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Abstract— For control systems in discrete time, this paper
considers metric (i.e., measure-theoretic) invariance entropy for
a subset Q of the state space with respect to a conditionally
invariant measure. The main result shows that this entropy
is already determined by certain subsets of Q which are
characterized by controllability properties.

I. INTRODUCTION
Metric invariance entropy for subsets of the state space

is a measure-theoretic analogue of the notion of invariance
entropy of deterministic control systems, cf. [9] and [6],
henceforth called topological invariance entropy. The present
paper discusses its relations to controllability properties. We
consider control systems in discrete time of the form

xk+1 = f(xk, uk), k ∈ N = {0, 1, . . .}, (1)

where f : M × Ω → M is continuous and M and Ω are
metric spaces. For an initial value x0 ∈ M at time k = 0
and control u = (uk)k≥0 ∈ U := ΩN we denote the solutions
by ϕ(k, x0, u), k ∈ N. The system should be kept in a
given subset Q of M . The notion of topological invariance
entropy hinv(Q) describes the average data rate needed to
keep the system in Q (forward in time). It is constructed
with some analogy to topological entropy of dynamical
systems. We refer, e.g., to [13] or [12] for the entropy
theory of dynamical systems. A major difference of entropy
in a control context to entropy for dynamical systems is
that the minimal required entropy for the considered control
task is of interest, instead of the total entropy generated by
the dynamical system. Presumably, the earliest connection
between control for deterministic systems and ergodic theory
has been established in reference [5] where it is shown that
quantized feedbacks for stabilization may lead to nontrivial
invariant measures, hence chaotic systems. The contribution
[7] considers measure-theoretic notions of entropy in the
context of fundamental limitations in control. Here, however,
the uncertainty arises due to disturbances, called conditional
dither. The present paper considers properties of a metric
invariance entropy with respect to quasi-stationary measures
or, more generally, to conditionally invariant measures on
Q. The notion of metric entropy employed here is a mod-
ification (and simplification) of the one introduced in [3].
It is shown that this entropy is bounded above by the
topological invariance entropy and that it already determined
by invariant W -control sets, where W is the interior of Q. A
general reference to quasi-stationary measures is the mono-
graph [2]; the survey [8] presents, in particular, applications
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to population dynamics where quasi-stationary distributions
may correspond to plateaus of mortality rates. In general,
quasi-stationarity may occur, when exit from Q occurs with
probability one, but only after a long time, so that in the
meantime a quasi-stationary behavior may develop.

Control sets (i.e., maximal subsets of approximate con-
trollability) for systems in discrete time have, in particular,
been analyzed in references [1], [11], [10].

The contents of this paper is as follows: First the definition
of metric invariance entropy is reviewed and it is shown
that the topological invariance entropy is an upper bound.
Then conditions are given ensuring that the metric invariance
entropy is already determined on invariant subsets in Q
and, finally, such invariant subsets are constructed using
controllability properties.

II. DEFINITION OF METRIC INVARIANCE
ENTROPY

In this section, we present the definition of metric invari-
ance entropy, which has some similarity to metric entropy
for dynamical systems.

Let µ be a probability measure on a space X endowed
with a σ-algebra F. For every finite measurable partition
P = {P1, . . . , Pq} of X into measurable sets the entropy
is defined as

Hµ(P) = −
∑

µ(Pi) logµ(Pi).

The entropy specifies the expected information gained
from the outcomes in P of an experiment or the amount
of uncertainty removed, upon learning the P-address of a
randomly chosen point. Now let us look at a dynamical
system (in discrete time) generated by a continuous map T
and its iterations on a compact metric space X . Here a natural
choice of the relevant σ-algebra is the Borel σ-algebra B(X),
i.e., the smallest σ-algebra containing all open subsets of X .
For two collections A and B of sets let the join be defined
by

A ∨B := {A ∩B |A ∈ A and B ∈ B},

and for a finite measurable partition P of X and j ∈ N let

T−jP := {T−jP |P ∈ P }.

