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Abstract— The purpose of this tutorial paper is to explain and
to survey a number of concepts and results for deterministic
control systems centering on the problem to determine the
“information” needed for performing control tasks. Entropy
theory of dynamical systems provides a guideline in the sense
that the developments for control systems are seen, sometimes
in analogy and sometimes in contrast, to those for dynamical
systems. A focus will be on the problem to keep a subset of the
state space invariant. Furthermore, a number of open problems
in this field will be elucidated.

INTRODUCTION
The purpose of this tutorial paper is to explain and to

survey a number of concepts and results which are based
on methods from the ergodic theory of dynamical systems.
Probably [15] is the first paper to establish a connection
between stabilization of control systems (based on quantized
feedback) and ergodic theory (using invariant measures and
the Perron-Frobenius operator). In the present paper, the
focus will be on the problem to keep a subset of the state
space (usually of full dimension) invariant. Furthermore,
several open problems in this context will be elucidated.

Ergodic theory of dynamical systems, where the notion
of entropy plays a decisive role, is a vast field and also its
connections to control are diverse. Hence the present paper
is not an effort to give a comprehensive survey. Instead,
the narrative is concentrated on several main ideas and only
scarce references to original contributions are included. In
particular, we do not strive to present the most general
settings and results. The emphasis is on situations where the
concepts are intuitively appealing.

Entropy theory of dynamical systems goes back to
Kolmogorov-Sinai (based on the pioneering work of Shan-
non) as well as Adler-Konheim-McAndrew, and concerns the
problem to determine the total information generated by the
system. In contrast, in entropy theory for control systems,
the minimal information needed for the considered control
task is of interest. This is closely related to minimal data
rates which, in fact, provided the motivation in the seminal
contribution [28]. For a survey on feedback under data rate
constraints see [27].

In the literature, a number of different versions of in-
variance entropy for control systems has been introduced
and a general agreement about notation has not yet been
reached. Certainly, the list of open problems as well the
choice of topics of this paper is strongly influenced by my
own research interests and experience.
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The contents of this paper is as follows: In Section 2,
main concepts and key results on metric (i.e., measure-
theoretic) and topological entropy of dynamical systems are
stated. Section 3 describes topological versions of invariance
entropy for control systems and Section 4 discusses metric
versions of invariance entropy. Extensions to other control
problems like stabilization are briefly discussed.

I. BACKGROUND ON ENTROPY IN THE THEORY
OF DYNAMICAL SYSTEMS

In this section, we sketch basic concepts and results for
entropy in the theory of dynamical systems. The emphasis
will be on general results for continuous flows on compact
metric spaces, the differentiable theory will only briefly be
touched upon.

As general references to the extensive literature on this
field we mention the recent monograph [17], as well as
the comprehensive monograph on dynamical systems [21, in
particular, Chapters 3 and 4]. The text [32] provides a very
careful introduction to the field. A detailed exposition of the
fascinating development of entropy theory for dynamics is
given in [20], while [33] gives a short and very readable
exposition of the main results emphasizing the relation to
Lyapunov exponents in the smooth case.

We will start with metric entropy, also called Kolmogorov-
Sinai entropy, which is based on measure theory. Let µ be a
probability measure on a space X endowed with a σ-algebra
F. For every finite partition P = {P1, . . . , Pn} of X into
measurable sets the entropy is defined as

Hµ(P) = −
∑

µ(Ai) logµ(Ai) =

∫
Iµ,P(x)µ(dx),

with the information function Iµ,P(x) := − logµ(Px) for
the unique element Px of P with x ∈ Px.

The sets in the partition P may be considered as the
possible outcomes of an experiment. Then the entropy spec-
ifies the expected information gained from the outcomes of
this experiment, or the amount of uncertainty removed, upon
learning the P-address of a randomly chosen point. Observe
that the partition P generates a σ-algebra and the entropy
is the information relative to this σ-algebra. Usually, the
logarithm with base 2 is considered, however, for any base
a > 0 one has log2 z = loga z · log2 a, hence this only
differs by a constant. For continuous-time systems the natural
logarithm is more appropriate.

Now let us look at a dynamical system (in discrete time)
generated by a continuous map T and its iterations on
a compact metric space X . Here a natural choice of the
relevant σ-algebra is the Borel σ-algebra, i.e., the smallest
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σ-algebra containing all open (or all closed) subsets of X .
For two collections A and B of sets let the join be defined
by

A ∨B := {A ∩B |A ∈ A and B ∈ B},

and for a finite measurable partition P of X and j ∈ N let

T−jP := {T−jP |P ∈ P }.

Then one finds that

P(n) :=

n−1∨
j=0

T−jP = P ∨ T−1P ∨ . . . ∨ T−(n−1)P

again is a finite measurable decomposition of X . Here a
natural choice for the probability measure µ is an invariant
measure, that is,

µ(T−1E) = µ(E) for all measurable E ⊂ X.

