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Analysis of Networked Systems

F. Colonius, U. Helmke, J. Jordan, C. Kawan, R. Sailer, and F. Wirth

This chapter deals with particular properties of dynamic systems that
are important when controlling the system over digital networks. It
is shown how the observability of the system depends upon the net-
work properties. Then the minimal bit rate that is necessary to solve
a control task is considered. Finally, a method for the dynamic quan-
tization of the feedback information that is used for stabilizing an
unstable plant is developed.
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2.1 Overview

In this chapter fundamental properties of networked control systems are dis-
cussed that characterize obstructions to and requirements for the control of in-
terconnections through digital channels. On the one hand, this chapter relates
to general problems of the characterization of controllability and observabil-
ity properties of interconnected systems, where information is distributed via
communication channels. On the other hand, it is of interest to characterize
the necessary bandwidth required to control a system or an interconnection of
systems. The latter question is related to dynamic properties of the physical
system as well as the communication channel under consideration.

Interconnected dynamic systems describe a rather broad class of networked
control systems where finitely many subsystems or ‘agents’ are interconnected
to construct a network of dynamic systems. The interconnection structure
can be static or dynamic via physical couplings or through communication
channels. In either case, the interconnection structure is described by a cou-
pling graph that defines the information flow in the network. Controls are
inserted into the network to be broadcasted to all nodes and may thus be
non-decentralized. Structural properties of such networks refer to questions
such as e.g. reachability and observability, the estimation of the amount of
necessary information to be broadcasted in order to e.g. stabilize the network,
or questions about quantization and stability. The control-theoretic analysis
of such interconnected systems has already led to a number of fundamental
insights, which are briefly described next.

The status of the theory concerning control of one or several dynamic
systems using multiple sensors and actuators over a digital communication
network is far from being complete. Here, in spite of the rapid growth of com-
munication capacities, the minimal bit rate for communication may be a limit
for control performance. This poses fundamental mathematical questions. Al-
though these questions have already been realized in the 1990’s, they are not
yet satisfactorily solved. It is still a challenging task to determine minimal
bit rates for standard control problems like stabilizing a of single dynamic
system or rendering a subset of the state space invariant. It turns out that
relations to the mathematical theory of (uncontrolled) dynamic systems in-
volving topological entropy appear to be a key to the understanding of these
problems. Here our work has essentially been restricted to these fundamen-
tal questions for single control systems. It is our hope that the results will
contribute to the mathematical tools for understanding minimal bit rates for
interconnected systems, which presently are under investigation.

A complete characterization of the reachability and observability proper-
ties of standard parallel, series and feedback interconnections of linear sys-
tems is well-known since the early 1970’s. While parallel interconnections of
identical linear systems can never be controllable or observable, for nonlinear
systems this fact is no longer true. It is known that the parallel coupling
of identical nonlinear systems can be locally accessible, at least for generic
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initial states. The extension of such results for general interconnection struc-
tures is an open research problem. For arbitrary homogeneous networks of
linear systems, i.e., for networks of identical SISO systems, a very concise
characterization of reachability and observability is known [165]. However,
the extension of such results to arbitrary heterogeneous networks of control
systems is an open research problem.

This chapter presents several new results on fundamental limitations for
the control and estimation of interconnected systems:

• Observability of networked systems: Section 2.2 explores the exten-
sions of the established observability and reachability analysis of homo-
geneous networks to the general case of heterogeneous networks of linear
systems. A basic characterization of generic structural observability of
networks of first order driftless integrators is generalized to arbitrary ho-
mogeneous networks of SISO systems. Sufficient conditions for observabil-
ity of the series connection of two nonlinear systems are presented. New
results on the reachability of switching networks are derived, where the in-
terconnection parameters are considered as independent control variables.

• Minimal bit rates for control: Section 2.3 surveys entropy estimates
for the invariance of subsets of the state space and establishes relations
between invariance entropy and minimal data rates. In particular, for con-
trol sets the minimal sum of positive Lyapunov exponents along periodic
solutions in the control set provides an upper bound for the strict in-
variance entropy. As an example, the invariance entropy for a controlled
linear mathematical pendulum near the unstable position is computed.
Furthermore, for nonlinear control systems, entropy estimates for the sta-
bilization at an equilibrium with fixed exponential rate are given, which
are exact in the linear case.

• Dynamic quantization for feedback stabilization: Section 2.4 dis-
cusses the concept of dynamic quantization and study the problem of
minimal data rates in the context of this particular approach. An en-
coder/decoder scheme is presented for channels characterized by quan-
tized, delayed packet-based communication with the additional possibility
of packet drops. The scheme guarantees stabilization provided that the
required bandwidth is available as prescribed by easily identifiable system
parameters. The novel idea introduced to the classic concept of dynamic
quantization is that time stamps in data packets as well as a feedback
loop in the communication channel using acknowledgments are sufficient
to handle unreliable packet delivery. This approach can also be analyzed
for communication channels of a stochastic nature in which delays and
packet delivery are described by a Markov process.

The subsequent research marks the beginning of a new theory of networked
control system that is in close analogy to Shannon’s theory. The development
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of mathematical tools for establishing fundamental limits of performance to-
gether with finding effective algorithms to achieve these limits present chal-
lenges for the future system-theoretic research.

2.2 Observability of Networked Systems

2.2.1 Motivation and Earlier Results

Large-scale networks of interconnected dynamic systems pose a number of
challenging tasks for the theoretical analysis of control-theoretic issues. For
example, in analyzing sensor-/actuator networks or large-scale biological net-
works it becomes increasingly important to estimate the state variables, to
identify relevant system parameters, or to characterize the most sensitive inter-
connection parameters. This leads to the important questions of reachability,
observability, state estimation and observer design for networks of systems.

There is a recent resurgence of interest in the analysis of controllability prop-
erties for parallel interconnection structures. The paper [39] may serve as a
good starting point. In [39], controllability properties of a parallel connection
of finitely many nonlinear systems are established. Somewhat surprisingly, lo-
cal accessibility can hold even if the systems are identical. Early work in this
area focused on the analysis of standard structures for linear time-invariant
systems, such as series [46], parallel [128] and feedback interconnections [46].

In this section, our main focus is on the observability analysis of heteroge-
neous networks, whose interconnection structure is fixed by a coupling graph.
For homogeneous networks of identical linear SISO systems a characteriza-
tion of reachability has been first obtained by [166]; see also [129] for a more
concise proof. The more general scenario that we consider is that of a finite
number of arbitrary linear or nonlinear control systems, called node systems,
that are connected through static or dynamic coupling laws. Since commu-
nication between the systems is mainly assumed to occur through the inter-
connection channels, dynamic coupling laws can model the effects of delays
or time-varying topologies in the network The models for the node systems
are defined by first order or higher order difference or differential equations.
We show that using higher order polynomial matrix fraction decompositions,
allows one to obtain very compact coprimeness conditions for reachability
and observability. Our main tool is a permanence principle for strict system
equivalence that implies very concise results on observability and reachabil-
ity of interconnected systems. This leads to elegant new proofs for classical
conditions for reachability and observability of series, parallel and feedback
interconnections. We also derive new results for series or parallel connections
of homogeneous networks.

Another direction of research deals with the situation of networks that are
controlled by switching interconnections; see e.g. [227]. Thus the intercon-
nections are considered as input variables that are tuned to achieve better
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performance of the overall network. In [40], Brockett has characterized the
system Lie algebras of feedback systems, where the feedback gains act as
control variables. In [103] we have generalized this characterization to homo-
geneous networks of SISO systems.

For graph-theoretic characterizations for generic controllability and generic
observability for structured systems we refer to [100, 232]. This early work
applies to networks whose node dynamics are described by simple first-order
integrators. Using recent results from [129], we obtain a generalization to
SISO node systems with arbitrary linear dynamics. In [401], we analyze the
zero properties of blocked linear systems resulting from blocking of linear
time-invariant systems. This is an important step towards analyzing zeros
of networks with periodic interconnection topologies. Global observability of
Morse-Smale nonlinear systems has been analyzed in [1]. In [102], we ex-
tended these results to a global observability result on real analytic systems,
using weak assumptions on the dynamics of the limit sets. Our work is also
connected with results on synchronizing subspaces and geometric control in-
troduced in Section 6.3. Entropy bounds for conditioned invariant subspaces
of linear systems were established in [69].

To analyze the behavior of large-scale networks of interacting dynamic sys-
tems it is of vital interest to identify those components which are highly sensi-
tive to errors. It is well known that round-off noise and quantization errors in
the implementation of linear systems in digital processing devices might lead
to a substantial different performance, cf. [268]. This gave rise to a systematic
sensitivity analysis for single linear systems, see [133], [173]. These investiga-
tions show that the minimum sensitivity realizations are balanced realizations.
Since minimum sensitivity realizations generalize the class of balanced realiza-
tions, there is a natural relation to balanced truncation and model reduction.

In this project, we examined the sensitivity analysis from the network per-
spective. Precisely, we consider networks of linear discrete-time systems and
develop a systematic sensitivity theory. To this end, we define a sensitivity
measure that assigns to each realization of the network structure a value
quantifying its sensitivity with respect to network parameter variations. In
addition, new sensitivity Gramians are introduced so that the network sensi-
tivity can be measured by the sum of their traces. In a first step we consider
homogeneous networks of single-input-single-output systems and concentrate
on the network sensitivity with respect to input-to-state and state-to-output
parameter variations. It turns out that the network has minimal sensitiv-
ity if and only if the associated controllability and observability sensitivity
Gramians are equal. This can interpreted in the way that symmetric networks
are sensitivity optimal. Furthermore, we address the issue of existence and
uniqueness of sensitivity optimal network realizations. Moreover, we show
that sensitivity optimal realizations can be computed by a Newton algorithm
which is locally quadratically convergent. Dependent on the dynamics of the
node systems we derive estimates of the sensitivity Gramians in terms of the
classical Gramians corresponding to the realization of the network topology
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and the realization of the overall network. These estimates result in some
interesting perspectives on model reduction based on sensitivity optimal de-
sign, which is briefly addressed, cf. [176]. The next step is to extent these
results to heterogenous networks of multi-input-multi-output linear systems.
This is the content of current and future research, cf. [177].

2.2.2 Reachability and Observability of Networks

Models of Interconnected Systems.We consider heterogeneous networks
described interconnecting N linear discrete-time node systems

xi(k + 1) = αixi(k) + βivi(k) (2.1)

wi(k) = γixi(k), i = 1, . . . , N

with αi ∈ F
ni×ni , βi ∈ F

ni×mi and γi ∈ F
pi×ni . Here F is an arbitrary field.