Then one finds that

Pn :=

n−1∨
j=0

T−jP = P ∨ T−1P ∨ . . . ∨ T−(n−1)P

again is a finite measurable decomposition of X . Here a
natural choice for the probability measure µ is an invariant
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measure, that is,

µ(T−1E) = µ(E) for all measurable E ⊂ X.

Then 1
nHµ (Pn) is the per-iterate gain of information of

the dynamical system T with respect to P . The entropy of
T with respect to the partition P is

hµ(T,P) := lim
n→∞

1

n
Hµ (Pn) , (2)

and the metric entropy of T is

hµ(T ) := sup
P
hµ(T,P),

where the supremum is taken over all finite measurable
partitions P of X .
This concept has to be modified for invariance of sets in
control. With the shift θ : U → U , (uk) 7→ (uk+1), control
system (1) can equivalently be described by the skew product
map

S : U ×M → U ×M, (u, x) 7→ (θu, f(x, u0)). (3)

Then Sn(u, x) = (θnu, ϕ(n, x, u)), n ∈ N. We suppose that
a closed set Q ⊂ M is given. A conditionally invariant
measure µ for the map S with respect to Q is a probability
measure on the Borel σ-algebra of U ×M such that 0 <
ρ := µ(S−1(U ×Q) ∩ (U ×Q)) ≤ 1 and

ρµ(B) = µ(S−1B ∩ (U ×Q)) for B ∈ B(U ×M). (4)

Interesting conditionally invariant measures can be con-
structed in the following way. Fix a probability measure
ν on the Borel σ-algebra B(Ω) of the control range Ω.
Let p(x,A) = ν {ω ∈ Ω | f(x, ω) ∈ A} , x ∈ M, A ⊂ M ,
be the associated Markov transition probabilities. A quasi-
stationary measure with respect to a closed subset Q of M
is a probability measure η on B(M) such that 0 < ρ :=∫
Q
p(x,Q)dη ≤ 1 and

ρη(A) =

∫
Q

p(x,A)dη for all A ∈ B(Q).

The measure η is stationary, if and only if
∫
Q
p(x,Q)dη =

1. This defines a probability measure on the product space
U×M : With the product measure νN on U = ΩN the measure
µ = νN × η is a probability measure satisfying (4) with
ρ =

∫
Q
p(x,Q)dη, cf. [3, Proposition 2.8]. Results on the

existence of quasi-stationary measures are given, e.g., in [2,
Proposition 2.10 and Theorem 2.11] and [3, Theorem 2.9].

Throughout we fix a conditionally invariant measure µ
with constant ρ = ρ(µ) for Q ⊂ M . We write SQ :=
S|U×Q : U × Q → U × M for the restriction. Then the
condition in (4) can be written as ρµ(B) = µ(S−1Q B). For
n ∈ N the measure µ is conditionally invariant for SnQ with
constant ρn and, in particular, ρ−nµ is a probability measure
on S−nQ (U ×Q). We construct certain partitions for subsets
of U × Q whose entropy with respect to µ will be used to
define the metric invariance entropy.

Recall the following definition from reference [6], cf. also
[3].

Definition 1: For a subset Q ⊂M an invariant Q-partition
has the form Cτ (P, F ) where τ ∈ N, P is a finite partition
of Q into Borel measurable sets and F : P → Ωτ is a map
assigning to each set P in P a control function such that
ϕ(k, P, F (P )) ⊂ Q for all k ∈ {1, . . . , τ}.