Then 1
nHµ

(
P(n)

)
is the per-iterate gain of information of

the dynamical system T with respect to P . In the limit for
n → ∞, one obtains the entropy of T with respect to the
partition P as

hµ(T,P) := lim
n→∞

1

n
Hµ P(n)

)
. (1)

Finally, the metric entropy of T , i.e., the total information
generated by the map T with respect to µ is

hµ(T ) := sup
P
hµ(T,P),

where the supremum is taken over all finite measurable
partitions P of X . Here the idea is that coarse partitions
P may overlook information that can be generated by the
dynamical system. Hence one should look, in particular, at
very fine partitions (it suffices to look at partitions with
diameter tending to 0 [32, Theorem 8.3]). An important
observation is that the limit in (1) exists. This relies on the
subadditivity property

Hµ P(m+n)
)
≤ Hµ

(
P(m)

)
+Hµ

(
P(n)

)
(2)

for all m,n ∈ N and the following elementary subadditivity
lemma.

Lemma 1: Let (an) be a sequence in R with an+m ≤
an + am for all m,n ∈ N. Then limn→∞

an
n exists.

The Shannon–McMillan–Breiman theorem (cf. [17, Theo-
rem 3.3.1]) offers another interpretation of entropy. If µ is
ergodic (i.e., the state space cannot per decomposed into two
invariant subsets of positive measure), we define

Pn(x) := {y ∈ X
∣∣PT ix = PT iy for 0 ≤ i < n} ∈ P(n).

This is the set of all y following the same itinerary as x
up to time n. Then the following holds for all x in a set of
µ-probability 1:

lim
n→∞

− 1

n
logµ(Pn(x)) = hµ(T,P).

Thus, abbreviating h = hµ(T,P) one has: Given any
ε > 0, there exists N ∈ N such that for all n ≥ N
there is a set Xn ⊂ X with µ(Xn) > 1 − ε such that

Xn consists of approximately en(h±ε) elements of P(n)

each having measure appr. e−n(h±ε). Viewing the elements
of P(n) in Xn as representing “typical” n-itineraries, the
Shannon–McMillan–Breiman theorem states that a system
has entropy h if the number of “typical” n-itineraries grows
like enh. This gives another intuitive meaning for entropy.

In analogy to the metric entropy one can introduce a
topological version (going back to [1]). Here measurable
decompositions are replaced by finite open covers,

A := {A1, . . . , An}

with open sets Ai such that X =
⋃
iAi. Then the set of

itineraries of length n is

A(n) :=

n−1∨
j=0

T−jA =


n−1⋂
j=0

T−j(Aj) |Aj ∈ A

 ,

which again is an open cover. Denote the minimal cardinality
(i.e., the minimal number of elements) of a subcover by
N (An). Thus we remove all superfluous information. Then
the topological entropy of A is given by

h(A, T ) := lim
n→∞

1

n
logN A(n)

)
(3)

and the topological entropy of T is

htop(T ) = sup
A
h(A, T ). (4)

The limit in (3) exists by the same subadditivity property as
in (2).

Basic properties of topological entropy are collected in the
following proposition.

Proposition 2: Let T : X → X and S : Y → Y
be continuous maps on compact metric spaces. Then the
following holds:

(i) Power rule: htop(T k) = k · htop(T ) for all k ∈ N.
(ii) Invariance under conjugacies: let g : X → Y be a

homeomorphism with

g ◦ T = S ◦ g.

Then htop(T ) = htop(S).
Remark 1: The metric entropy also is invariant under

appropriate conjugacies and satisfies the power rule. These
results can be extended to dynamical systems in continuous
time.

The relation between metric and topological entropy is
clarified by the following variational principle (cf. [32,
Theorem 8.6]).

Theorem 3: Let T : X → X be a continuous map on a
compact metric space. Then

htop(T ) = sup{hµ(T ) |µ is T -invariant}.

In general, there need not exist a measure µ with hµ(T ) =
htop(T ) (such a measure exists for expansive maps.)

There is another way to describe the topological entropy
using explicitly the metric d in X , going back to R. Bowen
and E.I. Dinaburg. It counts the relevant objects in the state

58

                                                                                                                                               



space and can be defined in a more general situation. For
given ε, τ > 0 call R ⊂ K an (ε, τ)-spanning set if for
every x ∈ K there is y ∈ R with

d(T ix, T iy) < ε for all i = 0, . . . , τ − 1.

With r(τ, ε,K) denoting the minimal number of elements in
such a set R let

hspan(ε,K, T ) := lim sup
n→∞

1

n
log r(n, ε,K)

and
hspan(K,T ) := lim

ε→0
hspan(ε,K, T ).

It turns out that for a compact metric space X and K = X
this coincides with the topological entropy of T as defined
in (4),

hspan(X,T ) = htop(T ).

Remark 2: For the topological entropy it suffices to con-
sider the restriction of the considered map f to appropriate
subsets of X (cf. [31, Section 8.1]): The restriction of T to
the nonwandering set Ω which is invariant satisfies

htop(T ) = htop(T|Ω ).

In fact, using the variational principle, Theorem 3, one finds
that the topological entropy is already determined by the
restriction of T to the closure of the set of recurrent points.

Remark 3: Topological entropy on a uniformly hyperbolic
set only depends on the periodic orbits inside this set, and
a measure of maximal measure-theoretic entropy can be
obtained as a limiting distribution of measures concentrated
on periodic orbits.

