is in K � M . By local accessibility on M there are T; S > 0 and a control v with
'(T; x; v) 2 intO+�T+S(x). By Lemma 2.9 we �nd that there is an open neighborhood
V (x) of x with V (x) � intO��T+2S('(T; x; v)). For n 2 N large enough xn 2 V (x)
and xn 2 clCn, hence one �nds yn 2 Cn

yn 2 O��T+2S('(T; x; v)):

This shows that for all n large enough the points yn 2 Cn can be steered to the
single point '(T; x; v). This contradicts positive invariance of the pairwise di¤erent
invariant control sets Cn.

Remark 2.11. In the system given by (2.10), the invariant control set C =
(0; 1) is trivially closed relative to the positively invariant set M = (0; 1), since @C \
M = ? (observe that here local accessibility on M holds). In the absence of local
accessibility, Colonius and Kliemann [10, Example 3.2.9] presents an example of an
invariant control set which is neither open nor closed in R2 and which is not positively
invariant.

The next theorem does not assume that the system is locally accessible on M .
Theorem 2.12. Consider system (2.7) on a positively invariant subset M � Rd.
(i) If there exists a compact subset K � M such that for every x 2 M one

has clO+(x) \ K 6= ;, then for every x 2 M there exists an invariant control set
C � clMO+(x). If the system is also locally accessible in M , then there are only
�nitely many invariant control sets in M .

(ii) Conversely, if for every x 2 M there exists an invariant control set C �
clMO+(x) and there are only �nitely many invariant control sets in M , then there
exists a compact subset K �M such that for every x 2M one has clO+(x)\K 6= ;.
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Proof. (i) Note �rst that clO+(x) \ K = clMO+(x) \ K for every x 2 M . In
order to show that for every x 2 M there is an invariant control set C � clMO+(x)
de�ne K(y) := clO+(y)\K for y 2 clMO+(x). Consider the family K of nonvoid and
compact subsets of M given by K = fK(y) jy 2 clMO+(x)g. Then K is ordered via

K(z) � K(y) if y 2 clMO+(z):

In fact, this is an order: If K(z) � K(y) and K(y) � K(z), then y 2 clMO+(z)
and z 2 clMO+(y) implying clMO+(y) = clMO+(z) and hence K(y) = K(x). If
K(y1) � K(y2) and K(y2) � K(y3), then y2 2 clMO+(y1) and y3 2 clMO+(y2),
hence y3 2 clMO+(y1) implying K(y1) � K(y3).

Every linearly ordered set fK(yi) ji 2 I g has an upper bound K(y) for some
y 2

T
i2I K(yi), because the intersection of decreasing compact subsets of the compact

setK is nonvoid. Thus Zorn�s lemma implies that the family K has a maximal element
K(y). Now we claim that the set

C := clMO+(y)

is an invariant control set. It is clear that C � clMO+(x). Every z 2 C is ap-
proximately reachable from y, hence K(y) � K(z) and maximality of K(y) implies
K(y) = K(z), hence for every z 2 C one has y 2 clMO+(z). Then it follows that
C = clMO+(z) for every z 2 C. This implies for every z 2 C that there is v 2 V with
'(t; z; v) 2 C for all t � 0 and clC = clO+(z). Hence C is an invariant control set.

If M is locally accessible, the invariant control sets are closed in M by Theorem
2.10(i). Thus, if x is in an invariant control set C, then clMO+(x) = C and hence
C\K 6= ;. By Theorem 2.10(ii) only �nitely many invariant control sets have nonvoid
intersection with K, hence only �nitely many invariant control sets in M exist.

(ii) For each of the �nitely many invariant control sets Ci pick xi 2 Ci and
de�ne K := fxi j1 � i � N g. Then for each x 2 M there is i 2 f1; : : : ; Ng with
Ci � clMO+(x), hence xi 2 clO+(x) \K.

The following corollary is a consequence of Theorems 2.10 and 2.12.
Corollary 2.13. Suppose thatM is a compact positively invariant set for system

(2.7).
(i) For every x 2M there is an invariant control set C �M with C � clO+(x).