As a standard assumption, each system (αi,βi,γi), (i = 1, . . . , N) is assumed
to be observable and controllable. The systems are coupled via a static linear
coupling law

vi(k) =

N∑
j=1

Lijwj(k) +Biu(k) ∈ F
mi (2.2)

with Lij ∈ F
mi×pj and Bi ∈ F

mi×m. Here, the matrix L = (Lij) ∈ F
m×p

with m := m1 + · · ·+mN and p := p1 + · · ·+ pN models the interconnection
structure. The interconnection output is given by

y(k) =

N∑
i=1

Ciwi(k) with Ci ∈ F
p×pi , i = 1, . . . , N.

The input/output interconnection is defined by the matrices

C := (C1, . . . ,CN ) ∈ F
p×n and B := (BT

1 , . . . ,B
T
N )T ∈ F

n×m

with n := n1 + · · · + nN . Let x(k) = (xT
1 (k), . . . ,x

T
N (k))T ∈ F

n denote the
global state of the network. Of course, more complicated, dynamic couplings
laws are also of interest, in particular towards modeling communication con-
straints, packet loss and so on. Certainly, the analysis of any such general
dynamic network structures rests on a solid understanding of the influence
of static coupling laws. Therefore, we focus our subsequent analysis on static
interconnections.

Define

A0 : = diag(α1, . . . ,αN ) ∈ F
n×n,

B0 : = diag(β1, . . . ,βN ) ∈ F
n×m,

C0 : = diag(γ1, . . . ,γN) ∈ F
p×n.
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Then the interconnected system has the following state-space representation

x(k + 1) = Āx(k) + B̄u(k) (2.3)

y(k) = C̄x(k)

with

Ā := A0 +B0LC0 ∈ F
n×n, B̄ := B0B ∈ F

n×m, C̄ := CC0 ∈ F
n×m.

As a special case we also consider homogeneous networks, i.e., the case where
α = α1 = · · · = αN , β = β1 = · · · = βN and γ = γ1 = · · · = γN denote
identical SISO systems. The state space representation of a homogeneous
network has the tensor product form

Ā = IN ⊗α+L⊗ β γ, B̄ = B ⊗ β and C̄ = C ⊗ γ. (2.4)

In order to analyze the influence of the interconnection matrices on the reach-
ability and observability properties it is convenient to describe the intercon-
nected systems in terms of the transfer functions of the node systems. Define
the i-th node transfer function as the strictly proper transfer function

Gi(z) = γi(zI −αi)
−1βi. (2.5)

of McMillan degree ni. We define the node transfer function as

G(z) := diag(G1(z), . . . ,GN (z)) = C0(zI −A0)
−1B0.

In the case that L is a square matrix we define the interconnection transfer
function as

φ(z) = C(zI −L)−1B.

The global network transfer function then is defined as

Φ(z) = C̄(zI − Ā)−1B̄. (2.6)

It useful to describe the network transfer function explicitly in terms of co-
prime factorizations of the node transfer function. Consider the case where
the i-the node transfer function is strictly proper and is given in the Rosen-
brock form as

Gi(z) = V i(z)T
−1
i (z)U i(z). (2.7)

The pairs (T i(z),U i(z)) and (T i(z),V i(z)) are assumed to be left or right
coprime polynomial matrices, respectively. Moreover, we assume that the
factorizations are minimal in the sense that deg detT i(z) = ni. Let

T (z) = diag(T 1(z), . . . ,TN (z))

U(z) = diag(U 1(z), . . . ,UN (z))

V (z) = diag(V 1(z), . . . ,V N (z)).
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Then we have the left- and right coprime factorization of a strictly proper
transfer function

G(z) = V (z)T (z)−1U(z).

Note that T (z) − U(z)LV (z) is a nonsingular polynomial matrix for any
constant interconnection matrix L. Thus the transfer network function from
u to y is well defined and given by

Φ(z) = CV (z)(T (z)−U(z)LV (z))−1U(z)B.

This explicit representation of the network transfer function turns out to be
very useful for analyzing the system-theoretic properties of the network.

Conditions for Reachability and Observability. In [129] we extended
the classical notion of strict system equivalence to networks of linear systems.
This was the key to proving the following extension of the classical Hautus
criterion.

Theorem 2.1.

a) (Ā, B̄) is reachable if and only if

rank(T (z)−U(z)LV (z),U(z)B) = n ∀z ∈ C.

b) (C̄, Ā) is observable if and only if

rank

(
T (z)−U(z)LV (z)

CV (z)

)
= n ∀z ∈ C.

In [129] this result is extended to dynamic coupling schemes. In particu-
lar, this result yields new and efficient algebraic tests for controllability and
observability of networked control systems. It is a generalization of a prelim-
inary result by Hara et. al. for homogeneous networks, i.e., from systems of
type (2.4), to arbitrary heterogeneous networks. More precisely, Theorem 2.1
implies the following result.

Theorem 2.2. [129, 166] A homogeneous network is reachable (ob-
servable) if and only if the realization (L,B,C) of the interconnection
transfer function φ(z) is reachable (observable). In particular, reach-
ability of (Ā, B̄, C̄) is independent of the choice of the node transfer
function g(z), as long as g(z) is scalar rational and strictly proper.

Another application of Theorem 2.1 is to derive graph-theoretic conditions
for generic observability of homogeneous networks, for F = C. We assume
that for a given set of edges E ⊂ {1, . . . , N} × {1, . . . , N} we have Lij =
0 if (i, j) /∈ E. The directed graph G(E, {1, . . . , N}) is called the coupling
graph.
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The set of structured matrices L ∈ C
N×N which corresponds to a given

coupling graph G(E, {1, . . . , N}) is denoted by DG . Note that DG is a vec-
tor space of dimension |E|. In the following we fix the system parameters
(α,β,γ,B,C) and the coupling graph G and consider the coupling param-
eters Lij ∈ C with (i, j) ∈ E as free parameters. Thus the set of admissible
couplings is equal to C

|E|. System (2.3) is generically controllable (generically
observable) if it is controllable (observable) for a generic set of parameters
L with. Here, we say a nonempty subset M ⊂ DG is generic if M is not
contained in the zero set of a nontrivial polynomial in DG .

In the special case n = 1 and α = 0 and β = γ = 1 this concept reduces to
the well-known concept of generic observability for structured matrices (see
for example [100]), i.e., the system

x(k + 1) = Lx(k) +Bu(k), y(k) = Cx(k) (2.8)

with a structured matrix L. Theorem 2.1 yields the following connection
between linear structured systems and homogeneous SISO networks.

Corollary 2.1. The homogeneous network (2.4) for F = C is generi-
cally controllable (generically observable) if and only if the structured
system (2.8) is generically controllable (generically observable).

Note that there exist graph-theoretic characterizations for generic controlla-
bility and generic observability for structured systems, see [100, 232]. More
precisely, a structured system is generically controllable if the corresponding
structure graph fulfills the cactus-condition, i.e., in G there exists a vertex
disjoint union of cacti that covers all state vertices.

Observability under Transmission Delays and Switching. As a special
case of the general dynamic coupling laws we characterize reachability and
observability for systems with delayed interconnections

vi(t) =

N∑
j=1

Lijwj(t− λij) +Biu(t),

where λij are assumed to be arbitrary nonnegative integers. This model
can be realized as follows using a dynamic interconnection law E(σ)v =
A(σ)w+B(σ)u, where E(z) is a square nonsingular polynomial matrix and
A(z),B(z) appropriately sized polynomial matrices. We assume that the net-
work transfer function is given in terms of coprime factorizations of the node
transfer functions

Gi(z) = Qi(z)
−1P i(z) = P i(z)Qi(z)

−1 (2.9)

where we assume that the factorizations are minimal in the sense that
δ(Gi) = deg detQi = deg detQi. We denote λi := maxj=1,...,N λij , i =
1, . . . , N and define λ̄ij = λi − λij ≥ 0. Define polynomial matrices E(z) =

diag(zλ1 , · · · , zλN ), A(z) = (Lijz
λ̄ij )i,j=1,...,N ∈ F

p×m[z], B(z) := E(z)B
and C(z) = C.
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Theorem 2.3. The shift realization of the delayed network is reach-
able if and only if

rank
(
Lijz

λ̄ij P̄ j(z)− zλiQ̄j(z)δij , z
λiBi

)
= n, ∀z ∈ F.

The shift realization of the delayed network is observable if and only
if

rank

(
(Lijz

λ̄ij P̄ j(z)− zλiQ̄j(z)δij)
CP̄ (z)

)
= n, ∀z ∈ F.

As a special case we consider homogeneous networks of identical SISO systems

with node transfer functions Gi(z) =
p(z)
q(z) satisfying p(0) �= 0. In this situation

the above result implies

Corollary 2.2. Consider a network of identical node transfer func-
tions
Gi(z) = p(z)

q(z) satisfying p(0) �= 0. Assume that L is invertible and

(L,B,C) is observable. Assume further that all delays λij are equal
to λ ≥ 1. Then the delayed network is observable, independently of
the value of λ.

An interesting class of observability problems for networks of linear systems
arises when the network parameters are allowed to vary with time. A special
class of interest here are switching networks that are defined by time-varying
state interconnection matrices L(t). Here the interconnection matrices L(t)
are considered as matrix-valued control variables and the task becomes to
investigate the controllability and observability properties of the resulting
network. This leads to bilinear control and observation problems and there-
fore requires the use of techniques from geometric nonlinear control.

We begin with a brief summary of some early results on controllability of
bilinear systems that are of interest here. In [40] Brockett characterized
completely the system Lie algebras of the bilinear output-feedback control
system

ẋ(t) = (α+ u(t)β γ)x(t) (2.10)

for a SISO system (α,β,γ).

Theorem 2.4. [40] Let (α,β,γ) be controllable and observable, g(z) =
γ(zI −α)−1β. The system Lie algebra of the output-feedback control
system (2.10) is:
a) sp(n,R)⇐⇒ g(z) = g(−z)
b) sp(n,R)⊕ R I ⇐⇒ g(r + α) = g(−r + α) for some r �= 0.

c) sln(R)⇐⇒ ∀r : g(z + r) �= g(−z + r), γ β = traceα = 0.

d) gln(R)⇐⇒ else.
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These result shows that any homogeneous network of identical first order
integrators, controlled by independent all-to-all interconnection functions is
accessible. More generally, consider arbitrary SISO node dynamics and more
general interconnection schemes. We have obtained the more general result.