The theory above may be generalized using ideas from
statistical mechanics, leading to the so-called thermodynamic
formalism. Here ideas by R. Bowen, Y. Sinai, and D. Ruelle
were fundamental. If one analyzes the constructions for the
entropy one discovers that they can be generalized in the
following way:

For a function ϕ in the space C(X,R) of continuous
functions from X to R let

(Snϕ)(x) :=

n−1∑
i=0

ϕ(T ix), x ∈ X,

and let

Qn(T, ϕ, ε) := inf

{∑
x∈R

e(Snϕ)(x) |R is (n, ε) -spanning

}
and

Q(T, ϕ, ε) := lim sup
n→∞

1

n
logQn(T, ϕ, ε).

Furthermore, let

P (T, ϕ) := lim
ε→0

Q(T, ϕ, ε)

and define the topological pressure of T as the map P (T, ·) :
C(X,R)→ R ∪ {∞}.

The topological pressure can also be defined by open
covers. It is easily seen that for the map ϕ ≡ 0 one obtains

P (T, ϕ) = htop(T ). The map ϕ associates weights to the
elements of X . A variational principle also holds for the
pressure [32].

Theorem 4: Let T : X → X be a continuous map on a
compact metric space. Then for every ϕ ∈ C(X,R)

P (T, ϕ) = sup hµ(T ) +

∫
ϕ dµ |µ is T -invariant .

Measures µ with P (T, ϕ) = hµ(T ) +
∫
ϕ dµ are called

equilibrium states (motivated from thermodynamics).
For differentiable systems, we only mention that entropy

is connected with the (unstable) Lyapunov exponents which
exist for almost all x by the theorem of Oseledets. Here
hyperbolicity conditions play an essential role. Furthermore,
pressure is related to escape rates from neighborhoods of
uniformly hyperbolic invariant sets; cf. [33, Section 3.2].

II. TOPOLOGICAL INVARIANCE ENTROPY FOR
CONTROL

The basic question that underlies the following analysis
is: What is the minimal information necessary to perform
a given control task? This rather vague formulation can be
made precise in different ways. Entropy theory of dynamical
systems will provide a guideline for us in the sense that the
concepts and results for control systems are seen, sometimes
in analogy and sometimes in contrast, to the developments
in dynamical systems theory.

Here it is helpful to look at control systems as dynamical
systems. The simplest way of doing that is the following:
Consider a discrete time system given by

xk+1 = f(xk, uk), k ∈ N0 = {0, 1, . . .} (5)

u = (uk) ∈ U := ΩN0 ,

where Ω is the (nonvoid) control range and f : M×Ω→M .
To be definite, suppose that M and Ω are metric spaces and
f : M × Ω → M is continuous. Let ϕ(k, x, u), k ∈ N0, be
the solution with initial condition ϕ(0, x, u) = x and control
u and define the left shift

θ : U → U , (uk) 7→ (uk+1).

(For a compact set Ω the space U becomes compact metriz-
able in the product topology and θ is continuous.) Then one
obtains a dynamical system on U ×M , called the control
flow, by the iterations of the following skew product map
T : U ×M → U ×M,T (u, x) := (θu, f(x, u)) satisfying

T k(u, x) = (θku, ϕ(k, x, u)), k ∈ N0. (6)

The first component on the base space U does not depend
on the second component, which has the cocycle property

ϕ(l, ϕ(k, x, u), θku) = ϕ(l + k, x, u) for k, l ∈ N0.

This is the point of view taken, e.g., in [11] for continuous
time. This, definitely, is not the only (and probably not
the most useful) view of control theory since, implicitly,
it requires us to analyze the behavior of the system under
arbitrary control functions. On the other hand, it certainly
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provides us with some intuition when we want to understand
the relations to dynamical system theory.

Let us look at the problem to render a compact subset Q
of the state space invariant and suppose that Ω is compact.
What is the information necessary to fulfill this task? For
simplicity, we suppose that Q satisfies the following weak
invariance condition:

For all x ∈ Q there is ωx ∈ Ω with f(x, ωx) ∈ Q. (7)

In view of the definition of topological entropy for dy-
namical systems it is natural to look at open covers of Q
and the joins of their preimages. We will consider itineraries
in Q. Hence, in order to take the invariance condition into
account, we replace the open covers by invariant open covers
defined as follows:

Definition 1: An invariant open cover is a triple C =
(A, τ, F ), where A is an open cover of Q, τ ∈ N and
F : A → Ωτ with

ϕ(i, A, F (A)) ⊂ Q for i = 0, . . . , τ .
This associates to every element A in the open cover A

a control function which, when applied to the elements in
A, keeps the system in Q up to time τ . For a sequence
α = (A0, A1, . . . , An−1) ∈ An define the control

u(α) = u(α, C) = (F (A0), F (A1)(τ + ·), . . .). (8)

It is obtained by applying the controls F (Ai) on subsequent
intervals of length τ . Application of this control to an
element x of A0 makes sense if after τ we are in A1, etc.
Then let

Cn(α) := {x ∈ Q |ϕ (iτ, x, u(α)) ∈ Ai, i = 0, . . . n− 1}

and consider the family of all these itineraries

C(n) := {Cn(α) |α ∈ An } .