If C is closed and intC 6= ; then C = cl(intC) and for every x 2 M one has intC �
O+(x) and intC \ O+pc(x) 6= ;.

(ii) Suppose that M , additionally, is locally accessible. Then M contains at least
one and at most �nitely many invariant control sets Cr; r = 1; : : : ; l. They are compact
(hence characterized by Proposition 2.5 (ii)), have nonvoid interiors intCr and for
every point x 2 M there is r 2 f1; : : : ; lg with intC \ O+pc(x) 6= ;. If the Lie algebra
rank condition (2.12) holds on intC, then it even follows that intC � O+pc(x) for all
x 2 C.

Proof. (i) We only have to show that for every x 2M one has intC � O+(x) and
intC \O+pc(x) 6= ;, since the other assertions follow from Theorem 2.12(i). Note that
there is y 2 O+(x) \ intC, since C � clO+(x). By Theorem 2.10(i), it follows that
intC � O+(y) � O+(x). Furthermore, y 2 O+(x) \ intC implies by Theorem 2.2(i)
that O+pc(x) \ intC 6= ;.

(ii) This is immediate from Theorems 2.10 and 2.12.
Remark 2.14. Consider a linear control system of the form _x(t) = Ax(t) +

Bv(t); v(t) 2 V � Rm with matrices A 2 Rd�d; B 2 Rd�m and compact con-
trol range V � Rm with 0 2 intV . Suppose that the controllability rank condition
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rank[B;AB; : : : ; Ad�1B] = d holds (this condition, called Kalman�s rank condition, is
equivalent to the fact that the system without control constraint satis�es O+(x) = Rd
for all x 2 Rd). Then there exists a unique control set with nonvoid interior. It is
a compact invariant control set if A is stable, i.e., all eigenvalues of A have negative
real parts (cp. Colonius and Kliemann [10, Example 3.2.16]). The example in [5,
Section 5.2] discusses for such a situation (with d = 2) the invariant measures.

Benaïm, Le Borgne, Malrieu and Zitt in [5] de�ne for the control system (2.1)
with control range (2.2) and a positively invariant compact setM � Rd the accessible
set

� :=
\
x2M

clO+pc(x): (2.13)

See also Proposition 3.11 in [5] for the relations with the associated di¤erential inclu-
sion.

In complete analogy, one can also de�ne the accessible set � of a general control
system of the form (2.7) and any M � Rd: Its relation to invariant control sets is
clari�ed in the following proposition.

Proposition 2.15. Consider control system (2.7) and let M � Rd.
(i) If � is a nonvoid subset of M , then � is a closed invariant control set.
(ii) Let M be compact and positively invariant and suppose that there is only one

invariant control set C in M . Then C = �, in particular, C is closed.
(iii) If a compact positively invariant set M contains two closed invariant control

sets, then � is empty.
Proof. (i) Suppose that � =

T
x2M clO+(x) 6= ;. Continuous dependence on the

initial value shows that � is positively invariant, hence clO+(x) � � for every x 2 �.
For all x; y 2 � one has y 2 clO+(x) and x 2 clO+(y). Thus it is an invariant control
set.

(ii) By Corollary 2.13, for every x 2M there is an invariant control set in clO+(x),
hence the inclusion C �

T
x2M clO+(x) holds. For the converse inclusion, note that

this implies that � is a nonvoid subset of M , and hence the assertion follows by (i).
(iii) If � is nonvoid, it is by (i) a closed invariant control set. Let C 6= � be

another closed invariant control set. Then clO+(x) � C for x 2 C. Since, by the
maximality property, the intersection of two control sets C1 6= C2 is void, one obtains
the contradiction � = ;.

Remark 2.16. The accessible set � may be nonvoid, if two invariant control sets
exist and one of them is not closed. The paper by Benaïm and Lobry [6] presents
Lotka-Volterra systems where this occurs.