Theorem 2.5. [103] Let (α,β,γ) be controllable and observable. Let

LG(u(t)) :=
∑

(i,j)∈E

uij(t)Lij

be the adjacency matrix of the graph G = (E, V ) with N > 1 nodes
with independent input function uij(t). Then the homogeneous net-
work

ẋ(t) = (IN ⊗α+ LG(u(t))⊗ β γ)x(t) (2.11)

is accessible if and only if G is strongly connected. The system Lie
algebra of (2.11) is either slnN (R) or glnN(R).

Controllability and Observability of Ensembles of Systems. Spatially-
invariant systems, such as the heat equation, provide interesting examples
of distributed parameter systems, where control actions and measurements
can take place in a spatially distributed way. Using Fourier transform tech-
niques, spatially-invariant control systems can be identified with parameter-
dependent families of linear systems; see e.g. [15] for a systematic outline of
this approach. In many applications such as quantum control or the control-
lability of swarms, it is of interest to solve these problems using open-loop
controls. Thus, given a family of desired terminal states, we attempt to con-
struct a parameter-independent input function that steers the zero-state to
these states, simultaneously for all parameter values. For simplicity we work
in a Hilbert space context and focus on the notion of L2-ensemble observabil-
ity and controllability and consider the continuous-time case; the discrete-time
case is treated similarly.

We begin with the controllability analysis of parameter-dependent linear
systems of the form

∂

∂t
x(t, θ) = A(θ)x(t, θ) +B(θ)u(t)

x(0, θ) = 0.
(2.12)

The system matrices A(θ) ∈ R
n×n,B(θ) ∈ R

n×m are assumed to vary con-
tinuously in a compact interval P := [θmin θmax] ⊂ R.
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Definition 2.1. The system (2.12) is called L2-ensemble control-
lable, if there exists a finite time T > 0 and an input function
u : [0, T ] −→ R

m that steers the initial state x(0, θ) = 0 in time
T into an ε-neighborhood of the desired state x∗(θ), simultaneously
for all parameters θ ∈ P; i.e. if

(∫

P

‖x(T, θ)− x∗(θ)‖2 d θ
) 1

2

< ε. (2.13)

The following statement contains necessary and sufficient conditions that
systems (2.12) is L2-ensemble controllable.

Theorem 2.6. [174] Let P := [θmin θmax] ⊂ R be a compact interval.
A continuous family (A(θ),B(θ)) of linear systems is L2-ensemble
controllable provided the following conditions are satisfied:
(i) (A(θ),B(θ)) is reachable for all θ ∈ P.
(ii) The input Hermite indices K1(θ), ...,Km(θ) of (A(θ),B(θ)) are

independent of θ ∈ P.
(iii) For any pair of distinct parameters θ, θ′ ∈ P, θ �= θ′, the spectra

of A(θ) and A(θ′) are disjoint:

σ(A(θ)) ∩ σ(A(θ′)) = ∅. (2.14)

(iv) For each θ ∈ P, the eigenvalues of A(θ) have algebraic multiplic-
ity one.

This result is of significance for robust output feedback control of a given
linear SISO system (A, b, c) which is supposed to be controllable and observ-
able. Consider a compact interval P = [θmin, θmax] of gain parameters. Then,
for any θ ∈ P , the characteristic polynomial of the closed loop system is of
the form

det(zI − (A+ θbc)) = q(z) + θp(z)

for some appropriate coprime polynomials p, q. This implies that for θ �= θ′ ∈
P, there exists no complex number z so that

q(z) + θp(z) = 0 = q(z) + θ′p(z).

Corollary 2.3. [174] Let (A, b, c) be a controllable and observable
SISO system. Then output feedback system (A+θbc, b) is L2-ensemble
controllable if A+θbc has distinct eigenvalues for all θ ∈ [θmin, θmax].

By duality, Theorem 2.6 can also be used to derive conditions on observ-
ability of parameter dependent linear systems. To this end, we consider the
parameter-dependent system

∂

∂t
x(t, θ) = A(θ)x(t, θ), x(0, ·) ∈ L2(P,Rn),

y(t) =

∫

P

C(θ)x(t, θ) dθ.
(2.15)
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As before, we assume that A(θ) ∈ R
n×n and C(θ) ∈ R

p×n vary continuously
in a compact parameter domain P ⊂ R.

Definition 2.2. The system (2.15) is called L2-ensemble-observable,
if there exists T > 0 such that y(t) = 0 on [0, T ] implies x(0, θ) = 0
for all θ ∈ P.

To analyze the observability properties of system (2.15), we note that it is
equivalent to the system

ẋ(t) = Ax(t), x(0) ∈ L2(P,Rn),

y(t) = Cx(t)
(2.16)

on the Hilbert space X = L2(P,Rn), where the bounded linear operators A
and C are defined by

A : X −→ X, (Ax)(θ) = A(θ)x(θ)

and

C : X −→ R
p, (Cx)(θ) =

∫

P

C(θ)x(θ) dθ,

respectively. Note that the notion of L2-ensemble observability is equiva-
lent to the notion of approximate observability for linear systems on Hilbert
spaces. In particular, (2.16) is approximate observable if and only if the dual
system

∂

∂t
x(t, θ) = A(θ)Tx(t, θ) +C(θ)Tu(t), x(0, θ) = 0 (2.17)

is L2-ensemble controllable. Thus we can apply Theorem 2.6 to (2.17) and
obtain.

Theorem 2.7. [174] Let P = [θmin θmax] ⊂ R be a compact interval.
A continuous family (A(θ),C(θ)) of linear systems is L2-ensemble
observable, provided the following conditions are satisfied:

(i) (A(θ),C(θ)) is observable for all θ ∈ P.
(ii) The output Hermite indices K1(θ), ...,Km(θ) of (A(θ),C(θ)) are

independent of θ ∈ P.
(iii) For any pair of distinct parameters θ, θ′ ∈ P, θ �= θ′, the spectra

of A(θ) and A(θ′) are disjoint:

σ(A(θ)) ∩ σ(A(θ′)) = ∅. (2.18)

(iv) For each θ ∈ P, the eigenvalues of A(θ) have algebraic multiplicity
one.
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Global Observability of Nonlinear Systems. As a preliminary step
to investigate interconnections of nonlinear systems we discuss observability
of nonlinear systems, with special emphasis on state constraints. Using a
generalization of an approach by [1], we derive observability conditions for
real analytic vector fields, i.e.,

ẋ(t) = f(x(t)), y(t) = h(x(t)) (2.19)

on a manifold M . This work is done as a preliminary step to a subse-
quent observability analysis of interconnected nonlinear systems. Necessary
and sufficient condition for observability of analytic systems are due to [74],
who showed that observability holds if and only if the observation space
O, spanned by iterated Lie derivatives Lj

fh, separates points on M . How-
ever, this condition is hard to test, since the observation space O is infinite
dimensional.

If the limiting dynamics on an attractor of f is known a-priori, then a
sensible observability condition might consist of combining local observabil-
ity criteria together with some global information on the phase portrait on
the attractor. Aeyels[1] has been the first who proposed such an asymp-
totic dynamics based observability condition for the special class of nonlinear
Morse-Smale systems. A lot of examples of particular interest, such as Riccati
equations do not satisfy this condition. The following result extends that of
[1] to a wide class of systems.

Theorem 2.8. [102] Let f : M → TM be a real analytic complete
vector field on a manifold M and let h : M → IRp be real analytic.
Assume:
A1: The ω–limit set ω(x) of any x ∈ M is a nonempty compact

subset of M .
A2: The system is observable on each ω–limit set ω(x).
A3: For any points x1,x2 ∈ M with ω(x1) �= ω(x2) one has

h(ω(x1)) �= h(ω(x2)).
A4: For any x ∈M there exists some p ∈ ω(x) such that Σ is locally

observable at p.
Then system (2.19) is globally observable on an arbitrary time interval
[0, T ].

As an application towards interconnected systems we consider the series
connection scheme

ẋ(t) = f(x(t), z(t)), ż(t) = g(x(t)), y(t) = h(x(t)) + k(z(t)) (2.20)

where M is a compact manifold and f : M × R
m → TM , g : Rm → R

m,
h : M → R

p, k : Rm → R
p are real analytic. The zero dynamics and the

driving system are then defined as

ẋ(t) = f(x(t),0), y(t) = h(x(t)) (2.21)
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ż(t) = g(z(t)), w(t) = k(z(t)), (2.22)

respectively.

Theorem 2.9. [102] Assume that 0 ∈ R
m is a globally asymptotic

stable equilibrium point of ż(t) = g(z(t)) and (2.22) is observable.
Assume further that the zero dynamics (2.21) satisfy
(i) Every solution of (2.21) converges to a compact invariant sub-

set A ⊂ M and there exist finitely many ω–limit sets ω(xi),

x1, . . . , xk ∈M with A :=
⋃k

i=1 ω(xi).
(ii) Each ω(xi) is minimal, nonempty, compact and distal.

(iii) A =
⋃k

i=1 ω(xi) satisfies the non cycle condition, i.e. for any
indices 1 ≤ j1 < · · · < jr ≤ k and Λj := ω(xj) there exist no
q1, · · · , qr /∈ A, such that

α(qi) ⊂ Λji , ω(qi) ⊂ Λji+1 , i = 1, · · · , r,

where Λjr+1 := Λj1 .
(iv) For each i = 1, · · · , k there exists ai ∈ ω(xi) such that
h|−1

ω(xi)
(h(ai)) = {ai}.

(v) h(ω(xi)) �= h(ω(xj)) holds whenever i �= j.
(vi) For any i = 1, · · · , k there exists pi ∈ ω(xi) such that (2.21) is

locally observable at pi.
Then system (2.20) is globally observable on an arbitrary time inter-
val [0, T ].