Then C(n) is an open cover of Q, and we denote the minimal
cardinality of a subcover of Q by N(C(n) |Q ). The invariance
entropy of C is

hinv(C, Q) := lim
n→∞

1

n
logN(C(n) |Q ).

Using subadditivity one can show that the limit exists.
Definition 2: The topological feedback invariance entropy

of Q is
hinv(Q) := inf

C
hinv(C, Q). (9)

Here one may consider the (time-dependent) control func-
tions F (A) : [0, τ ]→ Ω as feedbacks, since they are applied
to every element of A. This definition is essentially due
to [28] who used (a strengthened version of) it to prove
results about minimal data rates for stabilization about an
equilibrium. In (9) an infimum is taken. This is a decisive
difference to entropy for dynamical systems and is due to the
fact that the minimal information necessary for invariance is
of interest.

Another way is to consider the maps TA on M given
by TA := ϕ(τ, ·, F (A)). Then for sequences α ∈ An one
considers the associated sequences

TAn−1 ◦ . . . ◦ TA0 .

Thus, instead of a single map T as for dynamical systems,
one considers for every invariant open cover C compositions
of finitely many maps. This is similar to topological entropy
for nonautonomous dynamical systems; cf. [25], [23].

The following alternative and more flexible construction
(cf. [8]) is closer to the Bowen-Dinaburg version of topolog-
ical entropy. It puts the emphasis on the control functions,
instead of covers of the set Q in the state space,

Let K be a nonvoid subset of a compact set Q ⊂ X and
suppose that (7) holds. Given a time τ ∈ N a set S ⊂ U is
called (τ,K,Q)-spanning if for all x ∈ K there is u ∈ S
with

ϕ(k, x, u) ∈ Q for all k ∈ {0, . . . , τ}.

The minimal number of elements in such a set S is called
rspan(τ,K,Q) (if no finite set S with this property exists,
we set rspan(τ,K,Q) =∞).

Definition 3: With this notation, define the topological
invariance entropy by

hinv(K,Q) := lim sup
τ→∞

1

τ
log rspan(τ,K,Q).

If K = Q, we just write hinv(Q). For continuous time
systems, the definition is completely analogous.

Remark 4: For K = Q this definition is equivalent to
feedback invariance entropy from Definition 2 based on
invariant open covers, cf. [10] and [22, Theorem 2.3]).

In the case of linear control systems ẋ = Ax + Bu with
compact control range one obtains for the outer invariance
entropy (which allows for small exits from Q) (cf. [22,
Theorem 3.1]) the ubiquitous formula

hinv,out(Q) =
∑

max(Reλ, 0),

where summation is over all eigenvalues λ of A counted
according to multiplicity. In this special case, the invariance
entropy coincides with the topological entropy of the uncon-
trolled system ẋ = Ax (appropriately defined via spanning
sets on the noncompact state space Rd). In [14] this formula
is generalized to linear control systems on Lie groups.

There are many results and estimates for topological in-
variance entropy (cf., in particular, Kawan [22]). We empha-
size the following two results which illustrate the relations to
dynamical systems theory. They are formulated for systems
in continuous time and involve the following notions and
facts from nonlinear control theory. Consider a control-affine
system on M = Rd of the form

ẋ = f0(x) +

m∑
i=1

ui(t)fi(x) = f(x, u(t)), u ∈ U , (10)

where fi : Rd → Rd are C∞ vector fields and the controls
are taken in U = {u : R → Rm|u(t) ∈ Ω for all t ∈
R, locally integrable} with a nonvoid control range Ω ⊂
Rm. For x0 ∈ Rd and u ∈ U the solution with x(0) = x0

is again denoted by ϕ(t, x0, u), t ∈ R (for simplicity, we
assume global existence). For W ⊂ Rd the W -reachable set
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of x ∈W up to time T > 0 is

RW≤T (x) :=

ϕ(t, x, u) ∈W
u ∈ U , t ∈ [0, T ],
ϕ(τ, x, u) ∈W

for τ ∈ [0, t]


and

RW (x) :=
⋃
T>0

RW≤T (x).

A W -control set D is a maximal set (with respect to set
inclusion) satisfying

D ⊂ clWRW (x) for all x ∈ D,

where the closure is taken relative to W . A W -control set
C is called relatively invariant, if

clWC = clWRW (x) for all x ∈ C.

If W = Rd we omit the argument W .
Let L(f(·, ω) |ω ∈ Ω) be the Lie algebra generated by the

vector fields of the control system, i.e., the smallest linear
space of vector fields containing all f(·, ω), ω ∈ Ω, and
closed under Lie brackets, thus g, h ∈ L(f(·, ω) |ω ∈ Ω)
implies [g, h] ∈ L{f(·, ω) |ω ∈ Ω} with

[g, h](x) :=
∂h(x)

∂x
g(x)− ∂g(x)

∂x
h(x), x ∈ Rd.

The accessibility rank condition in a point x ∈ Rd requires

{g(x) |g ∈ L(f(·, ω) with ω ∈ Ω)} = Rd. (11)

Condition (11) implies that R≤T (x) has nonvoid interior
for every T > 0.