Next we discuss the points which can be steered into an invariant control set.
Definition 2.17. The domain of attraction of an invariant control set C is

A(C) := fx 2 Rd
��clO+(x) \ C 6= ;g

and its strict domain of attraction is

Astrict(C) := fx 2 Rd
��clO+(x) \ C 6= ; and clO+(x) \ C 0 6= ; implies C 0 = C g;

where C 0 denotes any invariant control set.
It is easily seen that for an invariant control set C with nonvoid interior x 2 A(C)

if and only if O+(x) \ intC 6= ;. In fact, for y 2 clO+(x) \ C there are v 2 V and
t > 0 with '(t; x; v) 2 intC and hence, by continuous dependence on the initial
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value, it follows that O+(x) \ intC 6= ; (recall that for locally accessible systems,
every invariant control set has nonvoid interior.) This also shows that the domain of
attraction is open. The points in the strict domain of attraction can only be steered
to a single invariant control set. If C is closed, the strict domain of attraction trivially
contains C. It need not be open, since, e.g., a point of the boundary C \ @C may be
in @ (Astrict(C)).

If the system is locally accessible on a compact positively invariant set M � Rd,
Corollary 2.13 implies that every x 2M is in the domain of attraction of at least one
of the �nitely many invariant control set. Furthermore, if M is also connected and
contains at least two invariant control sets, it follows that for every invariant control
set Ck the set [A(Ck) \M ] n Astrict(Ck) is nonvoid. Otherwise, one would obtain a
decomposition of M into two disjoint open sets

M = [A(Ck) \M ] [
S
i 6=k [A(Ci) \M ] :

Consequently, one �nds for every invariant control set Ck an invariant control set
Ci 6= Ck with

A(Ck) \ A(Ci) 6= ;:

Thus there are points which can be steered into two di¤erent invariant control sets.
Finally, we show that one may consider an invariant control set C as an �accessible

set�(similar to (2.13)) for a neighborhood of C, which, however, need not be positively
invariant.

Proposition 2.18. LetM be a compact positively invariant and locally accessible
set. Then for every invariant control set C � M there is a compact neighborhood U
of C such that

C =
\
x2U

clO+pc(x):

Proof. There are only �nitely many invariant control sets in M and they are
compact. For every point x 2 @C there are T > 0 and a piecewise constant control v
with '(T; x; v) 2 intC. Using compactness of @C and continuous dependence on the
initial value one �nds a neighborhood U of C such that C �

T
x2U clO+pc(x). Using

the de�nition of invariant control sets one sees that here equality holds.

3. Piecewise Deterministic Markov Processes. We will now, following Be-
naïm, Le Borgne, Malrieu and Zitt [5], de�ne piecewise deterministic processes. With
the notation introduced in Section 2, assume that there is a compact set M � Rd,
that is positively invariant for every �ow �i, i.e., �it(M) � M for all t � 0 and all
i 2 E.

Let x 7! Q(x) = (Q(x; i; j))ij : Rd 7! R(m+1)�(m+1) be continuous with Q(x)
an irreducible, aperiodic Markov transition matrix, which means that for all x there
is nx 2 N with Qnx(x; i; j) > 0 for all i; j 2 E. Let (Nt)t�0 be a homogenous
Poisson process with intensity �, jumps times (Tn)n�0 and denote by (Un)n�1 with
Un = Tn�Tn�1 the times between the jumps. Assume that ~Z0 2M �E is a random
variable independent of (Nt)t�0.

We de�ne the discrete-time process ( ~Zn)n = ( ~Xn; ~Yn)n on M � E recursively by

~Xn+1 = �
~Yn(Un+1; ~Xn);

P
h
~Yn+1 = j

��� ~Xn+1; ~Yn = ii = Q( ~Xn+1; i; j):
9



and by interpolation its continuous time version (Zt)t�0

Zt =
�
�
~Yn(t� Tn; ~Xn); ~Yn

�
for t 2 [Tn; Tn+1): (3.1)

We de�ne for n 2 N

Tn = f(i;u) = ((i0; i1; � � � in); (u1; � � �un)) 2 En+1 � Rn+g

and

Tijn = f(i;u) 2 Tnji0 = i; in = jg :

Then we can de�ne the trajectory with initial value x 2 M induced by (i;u): With
t0 = 0; tk = tk�1 + uk; k = 1; : : : ; n,

�x;i;u(t) =

8><>:
x t = 0

�
ik�1
t�tk�1(xk�1) tk�1 < t � tk
�int�tn(xn) t > tn

:

We can then denote

�iu(x) = �x;i;u(tn)

and note that (x;u) 7! �iu(x) is continuous. In terms of the associated deterministic
control system (2.1) this means that we consider a piecewise constant control function
v with values in S generating the trajectory '(t; x; v) = �x;i;u(t).