As another application of Theorem 2.8 we consider linear perspective system
on the projective space P(Fn) of all real, and respectively, complex lines
through the origin. Let 〈X〉 denote teh image space of a matrix X. The
system is given by

Ẋ = AX, Y = C〈X〉, (2.23)

whose output is the image space 〈X〉 under C ∈ F
p×n. Our basic assumption

is p := rankC ≥ 2. Equation (2.23) can be regarded as a real analytic system
that acts on P(Fn) via

〈X〉 �→ eAt〈X〉 ∈ P(Fn). (2.24)

The corresponding output map is given by

〈X〉 �→ Y = C〈X〉 ∈ P(Fp). (2.25)

Note that the image of (2.25) is not entirely contained in P(Fp). How-
ever, C〈X〉 belongs to P(Fp) for almost all 〈X〉 ∈ P(Fn). Then, the pair
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(C,A) is called perspectively observable on P(Fn) if for any two subspaces
V1,V2 ∈ P(Fn) the implication

CeAtV1 = CeAtV2 for almost all t ∈ IR =⇒ V1 = V2 (2.26)

holds. Note again that we do not require equality for all t ∈ IR in the above
definition.

To state sufficient conditions for perspectiveobservability we need the fol-
lowing concepts. A matrix A ∈ Cn×n is called strongly cyclic if Realλi �=
Realλj for all different eigenvalues of A. Thus there is only one Jordan block
of A corresponding to eigenvalues with a fixed real part. Let λ1, . . . , λr ∈ C
denote the distinct real or complex eigenvalues of A ∈ IRn×n and let l ≤ 2r
be the number of non-real, complex-conjugate pairs of eigenvalues. Then,
A ∈ IRn×n is called strongly regular if r = n and Realλi �= Realλj for i �= j
and λi �= λj . Moreover,A ∈ IRn×n is said to satisfy the irrationality condition
if two eigenvalues i �= j, λi �= λj and λi, λj �∈ IR a ratnionally independent.

Theorem 2.10. [101]
1) Assume that A ∈ Cn×n is strongly cyclic. Then the following

statements are equivalent:
(a) The pair (C,A) is perspectively observable on P(Cn).
(b) dimCV = dimV holds for each complex 2-dimensional

A-invariant subspaces V.
(c) For all α, β ∈ C one has

rank

(
A2 + αA+ βIn

C

)
= n.

2) Assume that A ∈ IRn×n is strongly regular and satisfies the irra-
tionality condition. Then the following statements are equivalent:
(a) The pair (C,A) is perspectively observable on P(IRn).
(b) For each 1- and 2-dimensional A-invariant subspaces V one

has the equality dimCV = dimV.
(c) For all α, β ∈ IR one has

rank

(
A2 + αA+ βIn

C

)
= n.

Note that the complex case in Theorem 2.10 covers earlier re-derives results
from [134]. For recent results an efficient tests for perspective observability
we refer to [264].
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2.2.3 Sensitivity Analysis of Networks

In this section the focus is on the following question: How to measure the
sensitivity of the behavior of the overall network with respect to variations
in the network structure? This problem has been investigated in a subproject
that has led to the publications [176], [177]. For simplicity we stick to the sen-
sitivity of networks with identical SISO node systems. Although this theory
can be extended to heterogenous networks [177]. In the sequel, we consider
the input-to-state and the state-to-output interconnections since this leads to
an interesting connection to model reduction based on balanced truncation.

Let the N identical SISO node systems be described by the matrices α ∈
F
n×n, β ∈ F

n and γ ∈ F
1×n. Further, the network structure is described the

matrices L ∈ F
N×N and B ∈ F

N×m and C ∈ F
p×N . Recall that the network

state-space representation

x(k + 1) =Āx(k) + B̄u(k)

y(k) =C̄x(k)
(2.27)

is given by

Ā = IN ⊗α+L⊗ β γ, B̄ = B ⊗ β and C̄ = C ⊗ γ.

For homogenous networks the node transfer function is given by

g(z) = γ(zIn − α)−1β. (2.28)

Throughout this section g is supposed to be bounded real and hence, h(z) =
1/g(z) is real rational satisfying h(∞) =∞ and |h(z)| ≥ 1 for all |z| ≥ 1. In
addition, it is assumed that the network transfer function

φ(z) = C(zIN −L)−1B

has all its poles in the unit open disc D = {z ∈ C : |z| < 1}. Consequently,
the global network transfer function of (2.27) can be written as

Φ(z) = C̄(zInN − Ā)−1B̄ = C(h(z)IN −L)−1B (2.29)

and Φ is strictly proper.
Let p = m, then the Jacobians of Φ = φ ◦ h with respect to the

input/output coupling parameters B,C are given by the stable transfer
functions

∂Φ

∂B
(z) = (h(z)IN −LT)−1CT,

∂Φ

∂C
(z) = (h(z)IN −L)−1B.

(2.30)
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Then we call

Sg(L,B,C) :=
1

2πi

∫

|z|=1

(
‖(h(z)IN −L)−1B ‖2 +‖C(h(z)IN −L)−1 ‖2

)
dz
z

(2.31)
the network sensitivity of Φ with respect to B and C. It assigns to each
realization (L,B,C) of φ the sum of the L2-norms of the Jacobians (2.30).
Note that the network sensitivity depends on the realization (L,B,C) of
the network transfer function. It is thus of interest to find realizations
so that the network sensitivity is minimal. A realization (L∗,B∗,C∗) =
(TLT−1,TB,CT−1), or the associated state space coordinate transforma-
tion T , is said to have minimal sensitivity, if among all realizations (L,B,C)
of φ, it holds that

Sg(L∗,B∗,C∗) ≤ Sg(L,B,C).

In order to investigate the existence and the derivation of realizations having
minimal sensitivity we define the network sensitivity Gramians

W g
c :=

1

2πi

∫

|z|=1

(h(z)IN −L)−1BBT(h(z)IN −LT)−1 dz
z (2.32)

W g
o :=

1

2πi

∫

|z|=1

(h(z)IN −LT)−1CTC (h(z)IN −L)−1 dz
z . (2.33)

Using these Gramians the sensitivity of a network can be expressed as the
sum of the traces of W g

c and W g
o , i.e.

Sg(L,B,C) = tr(W g
c +W g

o ), (2.34)

where tr(X) denotes the trace of the matrix X.

Lemma 2.1. Suppose that the node transfer function g is strictly
proper with minimal realizations. Let the network transfer function
φ be stable. Then, the sensitivity Gramians are positive definite if
and only if the realization (L,B,C) is controllable and observable.

As we are looking for state space coordinate transformations that mini-
mize sensitivity it is of interest how the sensitivity Gramians change un-
der similarity transformations. Let T describe a state space transformation
(L,B,C) �→ (TAT−1,TB,CT−1). It is easy to see that the Gramians trans-
form as

(W g
c ,W

g
o ) �→ (T W g

c TT, (TT)−1 W g
o T−1).

So, we assign to each state space transformation T (or P := TTT , respec-
tively) the network sensitivity cost as

Sg(TLT−1,TB,CT−1) := tr(W g
c T

TT +W g
o T

−1(TT)−1)

= tr(W g
c P +W g

o P−1).
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To characterize sensitivity optimal realizations we consider the optimization
problem for the convex cost function

Φg : P → R, Φg(P ) := tr(W g
c P +W g

o P
−1),

where P denotes the convex space of all real N×N positive definite matrices
P . The subsequent statement provides a characterization of sensitivity opti-
mal realizations. Let R,O,H denote the reachability, observability and the
Hankel matrix of (L,B,C), respectively.

Theorem 2.11. [176] Let (L,B,C) be an arbitrary, not necessar-
ily minimal, realization of the stable strictly proper transfer function
φ(z). Equivalent are:

1. There exists an invertible coordinate transformation T∗ that min-
imizes the sensitivity function T �→ Sg(TLT−1,TB,CT−1).

2. There exists T∗ such that (L∗,B∗,C∗) = (T∗LT−1
∗ ,T∗B,CT−1

∗ )
has equal Gramians W g

c (L∗,B∗) = W g
o (C∗,L∗).

3. There exists a unique positive definite matrix P∗ = TT
∗ T∗ that

minimizes Φg(P ) = tr(W g
c P +W g

o P
−1) on P.

4. There exists P∗ ∈ P with P∗W
g
c P∗ = W g

o .
5. rkR = rkO = rkH.

Thus, if rkR = rkO = rkH holds, then a realization (L,B,C) of φ
is sensitivity optimal if and only if W g

c = W g
o . Moreover, if (L,B,C)

is controllable and observable, then any two sensitivity optimal real-
izations (L∗,B∗,C∗), (L∗∗,B∗∗,C∗∗) are similar via a unique orthog-
onal coordinate transformation T ∈ ON (R).

In particular, this theorem shows that any network implementation of iden-
tical systems described by a bounded real transfer function so that in-
put/output weights of the network are equal (CT = B) has minimal
sensitivity.

In [176] we propose some numerical results for the computation of sen-
sitivity optimal realizations using a simple Newton algorithm which is fast
(locally quadratically convergent) and globally convergent.

For any positive definite symmetric matrices W g
c ,W

g
o and any P ∈ P we

denote by Z = Z(P ) the unique positive definite solution of the Lyapunov
equation

ZW g
c P + PW g

c Z = PW g
c P −W g

o . (2.35)

Furthermore, we consider the iteration

Pt+1 = Pt −Z(Pt), t = 0, 1, . . . , (2.36)

where P0 ∈ P is so that P0W
g
c P0 −W g

o > 0. Note that this is exactly the
Riemannian Newton algorithm for optimizing Φg, with respect to a suitable
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Riemannian metric on P . Hence, the sequence (Pt)t∈N monotone decreasing
in the sense that for any t ∈ N it holds that Pt > Pt+1. In addition, (Pt)t∈N

converges locally quadratically to the sensitivity optimal P∗.
In the sequel we compare the sensitivity Gramians to the classical discrete-

time controllability and observability Gramians associated with a realization
(L,B,C). We denote the classical controllability and observability Gramians
by Wc(L,B) and Wo(C,L), respectively, which are given by the unique
solutions of the following Lyapunov equations

LWc(L,B)LT −Wc(L,B) +BBT = 0, (2.37)

LTWo(C,L)L−Wo(C,L) +CTC = 0. (2.38)

For model reduction based on balanced truncation the classical Gramians
are of vital interest. To gain insight into sensitivity optimal model reduction
and its limitations we show that the sensitivity Gramians satisfy the following
Lyapunov-like equations. For brevity we use the notationsX(z) := (h(z)IN−
L)−1B and Y (z) := C(h(z)IN − L)−1. Also we denote by |λmax(A)| the
spectral radius of the matrix A.