For points x, y ∈ Rd and numbers ε, τ > 0 a controlled
(ε, τ)-chain from x to y is given by an integer n ∈ N and
points x0, . . . , xn ∈ Rd, control functions u0, . . . , un−1 ∈ U
and times t0, . . . , tn−1 ≥ τ such that x0 = x, xn = y, and
‖ϕ(ti, xi, ui)− xi+1‖ < ε for i = 0, . . . , n − 1. A set E ⊂
Rd is called a chain control set if it is a maximal set with
the following properties:

(i) For all x ∈ E there is u ∈ U with ϕ(t, x, u) ∈ E for
all t ∈ R.

(ii) For all x, y ∈ E and all ε, τ > 0 there exists an (ε, τ)-
chain from x to y.

Thus chain control sets fulfill a weaker controllability prop-
erty than control sets. They are modelled after chain transi-
tive sets in the theory of dynamical systems.

The following result based on hyperbolicity is a special
case of [13, Theorem 5.4].

Theorem 5: Let E be a compact chain control set with
nonvoid interior of system (5). Assume that

(i) the accessibility rank condition is satisfied on intE
and for each u ∈ U there exists a unique x(u) ∈
E with (u, x(u)) ∈ E := {(u, x) ∈ U ×
Rd |ϕ(t, x, u) ∈ E for all t ∈ R}.

(ii) the lift E of E is uniformly hyperbolic, i.e., for each
(u, x) ∈ E there exists a decomposition (of the tangent
space in x ∈ Rd) into stable and unstable subspaces,
resp.,

Rd = E−u,x ⊕ E+
u,x

such that the solution map dxϕ(t, x, u) of the linearized
system maps E±u,x into E±u(t+·),ϕ(t,x,u) and there exist
constants 0 < c ≤ 1 and λ > 0 such that for all
(u, x) ∈ E

‖dxϕ(t, x, u)‖ ≤ c−1e−λt ‖v‖ for v ∈ E−u,x, t ≥ 0,

‖dxϕ(t, x, u)‖ ≥ ceλt ‖v‖ for v ∈ E+
u,x, t ≥ 0.

Then E is the closure of a control set D and for every
compact set K ⊂ D of positive volume the topological
invariance entropy is given by

hinv(K,E) = inf lim sup
τ→∞

1

τ
log

∑
i

max(λi(u, x), 0) ;

here the infimum is taken over all periodic points (u, x) ∈ E
and the sum is taken over all Floquet exponents λi(u, x) of
the (periodic) differential equation obtained by linearizing
along the periodic (u, ϕ(·, x, u)).

Remark 5: (i) The proof of this result shows that there
exists no strategy to make a hyperbolic chain control
set invariant that cannot be beaten by the strategy of
stabilizing the system at a periodic orbit inside the
chain control set; cf. Remark 3 for a related result on
reduction to periodic solutions of dynamical systems.

(ii) For small chain control sets that arise around hyperbolic
equilibria the hyperbolicity condition as well as the
condition that for each u there exists a unique x(u)
with (u, x(u)) ∈ E are satisfied.

The next theorem from [12, Theorem 5.2] presents condi-
tions which ensure that the topological invariance entropy is
already determined on certain subsets of Q.

Theorem 6: Consider control system (5). Let Q =
cl(intQ) ⊂ Rd be compact with connected interior W :=
intQ. Assume that the system satisfies accessibility rank
condition (11) and that there is a closed set Q0 contained
in W such that Q0∩ clWOW,+(x) 6= ∅ for every x ∈ Q. Let
K ⊂ Q be compact.

1) Then there are only finitely many relatively invariant
W -control sets Ci, i ∈ {1, . . . , n} and for every x ∈ K
there is Ci ⊂ clWOW,+(x).

2) Suppose that for every relatively invariant W -control set
Ci the intersection of K with Ci contains a compact
subset Ki with nonvoid interior. Then the topological
invariance entropy satisfies

hinv(K,Q) = max
i=1,...,n

hinv(Ki, Ci).

Remark 6: This theorem gives conditions which ensure
that the topological invariance entropy of Q is already
determined on the subset of Q given by the union of the
relatively invariant W -control sets; cf. Remark 2 for a related
result in the theory of dynamical systems. Note also that the
lifts to U×Q of the control sets are the maximal topologically
transitive sets of the control flow, while the lifts E of the
chain control sets E are the connected subsets of the chain
recurrent set, cf. [11, Chapter 4].

The following example of a chemical reactor illustrates
Theorems 5 and 6. It concerns control of a continuous stirred
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tank reactor (CSTR) with Arrhenius’ dynamics, cf., e.g., [30]
or [18]. Consider

ẋ1 = −x1 − a(x1 − xc) +Bα(1− x2)ex1 + u(t)(xc − x1)

ẋ2 = −x2 + α(1− x2)ex1 .

Here x1 is the (dimensionless) temperature; x2 is the product
concentration; and a, α, B, and xc are positive constants.
The parameter xc is the coolant temperature, and hence the
control affects the heat transfer coefficient. Specifically, we
take

a = 0.15, α = 0.05, B = 7.0, xc = 1.0,

Ω = [−ρ, ρ], 0 < ρ ≤ 0.15.

Because of the physical constraints, we consider the system
in the set [0,∞) × [0, 1] ⊂ R2. Let yi = αezi/(1 +
αzi), i = 0, 1, 2, where z1 < z0 < z2 are the zeros of
the transcendental equation

−z − (a+ ω)(z − xc) +Bα 1− αez

1 + αez
ez = 0.