We can de�ne

p(x; i;u) :=
nY
j=1

Q(xj ; ij�1; ij) (3.2)

and the set of adapted elements

Tn;ad(x) = f(i;u) 2 Tn : p(x; i;u) > 0g :

Note that x 7! p(x; i;u) is continuous.
The relation between the trajectories of the Piecewise Deterministic Markov

Process and control system (2.1) is clari�ed by the following results from [5], slightly
reformulated for control systems instead of di¤erential inclusions. The �rst result is,
in the terminology of Arnold and Kliemann [1], a tube lemma. It shows that tubes
around any (�nite-time) trajectory of the control system have positive probability.
It reformulates the development in [5, Section 3.1]. Recall that co(S) is the unit
m-simplex.

Lemma 3.1 (Tube lemma). For all T > 0, x 2 M; i 2 E; � > 0 and every
trajectory '(�; x; v) of system (2.1) with control v in L1(R+; co(S)) there is " =
"(x; i; v; T; �) > 0 such that

Px;i

"
sup
t2[0;T ]

kXt � '(t; x; v)k � �
#
� ":

Proof. Theorem 2.2(ii) shows that for every control v 2 L1(R+; co(S)) there is a
control v1 2 L1(R+; S) such that

sup
t2[0;T ]

k'(t; x; v)� '(t; x; v1)k �
�

3
:

10



By Theorem 2.2(i) we can �nd a piecewise constant control with values in S such that
the corresponding trajectory approximates '(t; x; v1) uniformly on [0; T ]. Thus there
are n 2 N and (i;u) 2 Tn

sup
t2[0;T ]

k'(t; x; v1)� �x;i;u(t)k �
�

3
:

By [5, Lemma 3.2] there is " > 0 such that

Px;i

"
sup
t2[0;T ]

kXt � �x;i;u(t)k �
�

3

#
� " > 0:

Here " depends on x; i; i;u and, naturally, on T and �. In the situation above, (i;u)
is determined by x and v, hence we may write " = "(x; i; v; T; �) Taken together, this
implies

Px;i

"
sup
t2[0;T ]

kXt � '(t; x; v)k � �
#

= Px;i

"
sup
t2[0;T ]

kXt � �x;i;u(t) + �x;i;u(t)� '(t; x; v1) + '(t; x; v1)� '(t; x; v)k � �
#

� Px;i

"
sup
t2[0;T ]

kXt � �x;i;u(t)k �
�

3

#
� "(x; i; v; T; �):

The next result establishes a relation between the law of the continuous-time
process and the associated control system (with convexi�ed control range).

Theorem 3.2. Consider control system (2.1) with controls in L1(R+; co(S))
and let x 2 M . If X0 = x 2 M then the support of the law of (Xt)t�0 equals the set
of trajectories starting in x given by

f'(�; x; v) 2 C(R+;Rd) jv 2 L1(R+; co(S))g:

Proof. By [5, Theorem 3.4], the support of the law of (Xt)t�0 equals the set of
trajectories �(�) with �(0) = x of the di¤erential inclusion

_�(t) 2
(

mX
i=0

vi(t)F
i(x)

�����
mX
i=0

vi(t) = 1 and vi 2 [0; 1]g
)
:

By Theorem 2.2(iii) the set of trajectories of this di¤erential inclusion coincides with
the set of trajectories of the associated control system.