Lemma 2.2. Suppose that g is stable and satisfies max|z|=1 |g(z)| <
1

|λmax(L)| . Then,

LW g
c LT −W g

c +BBT =
1

2πi

∫

|z|=1

(|h(z)|2 − 1)X(z)X(z)∗ dz
z ,

LTW g
o L−W g

o +CTC =
1

2πi

∫

|z|=1

(|h(z)|2 − 1)Y (z)∗ Y (z)dzz .

The subsequent statement draws a comparison between the sensitivity Grami-
ans W g

c ,W
g
o and the classical Gramians Wc(L,B),Wo(C,L), respectively.

To this end we write X < (≤)Y if the matrix Y − X is positive (semi-
)definite. Recall that g is called lossless if it is bounded real and satisfies
|g(z)| = 1 for all |z| = 1.

Theorem 2.12. [176]
(a) Suppose that g is bounded real with |g(z)| �≡ 1 for |z| = 1. Then,

W g
c <Wc(L,B) and W g

o <Wo(C,L).

(b) The transfer function g is lossless if and only if

W g
c = Wc(L,B) and W g

o = Wo(C,L).

(c) Suppose that 1 ≤ |g(z)| < 1
|λmax(L)| for all |z| = 1. Then,

W g
c ≥Wc(L,B) and W g

o ≥Wo(C,L).
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On the other hand, the relation of the sensitivity Gramians to the classical
Gramians associated with the realization (Ā, B̄, C̄) is also of interest. In [268]
it is shown that

(h(z)IN −L)−1B = (I ⊗ γ) (zInN − Ā)−1B̄,

C(h(z)IN −L)−1 = C̄ (zInN − Ā)−1(I ⊗ β).

Therefore, the sensitivity Gramians can be expressed via the classical Grami-
ans associated with (Ā, B̄, C̄) by

W g
c = (I ⊗ γ)Wc(Ā, B̄) (I ⊗ γT),

W g
o = (I ⊗ βT)Wo(C̄, Ā) (I ⊗ β).

This implies that the sensitivity Gramians can be computed as

W g
c = (I ⊗ γ)X (I ⊗ γT)

via the linear matrix inequality

ĀXĀT −X + B̄B̄T = 0 , X > 0.

Moreover, in [211] it is shown that, if the transfer function g is bounded real
the classical controllability and observability Gramians for (Ā, B̄, C̄) and
(L,B,C) are related via

Wc(Ā, B̄) ≤ Wc(L,B)⊗ P−1 and Wo(C̄, Ā) ≤Wo(C,L)⊗ P ,

where P is the unique positive definite solution to the Riccati equation

αPαT − P +
αTPββTPα

1− βTPβ
+ γTγ = 0

in terms of the matrices (α,β,γ) describing the node systems. Since it holds
that βTPβ ≤ 1 and γTP−1γ ≤ 1 the sensitivity Gramians can be estimated
by the classical Gramians corresponding to the network realization (L,B,C)
and realization (α,β,C) of the node transfer function.

Corollary 2.4. Suppose that the node transfer function g is bounded
real and P is as above. Then,

W g
c ≤ γTP−1γ · Wc(L,B), W g

o ≤ βTPβ · Wo(C,L).

At the end of this subsubsection we examine the issue of balancing with
respect to the sensitivity Gramians. A network realization (L,B,C) is said to
be g-sensitivity balanced if the sensitivity Gramians coincide and are diagonal,
i.e.

W g
c = W g

o = Σg = diag(σg1 , ..., σ
g
N ).

The entries σg1 ≥ ... ≥ σ
g
N are called the g-singular values of the network. By

Theorem 2.12 (b) it turns out that if the node transfer function is lossless
then sensitivity balancing of the overall network is equivalent to balancing of
the network structure.
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Theorem 2.13. [176] Suppose that the node transfer function g is
lossless. Then the network is g-sensitivity balanced if and only if
(L,B,C) is balanced, i.e. Wc(L,B) = Wo(C,L) = Σ. In par-
ticular, the g-singular values coincide with the singular values of
(L,B,C).

2.3 Minimal Bit Rates and Entropy for Control Tasks

2.3.1 Motivation and Earlier Results

A prerequisite for the analysis of the communication demands within net-
worked systems is a thorough analysis of the information needed for per-
forming control tasks. This problem has been considered for more than twenty
years, cf. the survey [271], however with limited success. Early landmarks are
the paper [92] which considered quantized information for stabilization and
proposed to use statistical methods from ergodic theory, and [390] discussing
stabilization of linear systems via coding. From the wealth of literature on
this topic we also cite [93, 114, 254, 270, 357, 396]. We propose an approach
that is different from quantization of the state space. In particular, no infor-
mation pattern is specified describing how the information on the states of
the system is available for the controller.

In non-technical terms, the basic idea for the approach is the following.
Consider a control task on the time interval [0,∞). For example, this may
be the problem to make a subset of the state space invariant or the problem
to stabilize the system about an equilibrium. Usually, a controller device is
constructed which performs the control task based on measurements of the
output of the system. If successful, the controller will generate control actions
on the system such that the desired behavior is achieved for all initial values
in a given set K in the state space.

If continual measurement of the output is not possible due to data rate
constraints (in a noiseless communication channel), the controller only has a
finite amount of information available on any finite interval [0, τ ]. Hence, it
may appear reasonable that the controller can only generate a finite number
of time-dependent control functions u(t), t ∈ [0, τ ], which are to guarantee
the desired behavior on [0, τ ] for all initial states in K. If time increases, the
amount of information for the controller increases, and hence it may generate
more controls. Looking at this from the other side, the number of controls,
which are necessary for accomplishing the control task on [0, τ ], determines
the minimal data rate. Thus, the growth rate of the minimal number of
controls as time tends to infinity is a measure for the minimal data rate
necessary to accomplish the control task on [0,∞) for all initial values in K.

More specifically, we see that the combination of the aspects of control
and information, which traditionally are separated, requires a modification
of the familiar feedback paradigm. If the communication channel between the



2 Analysis of Networked Systems 53

system and the controller only admits a finite bit rate, then it is not justified
that the controller generates infinitely many different control functions on
a finite time interval, since only a finite amount of information is available.
This excludes state-dependent controls u(x(t,x0)), where depending on the
initial state x0 one obtains infinitely many control functions. Instead, the
controller might use information on the system to compute open-loop controls
on some time interval [ti, ti+1]; then, using updated information, a new control
function might be computed and used on the next time interval [ti+1, ti+2]
(the ti might depend on the initial value x0.) The computations may be based
on quantization of the state space (cf. Section 5.4), symbolic controllers or
may be done via devices like model predictive control (MPC) (cf. Chapter 4).
In any case, this results in time-dependent control functions u(t) defined on
[0,∞).

Instead of concentrating on the algorithmic question how to generate
these controls, we discuss the minimal bit rate needed to discern the time-
dependent control functions u(t) on any time interval [0, τ ], τ > 0. This, in
fact, is the point of view taken in [357], p. 1057, that estimates the mini-
mal bit rate for stabilization of discrete-time linear systems from below (see
Proposition 3.2 in [357]).

This basic idea can be formalized in different ways. We will discuss in some
detail invariance entropy for the problem to keep the system within a subset
of the state space, and an entropy for the stabilization problem.

In this problem formulation, a close analogy to the notion of topological
entropy in the theory of dynamic systems becomes apparent; the monographs
[110, 197, 376] contain expositions of this theory. Here one counts, how fast
trajectories of a dynamic system move apart, and hence one has to look
at initial points. In control, the decisive parameter which determines the
behavior of trajectories is the control function. Hence, we will count control
functions and then we use rather analogous mathematical constructions.

In Section 2.3.2 the problem to render a compact subset of the state space
invariant will be discussed in detail; cf. [66, 70, 71, 73, 198–201]. Section 2.3.3
presents results on exponential stabilization.

Notation. The closure of a set A is clA and the cardinality of a set A is
#A; thus if A is a finite set, #A is the number of its elements and otherwise
#A =∞.

2.3.2 Invariance Entropy

Overview of New Results. The concept of invariance entropy has its
origins in the problem to determine data rates needed in order to achieve
desired control objectives. Nair, Evans, Mareels and Moran introduced
ideas from topological dynamics into this field. They defined and studied topo-
logical feedback entropy for the problem of stabilizing a discrete-time system
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into a compact subset of the state space and local topological feedback entropy
for stabilization at an equilibrium. We modify this approach by introducing
the notion of invariance entropy for continuous-time systems which measures
how fast the number of open-loop control functions grows which are needed
to keep the system inside a compact set for longer and longer times. More
precisely, for a compact and controlled invariant subset Q of the state space,
and a compact set K ⊂ Q of allowed initial states, the minimal number of
open-loop control functions necessary to keep the system in Q up to time
τ > 0, from an arbitrary initial state in K, is denoted by r∗inv(τ,K,Q). Then
the exponential growth rate

h∗inv(K,Q) := lim sup
τ→∞

1

τ
ln r∗inv(τ,K,Q)

is called the strict invariance entropy of (K,Q). Requiring that the solutions
only stay in an ε-neighborhood of Q, another quantity hinv(K,Q), simply
called the invariance entropy of (K,Q), is defined similarly, now also taking
the limit for ε going to zero. We started a thorough investigation of these
notions with an emphasis on the derivation of upper and lower bounds.

In this section, we give an overview of the main results obtained so far.
After introducing the basic notions and explaining the elementary properties
of invariance entropy, we show that the strict invariance entropy h∗inv(Q) can
be characterized as the minimal data rate for the control objective of render-
ing the set Q invariant by a coder-controller device. Also relations between
invariance entropy and Lyapunov exponents are addressed. In particular, the
following two results are highlighted:

For linear systems, the invariance entropy equals the sum of the unstable
eigenvalues counted according to their multiplicities. For nonlinear sys-
tems, under additional controllability assumptions on the set Q, the strict
invariance entropy h∗inv(K,Q) is upper bounded by the sum of the unstable
Lyapunov exponents of any regular periodic solution in the interior of Q.

The latter result can be used to obtain a formula for the invariance entropy
of a control set for a scalar control-affine system with a single control vector
field. An application to a linearized inverted pendulum is given.