For every ω ∈ Ω there are two stable equilibria given by
x1 = (z1, y1) and x2 = (z2, y2) and a hyperbolic equilibrium
x0 = (z0, y0), i.e., the linearization about x0 has one negative
and one positive eigenvalue.

The system satisfies accessibility rank condition (11) at
every point of the forward invariant set (0,∞) × (0, 1).
The numerical computations indicate that for the parameter
values above the set M = [0, 7] × [0, 1] contains exactly
three control sets C1, C2, and D containing the fixed points
xi(ω), i = 1, 2, 0, for ω ∈ int Ω = (−ρ, ρ) in their interiors.
The control sets C1 and C2 are invariant; the control set D
is variant, see Figure 1 for the situation with ρ = 0.15.

An interesting feature of this system is that the stable fixed
point x2 with the highest product concentration cannot be
realized for technical reasons, hence the system should be
kept near the hyperbolic equilibrium x0. Thus it is of interest
to determine the invariance entropy for initial points which
can be steered into the control set D.

In [11, Section 9.1] the following results are shown
(partially based on numerical evidence) for the controllability
structure of this system. Denote by M+(ω) and M−(ω) the
stable and the unstable manifolds, respectively, in M of the
hyperbolic fixed points x0(ω), ω ∈ [−0.15, 0.15]. Then the
control set D is given by

intD = int
⋃

ω1,ω2∈Ω

(M+(ω1) ∩M−(ω2)),

and the domain of attraction of D defined as A(D) := {y ∈
M | clOM,+(y) ∩D 6= ∅} satisfies

A(D) = int
⋃
ω∈Ω

W+(ω).

The boundary of A(D) consists of the stable manifolds
corresponding to ω1 = −ρ and ω2 = ρ.

Fig. 1. Phase portrait of the continuous flow stirred tank reactor and control
sets

Let ρ > 0 be small enough. Then Theorem 5 implies that
for every compact set K ⊂ D with nonvoid interior the
topological invariance entropy is given by

hinv(K, clD) (12)

= inf lim sup
τ→∞

1

τ
log

∑
i

max(λi(u, x), 0) ;

here, with E = clD the infimum is taken over all periodic
(u, x) ∈ E and the sum is taken over all Floquet exponents
of the (periodic) differential equation obtained by linearizing
along the periodic (u, x).

In fact, uniform hyperbolicity of the control system re-
stricted to the lift E can be verified, since the equilibrium
of the uncontrolled system is hyperbolic. Then roughness of
the Sacker-Sell spectrum (or the Morse spectrum, cf. e.g.,
Colonius and Kliemann [11, Corollary 5.3.11]) implies that
uniform hyperbolicity also holds for ρ > 0 small enough.

Furthermore, for ρ → 0, one can show that the spectrum
converges (in the Hausdorff metric) to the set consisting of
the eigenvalues of the hyperbolic equilibrium x0 = (z0, y0)
corresponding to the control u = 0.

Theorem 6 can be applied with W := A(D). The set W
is open, relatively compact and connected. The control set D
is a relatively invariant W -control set. Hence it follows that
for every compact set K ⊂ A(D) such that K intersects
intD in a set with nonvoid interior the invariance entropy
satisfies hinv(K,A(D)) = hinv(K,D).

Further work: The encyclopedia entry [24] gives con-
densed information on topological invariance entropy. The
growth rate of the number of open-loop control functions as
a measure for the information needed to achieve invariance
can also be used for other control tasks: In [3] this is done
for exponential stabilization; in [7] and in [4] for controlled
invariant subspaces. The contribution [6] discusses gener-
alizations of topological invariance entropy to semigroup
actions.

Instead of entropy for invariance of the state one may also
analyze invariance properties of outputs. This is done for
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feedback invariance entropy in [19] and for outer invariance
entropy in [9]. [22, Chapter 6] shows that appropriately de-
fined escape rates are closely related to topological invariance
entropy.

III. METRIC INVARIANCE ENTROPY FOR
CONTROL

In this section we present measure-theoretic versions of
invariance entropy. Recall from (6) that control system (5)
can be described by the map T (u, x) = (θu, f(x, u0)) on the
space U×M . The topological invariance entropy looks at the
preimages under T of invariant open covers replacing open
covers. In analogy to metric entropy of dynamical systems
we will construct metric invariance entropy by considering
invariant partitions which will replace partitions.

An important point is the choice of an appropriate proba-
bility measure with respect to which entropy will be defined.
Since we want to make Q invariant, one might, for an ap-
propriately defined feedback, consider an invariant measure
on Q (this is an approach followed by [15] and [26] who
analyze a corresponding Perron-Frobenius operator; it should
be noted that analysis of the Perron-Frobenius operator and
of its adjoint, the Koopman operator, are very active fields
of research in applied dynamical systems.) We will follow
a different path which is more in line with the notion
of topological invariance entropy. We look at conditionally
invariant probability measures on the product space U ×M
which describe the portion of the mass that is not allowed to
return from outside of Q into Q. The concept is most easily
understood in the special case of quasi-stationary measures.