In the following, we fix an invariant Q-partition Cτ =
Cτ (P, F ) with P = {P1, . . . , Pq}. Abbreviate Fi :=
F (Pi) ∈ Ωτ , i = 1, . . . , q, and define for every word
a := [a0, a1, . . . , an−1], n ∈ N, with aj ∈ {1, . . . , q} a
control function ua on {0, . . . , nτ − 1} by applying these
feedback maps one after the other: for i = 0, . . . , n− 1 and
k = 0, . . . , τ − 1

(ua)iτ+k := (Fai)k . (5)

We also write ua := (Fa0 , Fa1, . . . , Fan−1). A word a is
called admissible for Cτ if there exists a point x ∈ Q with

ϕ(jτ, x, ua) ∈ Paj for j = 0, 1, . . . , n− 1. (6)

Note that ϕ(k, x, ua) ∈ Q for k = 0, . . . , nτ . If Cτ is
clear from the context, we just say that a is admissible. The
admissible words describe the possible sequences of partition
elements (or “itineraries”) under the feedbacks associated
with Cτ . For P ∈ P we define

A(P ) = {(u, x) ∈ U × P |ϕ(k, P, u) ⊂ Q, k = 1, . . . , τ }

and

A = A(Cτ ) = {A(P ) |P ∈ P }, A =
⋃
P∈P

A(P ).

This union is disjoint, hence A is a partition of A, which, in
general, is a proper subset of U ×Q.
A sequence (A0, . . . , An−1) of sets in A is called admissible,
if there is an admissible word a = [a0, . . . , an−1] of length
n with Ai := A(Pai) for all i. Then the set

Ba = A0 ∩ . . . ∩ S−(n−1)τQ An−1 ∈
n−1∨
i=0

S−iτQ A (7)

is nonvoid and the collection of all these sets is

An :=

{
Ba ∈

n−1∨
i=0

S−iτQ A |a admissible

}
(8)

and their union is

An :=
⋃

Ba∈An
Ba ⊂ S−(n−1)τQ (U ×Q).

Observe that A1 = A and that An is a partition of An.
By [3, Lemma 3.3], one has for all n,m ∈ N

An+m ⊂ An ∨ S−nτQ Am. (9)

The converse inclusion does not hold, since not every ad-
missible word of length m may occur as final piece of an
admissible word of length n + m. Note that every word of
length n can be extended to a word of length n+ 1. In fact,
for x ∈ Q with (6) one obtains ϕ(nτ, x, ua) ∈ Q, hence
there is P ∈ P with ϕ(nτ, x, ua) ∈ P =: Pan and the word
[a, an] is admissible. Observe also that this extension will,
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in general, not be unique, since it depends on the choice of
x.

Consider the entropy Hρ−(n−1)τµ(An) of An with respect
to the probability measure ρ−(n−1)τµ on S−(n−1)τQ (U ×Q)
and then take the average of the required information as time
tends to ∞ to get the entropy of Cτ ,

hµ(Cτ , Q) := lim inf
n→∞

1

nτ
Hρ−(n−1)τµ(An(Cτ )).

Definition 2: The µ-invariance entropy for control system
(1) described by the map S (cf. (3)) is defined by

hµ(Q,S) = lim inf
τ→∞

inf
Cτ
hµ(Cτ , Q), (10)

where the infimum is taken over all invariant Q-partitions
Cτ (P, F ) with fixed τ ∈ N.

Definition (10) guarantees that τ → ∞ which will be
needed below. For topological invariance entropy, one takes
instead an infimum over all invariant partitions Cτ = (P, F )
with τ ∈ N, partitions P and maps F : P → Ωτ . Then it is
a consequence that it suffices to take the limit for τ → ∞;
cf. Theorem 4, below.

We note the following proposition which follows by a
variant of a standard lemma in this context.

Proposition 3: The entropy with respect to µ satisfies

Hµ(An+m) ≤ Hµ(An) + ρnτHµ(Am) for n,m ∈ N,

and hence 1
nHµ(An)→ 0 for n→∞.

This proposition shows that metric invariance entropy can
not reasonably be defined using just the conditionally invari-
ant measure µ. Instead the renormalized measures ρ−nτµ are
needed.