Definition of Invariance Entropy. We consider a continuous-time control
system

ẋ(t) = f(x(t),u(t)), u ∈ U (2.39)

on a smooth manifold M, endowed with a metric d (not necessarily a Rie-
mannian distance). The set of admissible control functions is given by

U = {u : IR→ IRm : u measurable with u(t) ∈ U a.e.}

with a compact control range U ⊂ IRm, and the right-hand side f : M×
IRm → TM is a continuous function which is continuously differentiable in
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the first argument. Then, for each initial value x ∈ M and for each u ∈ U ,
there exists a unique solution (in the sense of Carathéodory), which we denote
by ϕ(t,x,u). Let Q ⊂M be a compact and controlled invariant set, that is,
for every x ∈ Q there is u ∈ U with ϕ(t,x,u) ∈ Q for all t ≥ 0. Furthermore,
let K ⊂ Q be another compact set.

Definition 2.3. For τ > 0, a set S ⊂ U is called (τ,K,Q)-spanning
if for every x ∈ K there is u ∈ S with

ϕ(t,x,u) ∈ Q for all t ∈ [0, τ ].

Let r∗inv(τ,K,Q) be the minimal cardinality of such a set. The strict
invariance entropy of (K,Q) is defined as the exponential growth rate
of r∗inv(τ,K,Q) for τ →∞, that is,

h∗inv(K,Q) := lim sup
τ→∞

1

τ
ln r∗inv(τ,K,Q).

If K = Q, we simply write r∗inv(τ,Q) and h∗inv(Q).

One problem with this definition is that the numbers r∗inv(τ,K,Q) need not
be finite. To overcome this problem, we also work with another version of
invariance entropy.

Definition 2.4. For τ, ε > 0, a set S ⊂ U is called (τ, ε,K,Q)-
spanning if for every x ∈ K there is u ∈ S with

dist(ϕ(t,x,u),Q) < ε for all t ∈ [0, τ ].

Let rinv(τ, ε,K,Q) be the minimal cardinality of such a set. The in-
variance entropy of (K,Q) is defined as

hinv(K,Q) := lim
ε↘0

lim sup
τ→∞

1

τ
ln rinv(τ, ε,K,Q).

If K = Q, we simply write rinv(τ, ε,Q) and hinv(Q).
In the preceding definition, we always have rinv(τ, ε,K,Q) < ∞, which eas-
ily follows from compactness of K and continuous dependence on the initial
value. Existence of the limit in the definition of hinv(K,Q) follows from mono-
tonicity of rinv(τ, ε,K,Q) in ε. Some elementary properties of hinv(K,Q) and
h∗inv(K,Q) are the following.

1. 0 ≤ hinv(K,Q) ≤ h∗inv(K,Q) and hinv(K,Q) <∞.
2. hinv(K,Q) is independent of the choice of the metric on M.
3. hinv(K,Q) and h∗inv(K,Q) are invariant under C0-state equivalence.
4. If K = K1 ∪ . . . ∪ Kn (Ki compact), then

h
(∗)
inv(K,Q) =

n
max
i=1

h
(∗)
inv(Ki,Q).
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5. For the system with right-hand side s ·F (s > 0) instead of F , the set Q
is also controlled invariant and

h
(∗)
inv(K,Q; s · F ) = s · h

(∗)
inv(K,Q;F ).

In general, the equality hinv(K,Q) = h∗inv(K,Q) does not hold, since there
are cases when h∗inv(K,Q) =∞. However, in some special situations equality
can be shown.

Minimum Transmission Data Rate. We relate the strict invariance en-
tropy h∗inv(Q) to minimal transmission data rates in feedback loops with a
digital channel between coder and controller. Consider system (2.39) and sup-
pose that a sensor, which is connected to a controller via a digital noiseless
channel, measures its states at sampling times kτ , k ≥ 0, for some fixed time
step τ > 0. The state at time kτ is coded using a finite alphabet Sk of (time-
varying) size μk (Fig. 2.1). The coder transmits a symbol sk ∈ Sk, which
may depend on the present state and on all past states. The corresponding
coder mapping is denoted by γk : Mk+1 → Sk. At time kτ the controller
has k + 1 symbols s0, s1, . . . , sk available and generates a finite-time control
function u(k) : [0, τ ] → U . We denote the corresponding controller mapping
by δk : S0 × S1 × · · · × Sk → Uτ := {u|[0,τ ] : u ∈ U}.

Coder

Noiseless digital channel

Controller

Transmission data rate: bits/sR

System

Fig. 2.1 Feedback system with coder and controller

We call the quadruple H := (S, γ, δ, τ), where S = (Sk)k≥0, γ = (γk)k≥0,
and δ = (δk)k≥0, a coder-controller , and we define the (asymptotic, average)
transmission data rate of H by

R(H) := lim inf
k→∞

1

kτ

k−1∑
j=0

log2 μj .
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Additionally, we require that this number is finite. (This definition is es-
sentially taken from [270].) We say that H renders Q invariant if for all
x(0) ∈ Qthe sequence (x(k))k≥0, defined recursively by

x(k) := ϕ (τ,x(k − 1),u(k − 1))

with

u(k − 1) = δk−1(γ0(x(0)), γ1(x(0),x(1)), . . . , γk−1(x(0), . . . ,x(k − 1)))

satisfies ϕ(t,x(k),u(k)) ∈ Q for all k ≥ 0 and t ∈ [0, τ ]. Then we have the
following result, cf. [198, 202].

Theorem 2.14. Let Q be a compact and controlled invariant set for
system (2.39). Then

h∗inv(Q) = inf
H

R(H)

log2 e
, (2.40)

where the infimum is taken over all coder-controllers H that render Q
invariant.

To prove this theorem, one first shows that every (finite) (τ,Q)-spanning set
{u1, . . . , un} defines coding regions C1, . . . , Cn with Q =

⋃n
i=1 Ci, such that a

coder-controller H can be defined as follows: The coder sends the symbol i to
the controller if the measured state is in Ci. Upon receiving the symbol i, the
controller generates the control function ui. Then it is easy to see that the cor-
responding transmission data rate is log2(n)/τ . This proves the existence of a
sequenceHk of coder-controllers whose transmission data rates come arbitrar-
ily close to h∗inv(Q). On the other hand, every coder-controllerH = (S, γ, δ, τ)
gives (kτ,Q)-spanning sets for all k ≥ 1 by concatenation of the control func-
tions generated by the controller at times iτ , (i = 0, 1, . . . , k). The cardinalities

of these sets are
∏k−1

i=0 μi, which implies the inequality “≤” in (2.40).

Relation between Invariance Entropy and Lyapunov Exponents.
Next, we present two results which show that the invariance entropy is related
to the Lyapunov exponents of the given control system. For linear systems,
where the Lyapunov exponents coincide with the real parts of the eigenvalues
of the dynamic matrix of the system, we have the following result.

Theorem 2.15. For the linear control system

ẋ(t) = Ax(t) +Bu(t), u ∈ U ,

with A ∈ IRn×n and B ∈ IRn×m it holds that

hinv(K,Q) =
∑

λ∈spec(A)

max{0, nλReal(λ)}, (2.41)

if K has positive Lebesgue measure. Here, nλ denotes the algebraic
multiplicity of the eigenvalue λ.
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One may wonder why the value of the invariance entropy does only depend
on the matrix A, but not on B. As one sees in the proof of Theorem 2.15 in
[70], this is basically a consequence of the specific structure of the solutions
of a linear system. In particular, the distance of two solutions ϕ(t,x,u) and
ϕ(t,y,u) is independent of the matrix B, and the same is true for the vol-
ume growth factor under application of ϕ(t, ·,u). Both of these quantities are
strongly related to the numbers rinv(τ, ε,K,Q). However, we should remark
that the assumptions of Theorem 2.15 cannot be satisfied for arbitrary pairs
of matrices (A,B). The existence of a compact controlled invariant setQ with
nonempty interior (and hence positive Lebesgue measure) can be guaranteed
if the pair (A,B) is controllable, the matrix A is hyperbolic, and the con-
trol range U is compact and convex with nonempty interior. Then there ex-
ists a unique control set D whose closure Q = clD has the desired properties,
cf. [70].

Remark 2.1. For inhomogeneous bilinear systems on IRn a similar re-
sult holds in form of an estimate from below. Here, the real parts of
the eigenvalues are replaced by minimal Lyapunov exponents of the
associated homogeneous system on invariant subbundles of U × IRn,
cf. [198, 202].

For nonlinear systems we have a finite set of Lyapunov exponents for each
solution, that is, for each pair (x,u) ∈ M× U . Hence, we cannot expect a
formula for the invariance entropy as simple as the one in Theorem 2.15. In
fact, it seems improbable that a general formula can be given here. However,
under additional controllability assumptions on the system, an upper bound,
similar to the expression in (2.41), can be derived.

Recall that a control set D ⊂ M for system (2.39) is a maximal set of
controlled invariance and approximate controllability (for each two states
x,y ∈ D and ε > 0 there are u ∈ U and t ≥ 0 with d(ϕ(t,x,u),y) < ε.) ForQ
being the closure of a control set, the following result holds, cf. [198, 199, 202].

Theorem 2.16. Assume that the right-hand side f of system (2.39)
is continuously differentiable, and let D be a control set with compact
closure Q = clD for this system. Let (ϕ(·,x0,u0),u0(·)) be a con-
trolled periodic solution in intD × intU which is regular, that is, the
linearization along this solution is controllable. Then for each com-
pact set K ⊂ D it holds that

h∗inv(K,Q) ≤
∑
λ

max{0, nλλ},

where the sum is taken over the different Lyapunov exponents of
ϕ(·,x0,u0) and nλ denotes the multiplicity of λ.
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Remark 2.2. Assuming local accessibility for system (2.39) on the in-
terior of a control set D, there is a periodic solution in intD with
initial value x for every x ∈ intD (cf. Proposition 4.3.3 in [72]). In
general, it is not clear if such periodic solutions are regular. How-
ever, for real-analytic systems, existence of regular periodic solutions
through every point x ∈ intD can be guaranteed if the system is
strongly accessible, which follows from results of [344, 345].

For scalar control-affine systems of the form

ẋ(t) = f(x(t)) + u(t)g(x(t)), u ∈ U , (2.42)

with C1-vector fields f, g : IR→ IR the estimate of Theorem 2.16 can be used
together with other results to prove the following result, cf. [198, 199, 202].

Theorem 2.17. Let D be a bounded control set of system (2.42).
Further assume that local accessibility holds on Q := clD. Then for
every compact set K ⊂ D with nonempty interior it holds that

hinv(K,Q) = h∗inv(K,Q) = max

{
0,min

x∈Q

(
f ′(x)− f(x)

g(x)
g′(x)

)}
.