A �rst consequence of the tube lemma is the following.
Proposition 3.3. Let C � M be an invariant control set with nonvoid interior

and x 2 A(C). Then there are Tx > 0 and "x > 0 with

Px;i [XTx 2 intC] � "x for all i 2 E:

Proof. By the de�nition of C there are Tx � 0 and a control vx 2 L1(R+; co(S))
with y := '(Tx; x; vx) 2 intC, hence B�x(y) � intC for some �x > 0. Hence the tube

11



lemma, Lemma 3.1, implies

Px;i[XTx 2 intC] � Px;i[XTx 2 B�(y)] � Px;i [kXTx � '(Tx; x; vx)k � �]

� Px;i

"
sup

t2[0;Tx]
kXt � '(t; x; vx)k � �

#
� "(x; i; vx; Tx; �x);

Since vx; Tx and �x are determined by x and E is a �nite set we �nd that

"x := min
i2E

"(x; i; vx; Tx; �x) > 0:

4. Invariant measures and their supports. The purpose of this section is
to show that the support of every invariant measure is contained in the union of the
invariant control sets times E and that, for an ergodic invariant measure, the support
coincides with an invariant control set times E.

Recall that a point x0 is in the support of a measure if every neighborhood of x0
has positive measure and that the support is closed.

For the following results on existence of invariant measures for the discrete time
process and the continuous time process compare Benaïm, Le Borgne, Malrieu and
Zitt [5]. First one notes that the invariant measures of the discrete-time process and
the continuous-time process are homeomorphic to each other, the homeomorphism
preserves ergodicity and the supports coincide [5, Proposition 2.4 and Lemma 2.6].

In our context, [5, Lemma 3.16] is replaced by the following technical lemma.
Lemma 4.1. Let M be a compact positively invariant set for system (2.1) with

controls in L1(R+; co(S)) and suppose that there are only �nitely many invariant
control sets Cr � M; r = 1; : : : ; l, and Cr = cl(intCr) and intCr � O+(x) for every
x 2 Cr and all r.

Consider the process ( ~Zn)n = ( ~Xn; ~Yn)n. Pick pr 2 intCr and let Ur be an open
neighborhood of pr with clUr � intCr and U :=

Sl
r=1 Ur and, �nally, choose i; j 2 E.

Then there exist m 2 N and "; � > 0, �nite sequences (i1;u1); : : : ; (iN ;uN ) 2 Tijm
and an open covering O1; : : : ;ON of M such that for all x 2M and t 2 Rm+ ;

x 2 Ok and


t� uk

 < " implies �ikt (x) 2 U and p(x; ik; t) � �:

Furthermore, m; " and � can be chosen independently of i; j 2 E.
Remark 4.2. If M is a compact positively invariant and locally accessible set,

then the assumptions of Lemma 4.1 hold by Corollary 2.13.
Proof. Fix i and j and consider open neighborhoodsWr of pr with clWr � Ur; r =

1; : : : ; l. Let W :=
Sl
r=1Wr. For all � > 0 and all �nite sequences (i;u) the sets

O (i;u; �) :=
�
x 2M

���iu(x) 2 W; p(x; i;u) > �	
are open, since �iu and p are continuous with respect to x. Using Corollary 2.13(i)
one �nds for every point x 2 M an invariant control set Cr; r 2 f1; : : : ; lg, with
intCr � O+(x). Hence, for every x 2M there are a time T > 0 and a control v such
that '(T; x; v) 2 U .

Then the tube lemma, Lemma 3.1, implies

M =
[
n2N

0@[
�>0

[
(i;u)2Tijn

O (i;u; �)

1A :
12



By adding �false�jumps to a chain (i;u), we get:

8(i;u) 2 Tijn 8n0 � n 8� 9�0 > 0 9(i0;u0) 2 T
ij
n0 : O (i;u; �) � O (i

0;u0; �0) :

Therefore the union over n is increasing, so by compactness of M , there is mij with

M �
[
�>0

0B@ [
(i;u)2Tijmij

O (i;u; �)

1CA :
Since there only �nitely many i and j, we can choose m independently of i; j 2 E.