In [6, Definition 2.2 and Proposition 2.3(ii)] the following
notion is considered. For system (1) let Q ⊂M be a compact
controlled invariant set, i.e., for every x ∈ Q there is ωx ∈ Ω
with f(x, ωx) ∈ Q. For τ ∈ N a set R ⊂ U is called
(τ,Q)-spanning if for all x ∈ Q there is u ∈ R with
ϕ(n, x, u) ∈ Q for all n = 1, . . . , τ . Denote by rinv(τ,Q)
the minimal number of elements such a set can have (if
no finite (τ,Q)-spanning set exists, rinv(τ,Q) := ∞). The
topological invariance entropy is defined by

hinv(Q,S) := lim
τ→∞

1

τ
log rinv(τ,Q).

For an invariant partition Cτ write #WN (Cτ ) for the
number of elements in the set WN (Cτ ) of all admissible
words of length N . Define the entropy of Cτ by

h(Cτ ) := lim
N→∞

log #WN (Cτ )

Nτ
= inf
N∈N

log #WN (Cτ )

Nτ
.

The following characterization of topological invariance en-
tropy is given in [6, Theorem 2.3 and its proof].

Theorem 4: For a compact and controlled invariant set Q
it holds that

hinv(Q,S) = inf
Cτ
h(Cτ ) = lim inf

τ→∞
inf
Cτ
h(Cτ ),

where the infimum is taken over all invariant Q-partitions
Cτ = Cτ (P, F ).

The following result relates metric and topological invari-
ance entropy.

Proposition 5: Let Q be a compact and controlled invari-
ant set Q. Then for every conditionally invariant measure µ
on Q

hµ(Q,S) ≤ hinv(Q,S).
Proof: Let Cτ (P, F ) be an invariant partition. Then

#An(Cτ ) = #WN (Cτ ) and for every n ∈ N a standard
property of entropy yields

Hρ−(n−1)τµ(An(Cτ )) ≤ log #An(Cτ ).

It readily follows that hµ(Q,S) ≤ hinv(Q,S), since

hµ(Cτ , Q) = lim inf
n→∞

1

nτ
Hρ−(n−1)τµ(An(Cτ ))

≤ lim
N→∞

log #WN (Cτ )

Nτ
= h(Cτ ).

III. INVARIANCE ENTROPY AND RELATIVE
INVARIANCE

In this section, we show that the metric invariance entropy
of Q is already determined on certain subsets K of Q.
We call a subset K ⊂ Q invariant in Q, if x ∈ K and
ϕ(k, x, u) 6∈ K for some k ∈ N and u ∈ U implies
ϕ(k, x, u) 6∈ Q.

First we determine a relation between invariant partitions
of K and Q.

Lemma 6: Let K be a closed invariant subset in the closed
set Q.

(i) Every invariant Q-partition Cτ (PQ, FQ) induces an
invariant K-partition Cτ (PK , FK) given by

PK = {P ∩K
∣∣P ∈ PQ } and FK(P ∩K) = FQ(P ).

(ii) Assume that there are a finite measurable cover of Q
by sets V 1, . . . , V N , control functions u1, . . . , uN ∈ U
and times τ1, . . . , τN ∈ N such that for all x ∈ V j ,
all j = 1, . . . , N and all k = 0, . . . , τ j

ϕ(k, x, uj) ∈ Q and ϕ(τ j , x, uj) ∈ K.

Then every invariant K-partition Cτ (PK , FK) with
τ ≥ τ̄ := maxj=1,...,N τ

j can be extended to an invari-
ant Q-partition Cτ (PQ, FQ) such that PK ⊂ PQ and
FQ(P ) = FK(P ) for P ∈ PK and ϕ(τ, P, FQ(P )) ⊂
K for all P ∈ PQ.

Proof:
(i) Since K is invariant in Q it follows for P ∈ PQ

from P ∩ K ⊂ K and ϕ(k, P ∩ K,FQ(P )) ⊂ Q
that ϕ(k, P ∩K,FQ(P )) ⊂ K. Thus Cτ (PK , FK) is
an invariant K-partition.