(2.43)

The expression to be minimized in (2.43) is the derivative of the right-hand
side of (2.42) at the equilibrium pair (x, ux) with ux = −f(x)/g(x), which
coincides with the Lyapunov exponent for this pair. Since in dimension one
(under appropriate regularity assumptions), the full Lyapunov spectrum is
already attained by the Lyapunov exponents of equilibria, Eq. (2.43) can also
be written as

hinv(K,Q) = h∗inv(K,Q) = max {0,minΣLy(Q)} ,

where ΣLy(Q) denotes the Lyapunov spectrum over Q, that is, the set of all
limits

lim sup
τ→∞

1

τ
ln

∣∣∣∣
∂ϕ

∂x
(τ, x, u)

∣∣∣∣ ,

such that ϕ(t, x, u) ∈ Q for all t ≥ 0.

Example 2.1 The inverted pendulum

Theorem 2.17 can be applied to a controlled linearized inverted pendulum. The
pendulum is represented by

ÿ(t) + 2bẏ(t)− (1 + u(t))y(t) = 0, u ∈ U

with b > 0 and control range U = [−ρ, ρ], where 0 < ρ < b2 + 1. This equation
describes the linearization of a controlled damped mathematical pendulum at the
unstable position. The corresponding state-space representation is:
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ẋ(t) =

(
0 1
1 −2b

)
︸ ︷︷ ︸
=: A0

x(t) + u(t)

(
0 0
1 0

)
︸ ︷︷ ︸
=: A1

x(t), u ∈ U .

The eigenvalues of the matrix A0 are given by

λ± = −b±
√

b2 + 1.

Since b > 0, λ− is negative and λ+ is positive. Hence, the uncontrolled system has
one stable and one unstable direction. We can project the bilinear system to the
unit circle S1. An easy computation yields the equations for the projected system:

ϕ̇ =
(
−2b sin(ϕ) cos(ϕ)− sin2(ϕ) + cos2(ϕ)

)
+ u(t) cos2(ϕ), u ∈ U .

From Theorem 8.1.1 in [72] it follows that the control sets on S1 consist of equilibria.
Hence, in order to determine these sets, we have to find the zeros of the right-hand
side. Therefore, we divide by cos2(ϕ) (possible for 2ϕ /∈ {π, 3π}) to get

tan2(ϕ) + 2b tan(ϕ)− (1 + u) = 0 ⇔ tan(ϕ) = −b±
√

b2 + 1 + u.

Hence, we obtain the solutions

ϕ± = arctan
(
−b±

√
b2 + 1 + u

)
∈
(
−π

2
,
π

2

)

and two other solutions in (π/2, (3π)/2). The solutions ϕ± are real numbers, since

b2 + 1 + u ∈ [b2 + 1− ρ, b2 + 1 + ρ] ⊂ (0, 2(b2 + 1)).

Hence, in (−π/2, π/2) we obtain the following two intervals of equilibria (cf. Fig.
2.2), which are the closures of control sets:

Q− =
[
arctan

(
−b−

√
b2 + 1 + ρ

)
, arctan

(
−b−

√
b2 + 1− ρ

)]
,

Q+ =
[
arctan

(
−b+

√
b2 + 1− ρ

)
, arctan

(
−b+

√
b2 + 1 + ρ

)]
.

Using the formula of Theorem 2.17, we find

hinv(K,Q±) = max

{
0, min

ϕ∈Q±
(−2b− 2 tan(ϕ))

}
.

Hence, we obtain

hinv(K,Q−) = max

{
0, min

u∈[−ρ,ρ]

(
2
√

b2 + 1− u
)}

= 2
√

b2 + 1− ρ,

hinv(K,Q+) = 0.

We can interpret this result as follows: The control set D = intQ− contains ϕ0 :=
arctan(−b −

√
b2 + 1), which is an equilibrium for the control u = 0, that is, the

vector (cos(ϕ0), sin(ϕ0))
T is an eigenvector of the matrix A0 corresponding to the

stable eigenvalue λ− = −b−
√
b2 + 1. On D, the projected system is controllable.

This implies that the cone π−1(D) ⊂ IR2 over D is the maximal subset of IR2

where it is possible to steer to the stable axis (that is, to the one-dimensional
eigenspace corresponding to λ−) with the bilinear system. Thus, we have computed
the invariance entropy of the maximal subset of IR2, where the system can be
stabilized to the equilibrium (0, 0). The control set Q+ is easily seen to be invariant
and hence its invariance entropy is zero. �
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C

C

x1

x2

Q1,+

Q2,+

Q2,−

Q1,−

Fig. 2.2 Control sets on the unit circle

Open Problems and Extensions. The most important open problem in
the theory of invariance entropy concerns the relation between the two quan-
tities hinv(K,Q) and h∗inv(K,Q). We always have hinv(K,Q) ≤ h∗inv(K,Q) and
we know that hinv(K,Q) <∞, while h∗inv(K,Q) =∞ is possible. In the one-
dimensional control-affine case, Theorem 2.16 shows that under appropriate
controllability assumptions, the two quantities coincide. An analogous result
holds for linear control systems in arbitrary dimensions, which is shown in
[198]. In general, however, this problem remains completely open.

There are other open problems which are somewhat similar. For example,
if Q is the closure of a control set D, we can only give an upper bound
for h∗inv(K,Q) when K ⊂ D, but not for h∗inv(Q). While h∗inv(K,Q) in this
case is independent of K as long as K has nonempty interior and K ⊂ D, it
is not clear whether h∗inv(K,Q) = h∗inv(Q). This question is of importance,
since h∗inv(Q), as explained above, is a measure for the minimal data rate for
rendering Q invariant, while we cannot show something similar for h∗inv(K,Q)
with K �= Q.

The upper estimate of Theorem 2.16 can be improved by imposing stronger
regularity assumptions on the given control system. Indeed, assuming real
analyticity and strong accessibility plus some weak hyperbolicity condition,
one can show that the assumptions of regularity and periodicity of the con-
trolled solution can be omitted. This result can be found in the forthcoming
monograph [202].
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The results for invariance entropy presented above are restricted to com-
pact controlled invariant sets Q for finite-dimensional systems. They can be
extended in several directions. In [68, 69] the set Q is replaced by a con-
trolled invariant subspace and techniques from geometric control are used to
derive estimates for a corresponding notion of invariance entropy. In [183],
invariance entropy for certain linear infinite-dimensional systems (including
parabolic partial differential equations and delay equations) is characterized.

2.3.3 Entropy for Exponential Stabilization

Section Overview. Using an approach which is similar to invariance en-
tropy, we consider the time-dependent controls which have to be generated
by a controller in order to achieve exponential stability, cf. [67]. Again, we
consider continuous-time systems.

There are two ways to measure the information needed for exponential
stabilization for a given set Q of initial states: Either one can look at sets of
control functions on [0,∞) which admit exponential stabilization and at the
required bits to discern them on any finite interval [0, τ ] and then analyze the
bit rate for τ → ∞; finally, one can minimize the bit rate over such sets of
controls. Alternatively, one may look at sets of control functions defined on a
bounded interval [0, τ ] admitting exponential decay on [0, τ ] and then look at
the minimal number of bits for such a set of control functions. Then, again,
one can analyze what happens for τ → ∞. In the first case we speak about
minimal bit rates and in the second case, we speak about entropy, since this
approach is close to entropy in the theory of dynamic systems.

A discouraging example (Example 2.2) shows that finitely many controls
are not sufficient for an exponential estimate on a finite interval. Hence, we
impose somewhat weaker conditions. Then the stabilization entropy can be
shown to be finite. In the linear case, a formula in terms of eigenvalues holds.
It is worth to emphasize that this formula pertains to a fixed exponential
decay rate (Theorem 2.19). Thus, it also applies to cases, where the control
goal is to increase the exponential decay rate for a stable system, a situation
where finite communication channels might more easily be tolerated. On the
other hand, the stabilization entropy provides an upper bound for the mini-
mal bit rate. In particular, the minimal bit rate is finite (Theorem 2.18), and
in the linear case, an explicit estimate is available.

Stabilization with Limited Bit Rates. Consider a nonlinear control
system of the form

ẋ(t) = f(x(t),u(t)), u ∈ U , (2.44)

where f : IRd × IRm → IRd is continuous and Lipschitz continuous with
respect to the first argument. The admissible controls are given by

U = {u : [0,∞)→ IRm : u measurable with u(t) ∈ U a.e.} ,
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where we assume that the controls u are integrable on every bounded interval
and the control range U is a subset of IRm. We assume that (i) unique global
solutions ϕ(t,x0,u), (t ≥ 0) of the differential equation with initial condition
x(0) = x0 ∈ IRd and control u ∈ U exist and (ii) on compact intervals, the
solutions depend continuously on the initial value.

We consider the bit rates for the problem to stabilize an equilibrium
x∗ ∈ IRd corresponding to an admissible control value u∗ ∈ U , that is,
0 = f(x∗,u∗). Without loss of generality, the equilibrium is given by x∗ = 0
corresponding to the control value u∗ = 0 ∈ U . Suppose that the system is
exponentially controllable to the equilibrium for all x0 in a neighborhood of
x∗ = 0, that is, there are constants M,α > 0 such that for all x0 �= 0 there
is u ∈ U with

‖ϕ(t,x0,u)‖ < Me−αt ‖x0‖ for all t ≥ 0. (2.45)

This holds, for example, if the linearized system is stabilizable by a linear
feedback; (see, for instance, [346] (Section 5.8) for asymptotic stability and
[151] (Satz 9.8) for exponential stability). For linear control systems, an es-
timate of the form (2.45) holds iff the unstable part is controllable.

Since we are interested in problems where the controller does not have con-
tinual access to the present state x(t) (or to observed values y(t) = g(x(t))),
we discuss the minimal bit rate needed to discern the required time-dependent
control functions u on any time interval [0, τ ], τ > 0.

The following example (the simplest controllable system) shows that a
direct approach is not possible. Here, on a finite time interval [0, τ ] one cannot
find finitely many controls such that for every point in a neighborhood of the
origin the exponential estimate (2.45) is satisfied.

Example 2.2 A discouraging example

Consider the following scalar system:

ẋ(t) = u(t), u(t) ∈ U = IR. (2.46)

Let α > 0, M > 1 and fix τ > 0. We claim that for τ large enough there is no finite
set S of control functions on [0, τ ], such that for every 0 �= x0 ∈ K := [−1, 1] there
is u ∈ S such that the exponential estimate

|ϕ(t, x0, u)| =
∣∣∣∣x0 +

∫ t

0

u(s)ds

∣∣∣∣ < Me−αt |x0| for all t ∈ [0, τ ] (2.47)

holds. We proceed by contradiction: Suppose that a finite set S = {u1, . . . , un}
with the stated properties exists and define

Kj :=
{
x0 ∈ K : |ϕ(t, x0, uj)| < Me−αt |x0| for all t ∈ [0, τ ]

}
.