The inclusions

O (i;u; �1) � O (i;u; �2) for �1 � �2

show that the union over the � is increasing with decreasing �. Thus, by compactness
there is �0 > 0 such that for all i; j 2 E

M =
[

(i;u)2Tijm

O (i;u; �0) :

Again compactness of M shows that there is N 2 N with M =
SN
k=1Ok, where

Ok := O
�
ik;uk; �0

�
for some (ik;uk) 2 Tijm. Since clWr � intUr for r = 1; : : : ; l, the

distance between clW and the complement of U is positive by compactness. So we
can choose " small enough such that for all x 2 Ok and all t 2 Rm+ with



t� uk

 � "
�i

k

t (x) 2 U and p(x; ik; t) � �:

Using compactness of M one can here choose "; � > 0 independently of x 2M .
We denote the n-step transition probability from (x; i) to a measurable set A �

M � E by Pn ((x; i); A) = E
h
~Zn 2 Aj ~Z0 = (x; i)

i
.

Lemma 4.3. Let y 2 O+(x) and consider a neighborhood W(y) of y. Then for
all i; j 2 E there are a neighborhood W(x) of x and n 2 N such that for all z 2 W(x)

Pn ((z; i);W(y)� fjg) > 0:

Proof. Let y = '(T; x; v) for some T > 0 and v 2 L1(R+; co(S)). The tube
lemma, Lemma 3.1, implies that for all � > 0 there is " > 0 such that

Px;i

"
sup
t2[0;T ]

kXt � '(t; x; v)k � �
#
� ":

By the arguments used in the proof of Lemma 4.1 one �nds for a neighborhood W(y)
of y a natural number n 2 N and "; � > 0 such that for every x 2 M there are an
open neighborhood W(x) of x and (i;u) 2 Tijn with the following property:

For t 2 Rn+ with kt� uk � " and z 2 W(x) it follows that �it(z) 2 W(y) and
p(z; i; t) � �.

Then we have for all z 2 W(x) and all i; j 2 E

Pn((z; i);W(y)� fjg) � P(y;i) (kt� uk � "; i0 = i)
= P(y;i) (kt� uk � ") � P(y;i) (i0 = ij ku0 � uk � ")
� P(y;i) (kt� uk � ") � �:
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Since the components of t are identically and independently distributed and the dis-
tribution is exponential, there is 
 > 0 such that P(y;i) (kt� uk � ") � 
, and

Pn((z; i);W(y)� fjg) > 0:

Similar arguments will show the following lemma.
Lemma 4.4. Let the assumptions and notation of Lemma 4.1 be satis�ed. Then

there exist m 2 N such that for all x 2M and all i 2 E

Pm

�
(x; i);

[
r
intCr � E

�
> 0:

Proof. Choose the open set U �
S
r intCr as in Lemma 4.1. Then one �nds m 2 N

and "; � > 0 such that for every x 2 M and i; j 2 E there is an open neighborhood
Wij(x) of x and (iij ;uij) 2 Tijn with the following property:

For t 2 Rm+ with kt� uijk � " and y 2 Wij(x) it follows that �
iij
t (y) 2

Sl
r=1 intCr

and p(y; iij ; t) � �.
The set W(x) :=

T
i;j2EWij(x) is an open neighborhood of x and we have for all

y 2 W(x) and all i; j 2 E

Pm((y; i);U � E) � Pm((y; i);U � E)
� P(y;i) (ku� uijk � "; i = iij)
� P(y;i) (ku� uijk � ") � � > 0:

Since M is compact, �nitely many neighborhoods W(x) cover M .
For an invariant measure � of

�
~Zn

�
, a simple calculation shows for every mea-

surable set A �M � E

�(A) =

Z
M�E

Pn ((x; i); A)�(d(x; i)) for n 2 N: (4.1)

For brevity, we will replace �(d(x; i)) in the following by d�when no confusion can
occur. The following theorem shows that the supports of the invariant measures of
the discrete-time process are determined on the invariant control sets.

Theorem 4.5. Let M be a compact positively invariant set for system (2.1) with
controls in L1(R+; co(S)), and suppose that there are only �nitely many invariant
control sets Cr � M; r = 1; : : : ; l, and Cr = cl(intCr) and intCr � O+(x) for every
x 2 Cr and all r (this holds in particular, if M is also locally accessible). Then for
every invariant measure � of the discrete-time process ( ~Zn)n = ( ~Xn; ~Yn)n

supp� �
l[

r=1

Cr � E:

Proof. Suppose, by way of contradiction, that there is (x0; i0) 2 A := supp� n
(
S
r Cr � E). Since the invariant control sets Cr are closed, there is an open neigh-

borhood W(x0) of x0 with (W(x0)� E) \ (
S
r Cr � E) = ;. Then

�
��
M n

[
r
Cr

�
� E

�
� �(W(x0)� E) > 0
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and

1 = �(M � E) = �
��
M n

[
r
Cr

�
� E

�
+ �

�[
r
Cr � E

�
= � (supp�)

= �
�
supp� n

�[
r
Cr � E

��
+ �

�[
r
Cr � E

�
:

It follows that

0 < �
��
M n

[
r
Cr

�
� E

�
= �

�
supp� n

�[
r
Cr � E

��
= �(A):

Lemma 4.4 shows that

Pm

�
(x; i);

[
r
intCr � E

�
> 0 for all (x; i) 2 A;

which implies Z
A

Pm

�
(x; i);

[
r
intCr � E

�
�(d(x; i)) > 0: (4.2)

By invariance of � and positive invariance of the invariant control sets Cr we �nd

�(A) =

Z
supp�

Pm+1 ((x; i); A) d�

=

Z
supp�\(

S
Cr�E)

Pm+1 ((x; i); A) d�

| {z }
=0

+

Z
supp�n(

S
Cr�E)

Pm+1 ((x; i); A) d�

=

Z
A

Pm+1 ((x; i); A) d�: (4.3)

Using the Chapman-Kolmogorov equation and again positive invariance of the invari-
ant control sets Cr, we can estimate for all (x; i) 2 A

Pm+1 ((x; i); A) =

Z
M�E

Pm ((x; i); (y; j))P1 ((y; j); A)�(d(y; j))

=

Z
(M�E)n(

S
Cr�E)

Pm ((x; i); (y; j))P1 ((y; j); A)| {z }
�1

�(d(y; j))

+

Z
S
Cr�E

Pm ((x; i); (y; j))P1 ((y; j); A)�(d(y; j))

| {z }
=0

�
Z

(M�E)n(
S
Cr�E)

Pm ((x; i); (y; j))�(d(y; j))

= Pm

�
(x; i); (M � E) n

�[
Cr � E

��
= Pm ((x; i); (M � E))� Pm

�
(x; i);

[
r
intCr � E

�
= 1� Pm

�
(x; i);

[
r
intCr � E

�
15



Together with (4.2) and (4.3) this yields the contradiction

�(A) =

Z
A

Pm+1 ((x; i); A) d�

� �(A)�
Z
A

Pm

�
(x; i);

[
r
intCr � E

�
d� < �(A):

We note the following property.
Proposition 4.6. Let � be an invariant measure for the discrete-time process

( ~Zn)n. Let C be a compact invariant control set and assume that local accessibility
holds on C. If supp� \ (C � E) 6= ;, then C � E � supp� and, in particular,
�(C � E) > 0.

Proof. Suppose, contrary to the assertion, that there is (y; j) 2 (C �E) n supp�.
By Theorem 2.10(i) C = cl(intC) and hence we may assume that y 2 intC. Thus
there is an open neighborhood W(y) � C of y with

(W(y)� fjg) \ supp� = ;: (4.4)

Pick (x0; i0) 2 supp� \ (C � E). By Theorem 2.10(i) intC � O+(x0), hence there
exists y0 2 O+(x0) with (y0; j) 2 W(y) � fjg. By Lemma 4.3, we �nd an open
neighborhood W(x0) of x0 such that for all z 2 W(x0) and i 2 E

Pn ((z; i);W(y)� fjg) > 0 and, clearly, �(W(x0)� E) > 0: (4.5)

This impliesZ
M�E

Pn ((z; i);W(y)� fjg) d� �
Z
W(x0)�E

Pn ((z; i);W(y)� fjg) d� > 0;

and hence

1 =

Z
M�E

Pn ((z; i);M � E) d�

=

Z
M�E

Pn ((z; i); (M � E) n (W(y)� fjg)) d�+
Z
M�E

Pn ((z; i);W(y)� fjg) d�

>

Z
M�E

Pn ((z; i); (M � E) n (W(y)� fjg)) d�:

Using also (4.1) and (4.4), we obtain the contradiction

1 = �(supp�) =

Z
M�E

Pn ((z; i); supp�) d�

�
Z
M�E

Pn ((z; i); (M � E) n (W(y)� fjg)) d� < 1:

Next we discuss the ergodic case. Recall that an invariant measure � is ergodic
(extremal) if it cannot be written as a proper convex combination of invariant mea-
sures.