(ii) Let Cτ (PK , FK) be an invariant K-partition with τ ≥
τ̄ . The cover of Q induces a finite partition P1 of Q\K
such that for every P j1 ∈ P1 the control F1(P j1 ) :=
(uj0, . . . , u

j
τj−1) ∈ Ωτ satisfies ϕ(k, P j1 , F1(P j1 )) ⊂ Q

for all k = 0, . . . , τ j . In fact, we may define P 1
1 :=

(Q \K) ∩ V1 and

P j1 :=
[
(Q \K) ∩ V j

]
\
⋃

i<j
P i1 for j > 1.
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Then ϕ(k, P j1 , F1(P j1 )) ⊂ Q for all k = 0, . . . , τ j and
ϕ(τ j , P j1 , F1(P j1 )) ⊂ K since P j1 ⊂ V j . In particular,
there is P i ∈ PK with ϕ(τ j , P j1 , F1(P j1 )) ∈ P i and
hence for all x ∈ P j1 and all k = 0, . . . , τ

ϕ(k, ϕ(τ j , x, F1(P j1 )), FK(P i)) ∈ K.

One obtains an invariant Q-partition Cτ (PQ, FQ) in
the following way: The partition consists of the sets in
PK together with all (nonvoid) sets of the form

P i,j :=
{
x ∈ P j1

∣∣∣ϕ(τ j , x, F1(P j1 )) ∈ P i
}

with feedbacks defined as follows: For P i ∈ PK
let FQ(P i) = FK(P i). Furthermore, denoting the
controls associated with the feedbacks FK(P i), P i ∈
PK , by vik ∈ Ω, k = 0, . . . , τ − 1, define

FQ(P i,j)k =
ujk for k = 0, . . . , τ j − 1

vik−τj for k = τ j , . . . , τ − 1.

This is well defined, since τ − τ j ≥ 0 and hence
Cτ (PQ, FQ) is an invariant Q-partition.

The next theorem shows when the invariance µ-entropy is
already determined on a subset K of Q.

Theorem 7: Consider control system (1) described by the
map S. Let K ⊂ Q be invariant in Q and fix a conditionally
invariant measure µ for Q.

(i) Then the µ-invariance entropy of K is bounded above
by the µ-invariance entropy of Q, hµ(K,S) ≤ hµ(Q,S).

(ii) If the assumption in Lemma 6(ii) is satisfied, then
hµ(Q,S) = hµ(K,S).

Proof: A proof of assertion (ii) will be given elsewhere.
For the proof of (i) let CQτ = Cτ (PQ, FQ) be an invariant
Q-partition and consider the associated invariant K-partition
CKτ = Cτ (PK , FK) according to Lemma 6. We will show
that hµ(CKτ ,K) ≤ hµ(CQτ , Q). Then, taking first the infimum
over all invariant Q-partitions CQτ and then over all invariant
K-partitions CKτ and, finally, the limit inferior for τ →
∞, one concludes that hµ(K,S) ≤ hµ(Q,S) holds, i.e.,
assertion (i).

For P ∈ PQ consider (u, x) ∈ A(P, CQτ ), hence
ϕ(k, P, u) ⊂ Q for all k = 0, . . . , τ . If x ∈ P ∩ K, then
conditional invariance of K in Q implies that ϕ(k, x, u) ⊂ K
for all k = 1, . . . , τ . It follows for all P ∩K ∈ PK

A(P ∩K, CKτ ) = A(P, CQτ ) ∩ (U ×K)

showing that AK = AQ ∩ (U ×K).
If (P0 ∩ K, . . . , Pn−1 ∩ K) is a CKτ -admissible partition

sequence, then (P0, . . . , Pn−1) is a CQτ -admissible partition
sequence and hence a CKτ -admissible word a is also CQτ -
admissible. The corresponding CQτ -admissible set

Ba = Aa0 ∩ S−τQ Aa1 ∩ . . . ∩ S
−(n−1)τ
Q Aan−1

∈ AQn

yields the CKτ -admissible set in AKn

Ba ∩ (U ×K)

= [Aa0 ∩ (U ×K)] ∩ S−τQ [Aa1 ∩ (U ×K)] ∩ . . .