Fix a probability measure ν0 on the Borel σ-algebra B(Ω)
of the control range Ω. Then xk+1 = f(xk, uk) can be
considered as iterations of a random map f .

Let p(x,A) := ν0 {ω ∈ Ω | f(x, ω) ∈ A} , x ∈ M, A ⊂
M , be the associated Markov transition probabilities. Again,
fix a compact subset Q of M . A quasi-stationary measure
with respect to Q for the random map f is a probability
measure η on B(M) such that 0 < ρ :=

∫
Q
p(x,Q)dη ≤ 1

and

ρ · η(A) =

∫
Q

p(x,A)dη for all A ∈ B(Q).

Thus the probability to go from Q into A is equal to a
constant proportion of the probability of A. Putting A = Q,
one sees that the support of η is contained in Q. Observe
that 1 −

∫
Q
p(x,Q)dη is the average probability to exit in

one step from Q. The measure η is stationary, if and only if∫
Q
p(x,Q)dη = 1.

A closer look at quasi-stationary measures shows that they
define probability measures on the product space U ×M :
Define ν := νN0 as the product measure on U = ΩN. Then,
by [5, Proposition 2.8],

µ := ν × η = νN0 × η (13)

is a probability measure with

ρ · µ(B) = µ(T−1B ∩ (U ×Q)) (14)

for all B ∈ B(U ×M) where

ρ := µ(T−1(U ×Q) ∩ (U ×Q)) =

∫
Q

p(x,Q)dη.

The measure µ takes into account that the system cannot
return from the hole U × (M \Q) into U ×Q.

In fact, the special construction of µ in (13) is not relevant
for the following. Instead one can take any probability
measure µ with property (14).

Definition 4: A conditionally invariant measure µ for the
map T defined in (6) with respect to a compact subset Q of
M is a probability measure on the Borel σ-algebra of U×M
such that

ρ · µ(B) = µ(T−1B ∩ (U ×Q))

for all B ∈ B(U ×M) and 0 < ρ := µ(T−1(U ×Q)∩ (U ×
Q)) ≤ 1.

Quasi-stationary measures are a classical object in stochas-
tics; cf. the recent monograph [2]. Conditionally invariant
measures for dynamical systems go back to [29], a survey is
given in [16].

We denote by TQ := T|U×Q the restriction of T . The
support of a conditionally invariant measure as above is
contained in

{(u, x) ∈ U ×Q ∀k ∈ N : T−kQ (u, x) 6= ∅}

and for k ∈ N the measure µ is also conditionally invariant
for T kQ with constant ρk.

Again we suppose that the compact set Q satisfies the
invariance condition (7). Since µ lives in U×Q we construct
certain partitions for U × Q whose entropy with respect
to µ will be used to define the metric invariance entropy.
While this seems fairly straightforward for the component in
Q, more work will be needed for the U -component. Again,
we will consider itineraries in Q. Hence we start with the
following definition referring to forward invariance (taken
from [22, Definition 2.8]).

Definition 5: An invariant partition of Q is a triple C =
(P, τ, F ) where P is a finite partition of Q into Borel
measurable sets, τ ∈ N, and F : P → Ωτ is a map
assigning to each set P in P a control function such that
ϕ(k, P, F (P )) ⊂ Q for all k ∈ {0, 1, . . . , τ}.

In terms of the skew product map T on U ×M (cf. (6)),
the condition for an invariant partition (P, τ, F ) means that
for all P ∈ P the map T satisfies

T k(F (P ), P ) = (θk(F (P )), ϕ(k, P, F (P )))

⊂ U ×Q for k = 0, . . . , τ.

One easily sees that for an invariant open cover (A, τ, G)
there is also an invariant partition (P, τ, F ) with #P ≤ #A.
In the quasi-stationary case, where the conditionally invariant
measure is of the form µ = νN0 × η, we may relax the
condition on the considered partitions P by neglecting sets
of η-measure zero in Q.

For a sequence α = (Pi) ∈ Pn define a corresponding
control u(α, C) as in (8). Such a sequence α ∈ Pn of
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partition elements is called a C-itinerary, if there is x ∈ Q
with ϕ(iτ, x, u(α, C)) ∈ Pi for all i. By the definition of
an invariant partition, one has ϕ(k, Pi, F (Pi)) ⊂ Q for
all k ∈ {0, . . . , τ} and all i, and hence it follows that
ϕ(k, x, u(α, C)) ∈ Q for all k = 0, . . . , (n− 1)τ .

Next we define the feedback invariance µ-entropy. Fix an
invariant partition C = (P, τ, F ). For every C-itinerary α =
(P0, . . . , Pn−1) ∈ Pn define

Cn(α)

:=

(u, x) ∈ U ×Q
∃D = (P, τ, G) : u = u(α,D),

∀i = 0, . . . , n− 1 :
ϕ(iτ, x, u) ∈ Pi

 .

Clearly, there is a pair (u(α, C), x) in Cn(α). If the sequence
α is not a C-itinerary, we let Cn(α) := ∅. The set Cn(α)
consists of all pairs (u(α,D), x) with the same itinerary
under an invariant partition D (with a feedback G on the
same partition P and τ as for C).