Theorem 4.7. (i) Assume that system (2.1) with controls in L1(R+; co(S)) is
locally accessible on a compact positively invariant set M . Then for every ergodic

16



measure � of the discrete-time process ( ~Zn)n there is a compact invariant control set
C with supp� = C � E.

(ii) Conversely, let C be a compact invariant control set. Then there exists an
ergodic measure with support equal to C�E and every invariant measure with support
contained in C � E has support equal to C � E.

(iii) Assume that for some x in a compact invariant control set C the Lie alge-
bra LA(F 0; : : : ; Fm) has full rank at x: Then there is a unique invariant measure �
supported by C �E (hence � is ergodic) and there are nonnegative constants c and �
with � < 1 such that for all (x; i) 2 C � E and Borel sets A � C

jPx;i[ ~Zn 2 A]� �(A)j � c�n; n 2 N: (4.6)

Proof. (i) Theorem 4.5 shows that supp� �
S
r Cr � E and it remains to prove

the converse inclusion. In view of Proposition 4.6, we have to show that the support
of � can intersect only one set of the form Cr �E for an invariant control set Cr. Let
(x; i) 2 supp� for some x in the interior of Cr and some i 2 E. Then �(Cr � E) > 0
and for A � Cr � E

�(A) =

Z
Cr�E

P ((x; i); A)d�:

Here it su¢ ces to integrate overCr�E, since for the other points (x; i) in the support
of � one has that x 2 Cs; s 6= r, implying that the probability to reach Cr vanishes.
Hence the conditional probability measure induced by � on Cr � E is invariant. If

�
�[

s 6=r
Cs � E

�
> 0;

then � is not ergodic, since it can be written as a proper convex combination of
the conditional probability measures induced by � on Cr � E and on

S
s 6=r Cs � E,

respectively
(ii) Existence follows from Feller continuity, compactness and positive invariance

of C � E: The second statement follows from Proposition 4.6.
(iii) Uniqueness and the exponential estimate follow from Benaïm, Le Borgne,

Malrieu and Zitt [5, Theorem 4.5]. In fact, this theorem considers for a compact
positively invariant set M the set � de�ned in (2.13) and assumes that there is x 2 �
such that the Lie algebra LA(F 0; : : : ; Fm) has full rank at x. Then it concludes that
(4.6) holds for all Borel sets A � �. Here we choose M = C. Then Proposition 2.15
implies C = � and the assertion follows.

Finally, we note the following consequence for the continuous-time process.
Theorem 4.8. (i) The assertions of Theorem 4.7(i) and (ii) also hold for the

continuous-time process (Zt)t�0 de�ned in (3.1). In particular, if for some x in a
compact invariant control set C the Lie algebra LA(F 0; : : : ; Fm) has full rank at x,
there is a unique invariant measure � supported by C � E (hence � is ergodic).

(ii) If instead of the rank condition for the Lie algebra LA(F 0; : : : ; Fm) the rank
of the smallest Lie algebra containing all �control vector �elds� F i � F 0; i 6= 0, in
(2.4) and all Lie brackets with F i; i = 0; : : : ; n, is considered, convergence of the
distributions follows, hence there are constants c > 1 and � > 0 such that for all
(x; i) 2 C � E and Borel sets A � C � E

jPx;i[Zt 2 A]� �(A)j � ce��t; t � 0: (4.7)
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Proof. (i) The analogues of assertions (i) and (ii) in Theorem 4.7 hold, since by
[5, Proposition 2.4] there is a homeomorphism between the invariant measures of the
discrete-time process and the continuous-time process mapping ergodic measures onto
ergodic measures; by [5, Lemma 2.6] the homeomorphism preserves the supports.

(ii) The exponential convergence (4.7) follows by [5, Theorem 4.4].
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