. . . ∩ S−(n−1)τQ Aan−1
∩ (U ×K)

]
.

In fact, invariance of K in Q implies for all (u, x) ∈ Ba ∩
(U ×K) that ϕ(k, x, u) ∈ K for all k = 0, . . . , (n−1)τ and,
in particular, ϕ(iτ, x, u) ∈ Pai ∩K for i = 0, . . . , n− 1.

It follows that

AKn ⊂ AQn ∩ (U ×K) for all n.

This inclusion may be proper for n > 1: For a CQτ -admissible
word a = [a0, . . . , an−1] of length n with Ba∩(U ×K) 6= ∅
there may not exist x ∈ K with (ua, x) ∈ Ba. Thus an
intersection Ba ∩ (U ×K) , B ∈ AQn , may be nonvoid, but
not CKτ -admissible.

First consider B ∈ AQn with ρ−(n−1)τµ(B) ≤ e−1. Then
also ρ−(n−1)τµ(B ∩ (U ×K)) ≤ e−1 and it follows that

φ ρ−(n−1)τµ(B
)

) ≤ φ
(
ρ−(n−1)τµ(B ∩ (U ×K))

)
,

(11)
since φ is monotonically decreasing on [0, e−1]. For ev-
ery n ∈ N there are at most three sets B ∈ AQn with
ρ−(n−1)τµ (B) ≥ e−1, since they are disjoint and the sum
of the measures of four sets B ⊂ AQn ⊂ S

−(n−1)τ
Q (U × Q)

with this property would be greater than or equal to 4e−1 >

1 = ρ−(n−1)τµ(S
−(n−1)τ
Q (U ×Q)). Let

AQ,bign := {B ∈ AQn

∣∣∣ρ−(n−1)τµ (B) ≥ e−1 }.

Then #AQ,bign ≤ 3 and, using φ(x) ≥ φ(e−1) = −e−1, x ∈
[0, 1], it follows that∑

B∈AQ,bign

φ ρ−(n−1)τµ(B ∩ (U ×K))
)
≥ −3/e.

We find, using φ(x) ≤ 0 and (11),

−Hρ−(n−1)τµ

(
AQn
)

=
∑
B∈AQn

φ ρ−(n−1)τµ(B
)

≤
∑

B∈AQn \AQ,bign

φ ρ−(n−1)τµ(B ∩ (U ×K))
)

=
∑
B∈AQn

φ ρ−(n−1)τµ(B ∩ (U ×K))
)

−
∑

B∈AQ,bign

φ ρ−(n−1)τµ(B ∩ (U ×K))
)

≤
∑
B∈AQn

φ ρ−(n−1)τµ(B ∩ (U ×K))
)

+ 3/e

= −Hρ−(n−1)τµ

(
AKn )

)
+ 3/e.

It follows that

hµ
(
AQ)

)
= lim inf

n→∞

1

nτ
Hρ−(n−1)τµ(AQn )

≥ lim inf
n→∞

1

nτ
Hρ−(n−1)τµ(AKn )− 3/e

]
= hµ

(
AK
)

concluding the proof of Theorem 7(i).
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IV. INVARIANT W -CONTROL SETS

Next we construct relatively invariant subsets of Q with
the properties in Theorem 7 using controllability properties.
Again we consider system (1) and introduce some notation
for controllability properties within the open set W := intQ.

Write ϕW (n, x, u) = ϕ(n, x, u) if ϕ(k, x, u) ∈ W for
k = 0, . . . , n ∈ N. Define the reachable and controllable set
within W by

O+
W (x) = {ϕW (n, x, u) with n ∈ N and u ∈ U},
O−W (x) = {y ∈W |∃n ∈ N ∃u ∈ U : ϕW (n, y, u) = x} .

We assume that the system is accessible, i.e.,

intO±W (x) 6= ∅ for all x ∈W.