The sets Cn(α), α ∈ Pn, together with the complement
Zαn in U ×Q of its union form a measurable partition C(n)

of U ×Q and its entropy is given by

Hµ(C(n)) = −
∑
α∈Pn

µ(Cn(α)) logµ(Cn(α))

− µ(Zαn ) logµ(Zαn ).

This entropy describes the amount of information with
respect to µ needed to describe the sets Cn(α) as subsets
of U ×Q. Note also that sets of vanishing µ-measure do not
play a role here (as usual, we let −x log x := 0 for x = 0
and 1).

Next we let

hfbµ (C) := lim
n→∞

1

nτ
Hµ(C(n)). (15)

One can prove that the limit exists. Finally, we define the
metric feedback invariance entropy in the following way.

Definition 6: For the skew product map T from (6) deter-
mining control system (5) the feedback invariance µ-entropy
of Q with respect to a conditionally invariant measure µ is
defined by

hfbµ (Q, T ) := inf
C
hfbµ (C),

where the infimum is taken over all invariant partitions C of
Q. If no invariant partition exists, we define hfbµ (Q, T ) :=
∞.

Again, we emphasize that here an infimum is taken, in
contrast to the usual metric entropy of dynamical systems,
since we are interested in the minimal information needed
to make Q forward invariant.

Instead of restricting the analysis to invariant partitions D
one may also consider arbitrary controls which allow us to
follow the same itineraries as C. This leads to the following
construction. For a C-itinerary α = (P0, . . . , Pn−1) ∈ Pn

and n ≥ 1 define

Cn(α)

:=

(u, x) ∈ U ×Q
∀i = 0, . . . , n− 1 ∀k = 0, . . . ,

(n− 1)τ : ϕ(k, x, u) ∈ Q
and ϕ(iτ, x, u) ∈ Pi

 .

By definition, there is a pair (u(α, C), x) in Cn(α). If α ∈ Pn
is not a C-itinerary, we let Cn(α) := ∅. The set Cn(α) consists
of all pairs (u, x) with the same itinerary as for C. Note that
here the control u should not be interpreted as a feedback,
but as an open loop control.

The sets Cn(α), α ∈ Pn, together with the complement
Zαn in U ×Q of its union form a measurable partition C(n)

of U ×Q and its entropy is given by

Hµ(C(n)) = −
∑
α∈Pn

µ(Cn(α)) logµ(Cn(α))

− µ(Zαn ) logµ(Zαn ).

This entropy describes the amount of information with
respect to µ needed to describe the sets Cn(α) as subsets
of U ×Q.

Next we let

hcoµ (C) := lim
n→∞

1

nτ
Hµ(C(n)). (16)

One can prove that the limit exists. Finally, we define the
metric controlled invariance entropy in the following way.

Definition 7: For the skew product map T from (6)
determining control system (5) the controlled invariance
µ-entropy of Q with respect to a conditionally invariant
measure µ is defined by

hcoµ (Q, T ) := inf
C
hcoµ (C),

If no invariant partition exists, we define hcoµ (Q, T ) :=∞.
Both versions of metric invariance entropy satisfy the

standard properties of entropy, invariance under appropriately
defined conjugacies and the power rule. The proof of the
latter property requires the existence of the limit in (15) and
(16), respectively.

The following relations between the invariance entropies
hold [5, Theorem 4.4].

Theorem 7: Let Q be a compact subset of the state space
of control system (5) satisfying condition (7). Consider for
the associated skew product map T from (6) the topological
invariance entropy as well as the feedback invariance µ-
entropy and the controlled invariance µ-entropy with respect
to a conditionally invariant measure µ. Then the following
inequalities hold:

hfbµ (Q, T ) ≤ hcoµ (Q, T ) ≤ hinv(Q, T ).

IV. CONCLUSIONS AND FURTHER WORK

Entropy for control differs from entropy for dynamical
systems by the fact, that for control the minimal required
information is of interest instead of the entropy generated by
the system. Here are some open questions and conjectures.
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(i) Does the supremum over all metric invariance entropies
coincide with the topological invariance entropy, i.e., is
a variational principle valid as for entropy of dynamical
systems?

(ii) If the answer is yes, does a similar variational principle
also hold for pressure (cf. Theorem 4)?

(iii) Is hfbµ (Q, T ) = hcoµ (Q, T ) for every conditionally
invariant measure µ? By Remark 4 this is valid in the
topological case.

(iv) Is there an analogue to the Shannon–McMillan–
Breiman theorem for metric invariance entropy (for
appropriately defined “ergodic” conditionally invariant
measures µ)?
More specifically, define for an invariant partition C =
(P, τ, F ) and a C-itinerary α = (P0, . . . , Pn−1) ∈ Pn
and (u(α), x) ∈ U ×Q
Cn(u(α), x)

:=

(v, y) ∈ U ×Q
∃D = (P, τ, G) : v = v(α,D),

∀i = 0, . . . , n− 1 :
ϕ(iτ, x, u(α)), ϕ(iτ, y, v) ∈ Pi

 .

This is the set of all (v, y) following the same itinerary
as (u(α), x) up to time n. What is the relation between

lim
n→∞

− 1

n
logµ(Cn(u(α), x)) and hµ(T, C) ?
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