Definition 8: A subset D ⊂ W is called a W -control set
if (i) D ⊂ clWRW (x) for all x ∈ D, (ii) there is x ∈
D with x ∈ intO−W (x) and (iii) D is maximal with these
properties. A W -control set D is called invariant, if clWD =
clWRW (x) for all x ∈ D.

Here the closures are taken with respect to W .
The following theorem constructs a set K which is in-

variant in Q using invariant W -control sets. It follows using
results in [14].

Theorem 9: Assume that the state space M is a connected
analytic Riemannian manifold and W ⊂ M is an open,
connected and relatively compact subset. Let the control
range Ω ⊂ cl intΩ ⊂ Rm and f : M × Ω̂ → M be real
analytic, where Ω̂ is an open set containing Ω. Furthermore,
suppose that

Ωsub := {ω ∈ Ω |f(·, ω) is submersive}

is the complement of a proper analytic subset in Ω̂ ∩ Ω.
(i) Then the following statements are equivalent:

(a) There are at least one and at most finitely many
invariant W -control sets D1, . . . , D`, 1 ≤ ` <∞,
and for every x ∈W there is Di with

O+
W (x) ∩Di 6= ∅.

(b) There is a compact set F ⊂W with

F ∩ clO+
W (x) 6= ∅ for all x ∈W.

(ii) Suppose that the statement in (a) (or (b)) is valid and
that Q is equal to the closure of W = intQ. Define

K =
⋃l
i=1clDi

and assume that f(K,Ω) ∩ (∂Q \K) = ∅.
Then K is invariant in Q, and for every conditionally
invariant measure µ on Q

hµ(Q,S) = hµ(K,S) ≥
∑l
i=1 hµ(clDi, S).

Remark 10: In the continuous-time case a similar result
for the topological invariance entropy has been shown in
[4].

Fig. 1. Graphs for fα(x,±1), x ∈ [0, 1] with σ = 0.1, A = 0.01,
α = 0.095

V. AN EXAMPLE

Consider the family of control systems depending on a
real parameter α given by fα : R/Z× [−1, 1]→ R/Z,

fα(x, ω) = x+ σ cos(4πx) +Aω + α mod 1.

Suppose that the amplitudes A and σ take on small positive
values. For α0 = σ − A the extremal graph fα0

(·, 1) is
tangent to the diagonal at two points with abscissa 0.25 and
0.75, respectively.

For α > α0 the only control set is R/Z. The situation
for the parameters σ = 0.1, A = 0.01 and α = 0.095 is
illustrated in Fig. 1. Here α is greater than the critical value
α0 = 0.090. For W = (0.18, 0.76) there are two W -control
sets Dα

1 and Dα
2 , where only the one to the right (say Dα

2 )
is invariant in W . In Fig. 1 the dashed lines indicate the
boundaries of the two W -control sets and the shaded region
corresponds to the set W .

Let a probability measure ν on Ω = [−1, 1] be given with
a density with respect to Lebesgue measure and suppose that
there is a γ > 0 such that p(x,Q) ≥ γ > 0 for all x ∈ Q =
[0.18, 0.76]. Then [3, Theorem 2.9] implies the existence of
a quasi-stationary measure with 0 < ρ < 1. If we take the
uniform distribution on Ω these condition are satisfied. Hence
one finds a conditionally invariant measure µα = νN × ηα
on U ×Q. Theorem 7 shows that for every quasi-stationary
measure ηα of Q = clW the invariance entropy for µα on
Q coincides with the invariance entropy of the closure of the
invariant W -control set Dα

2 .
On the other hand, numerical experiments seem to indicate

that the support of this quasi-stationary measure is the union
of clDα

1 and clDα
2 .

VI. CONCLUSIONS

The results above show that the metric invariance entropy
of a subset Q of the state space is already determined on
a subset K that can be characterized using controllability
properties. Essentially, one needs that all points in Q can be
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steered into K with a finite number of control functions and
that the system can leave K only if it also leaves Q.
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