Observe that 0 /∈ Kj . For the control u0(t) ≡ 0, every point x0 is an equilibrium.
Thus, for x0 �= 0 the control u0 does not satisfy (2.47) if τ is large enough such
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that Me−ατ < 1 and we may assume that u0 /∈ S . Hence, for every j one finds
tj ∈ [0, τ ] with

cj := max
t∈[0,τ ]

∣∣∣∣
∫ t

0

uj(s)ds

∣∣∣∣ =
∣∣∣∣
∫ tj

0

uj(s)ds

∣∣∣∣ > 0.

Consider an initial point x0 ∈ K with |x0| < minj(cj/(2M)). Observe that then
|x0| < M |x0| < (1/2)minj cj , since M > 1. We claim that there is no control
uj ∈ S satisfying (2.47). In fact, one computes

∣∣∣∣x0 +

∫ tj

0

uj(s)ds

∣∣∣∣ ≥
∣∣∣∣
∫ tj

0

uj(s)ds

∣∣∣∣− |x0| ≥ cj −
cj
2

=
cj
2

> e−αtj cj
2

> Me−αtj |x0| ,

which proves the claim. �

In contrast to the linear example (2.46), the scalar bilinear system

ẋ(t) = (1 + u(t))x(t), u(t) ∈ U = IR

can be stabilized by the single constant control u(t) ≡ −2. Thus, no transfer of
bits is necessary. Reference [83] describes other situations where finitely many
bits are sufficient. While it might be worthwhile to study bilinear control
systems in this context, we follow a different path and relax the exponential
stability property (2.45) by introducing a small additive term. The following
simple, but basic lemma shows that then only finitely many bits are required
on a finite interval. It follows by using continuous dependence on initial values
and compactness.

Lemma 2.3. Consider control system (2.44) and let K be a compact
subset of IRn. Assume that there are constants M > 1 and α > 0
such that for all 0 �= x ∈ K there is a u ∈ U with

‖ϕ(t,x,u)‖ < Me−αt ‖x‖ for all t ≥ 0. (2.48)

Let ε > 0. Then for every τ > 0 there is a finite set S = {u1, . . . ,un} ⊂
U such that for every x ∈ K there is a uj ∈ S with

‖ϕ(t,x,uj)‖ < e−αt (ε+M ‖x‖) for all t ∈ [0, τ ].

Stabilization Entropy. In view of the preceding lemma, we will consider
weakened versions of the estimate (2.48). There are the two ways to measure
the information needed for stabilization as indicated above and we begin with
an entropy-like notion. Consider a compact set K ⊂ IRn of initial states, and
let α > 0, M > 1 and ε > 0. For a time τ > 0 we call a subset S ⊂ U a
(τ, ε)-spanning set of controls if for every x ∈ K there is u ∈ S with

‖ϕ(t,x,u)‖ < e−αt (ε+M ‖x‖) for all t ∈ [0, τ ]. (2.49)
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The minimal cardinality of all these sets is

sstab(τ, ε) := min {#S : S is (τ, ε)-spanning} .

If there is no finite set S of controls with this property (in particular, if
there is no such set at all), we let sstab(τ, ε) := ∞. Lemma 2.3 shows that
the exponential controllability condition (2.48) implies the existence of finite
(τ, ε)-spanning sets.

We want to determine which information has to be transmitted through
a digital communication channel in order to identify a control function in
such a finite set S. The elements can be encoded by symbols given by finite
sequences of 0’s and 1’s in the set

Σk := {(s0s1s2 . . . sk−1) : si ∈ {0, 1} for i = 0, 1, . . . , k − 1} ,

where k ∈ IN is the least integer greater than or equal to log2 #S. Thus,
#S is bounded above by 2k. Equivalently, the number of bits determining an
element of S is log2(2

k) = k. It will be convenient to use here the natural log-
arithm instead of the logarithm with base 2. Now we consider what happens
for time tending to infinity and then ε tending to 0 to obtain the following
notion describing an entropy property for exponential stabilization.

Definition 2.5. Let K be a compact set in IRn and α > 0, M > 1.
Then the (α,M)-stabilization entropy hstab(α,M,K) is defined by

hstab(α,M,K) := lim
ε↘0

lim sup
τ→∞

1

τ
ln sstab(τ, ε).

In the following, we drop the argument K in this and in similar notions if the
choice of K is clear or if its specification is irrelevant in the corresponding con-
text. The existence of the limit for ε↘ 0 is obvious, since it equals the supre-
mum over all ε > 0. (The value +∞ is allowed.) Furthermore, the inequality
hstab(α

′,M ′) ≤ hstab(α,M) holds for α ≥ α′ > 0 andM ′ ≥M > 1.

Remark 2.3. If one would consider α = 0, condition (2.49) implies
that every trajectory starting in K remains in the ball around the
origin with radius ε+M maxx∈K ‖x‖.

Minimal Bit Rate. A second way of counting bits is the following. Consider
a set of control functions defined on [0,∞) which allow us to steer the system
asymptotically to the equilibrium x∗ = 0 satisfying the following conditions.
Let M > 1, α > 0, ε > 0 and let γ be a decreasing function on [0,∞) with
γ(0) = ε and limt→∞ γ(t) = 0. For brevity, we call γ an Lε-function (note
that continuity of γ is not required.)

Let R(γ, ε) ⊂ U be a set of control functions such that for every x ∈ K
there is u ∈ R(γ, ε) with

‖ϕ(t,x,u)‖ < γ(t) +Me−αt ‖x‖ for all t ≥ 0. (2.50)
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Then R(γ, ε) is called (γ, ε)-stabilizing for K. Thus, in the ε-neighborhood of
the equilibrium, the decay given by the exponential rate α may slow down,
but still convergence holds for t→∞. Let

Rτ (γ, ε) :=
{
u|[0,τ ] : u ∈ R(γ, ε)

}

be the corresponding restrictions of the controls in R(γ, ε). Suppose that
the cardinality #Rτ (γ, ε) is finite. The bit rate on the time interval [0, τ ]
is defined as (1/τ) log2 #Rτ (γ, ε). If there is no set R(γ, ε) with (2.50) or
if Rτ (γ, ε) contains infinitely many elements, we set #Rτ (γ, ε) := ∞. The
required bit rate for stabilization using controls in R(γ, ε) is

b(R(γ, ε)) := lim inf
τ→∞

1

τ
log2 #Rτ (γ, ε).

Definition 2.6. With the notions introduced above, the minimal bit
rate for (α,M)-stabilization at x∗ = 0 of a compact set K ⊂ IRn is

bstab(α,K,M) := lim
ε↘0

inf
γ∈Lε

inf
R(γ,ε)

b(R(γ, ε)),

where the inner infimum is taken over all (γ, ε)-stabilizing setsR(γ, ε) ⊂
U of controls and the outer infimum is taken over all Lε-functions γ.

The limit for ε ↘ 0 is the supremum for ε > 0. Note also the inequality
bstab(α

′,M ′) ≤ bstab(α,M) for α ≥ α′ > 0 and M ′ ≥M > 1.
An example for an allowed Lε-function is γ(t) = εe−αt, t ≥ 0. However, for

this function, we cannot prove our main result for the stabilization bit rate
(Theorem 2.20) showing that the stabilization entropy provides an upper
bound. Also, this theorem will only give a result for the limit inferior for
τ → ∞ (not for the limit superior). Consideration of the limit inferior may
be justified by the fact that we are interested in the minimal bit rate for
τ →∞, hence the times may be chosen appropriately.

Comparison of Stabilization Entropy and Minimal Bit Rate. The
stabilization entropy indicates how much the number of required control func-
tions increases, when time increases. Here minimization is performed on each
interval [0, τ ] separately. If one wants to enlarge the time interval where the
exponential decay holds, one may have to consider controls which, when re-
stricted to the smaller interval, are different from the earlier ones. This is in
contrast to minimal bit rates, where restrictions to [0, τ ] are considered for
control functions defined on [0,∞). Thus, while stabilization entropy certainly
merits its own interest, the minimal bit rate might appear more appealing
from this point of view.

The difference between these two concepts can also be seen by looking at
them from a quantization point of view. Let R(γ, ε) be a (γ, ε)-stabilizing
set such that for every τ > 0 the set Rτ (γ, ε) of restrictions to [0, τ ] is finite.
Then define for every u ∈ RT (γ, ε)
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K(u, τ) :=
{
x ∈ K : ‖ϕ(t,x,u)‖ < γ(t) +Me−αt ‖x‖ for all t ∈ [0, τ ]

}
.

The sets K(u, τ) form an open cover of K which may be viewed as a finite
quantization. For τ ′ > τ , the same construction for Rτ ′(γ, ε) again yields a
finite quantization of K which is obtained by refining the quantization at time
τ , since both are obtained by restrictions of controls in R(γ, ε). In contrast,
the quantization for τ ′ > τ obtained by a (τ ′, ε)-spanning set of controls used
for defining the entropy is not related to the quantization associated with a
(τ, ε)-spanning set.

Results on the Stabilization Entropy. The next theorem gives upper
and lower bounds for the stabilization entropy, which is easier to analyze than
the minimal bit rate.

Theorem 2.18. Consider control system (2.44) and let x∗ = 0 be
an equilibrium with 0 = f(0,0), 0 ∈ U . Suppose that the derivative
fx(x,u) of f with respect to x exists and is continuous in (x,u).
Let K ⊂ IRn be a compact neighborhood of the origin and denote
κ := maxx∈K ‖x‖.
1. Assume further that divxf(x,u) is bounded below for ‖x‖ ≤ κ+1

and u ∈ U . Then for α > 0, M > 1 the stabilization entropy of
K satisfies the estimate

hstab(α,M) ≥ αd+min
u∈U

divxf(0,u).

2. Assume that for every 0 �= x ∈ K there is a control u ∈ U with

‖ϕ(t,x,u)‖ < Me−αt ‖x‖ for all t ≥ 0

and that there is a Lipschitz constant L > 0 such that for all
x1,x2 in an open set containing K

‖f(x1,u)− f(x2,u)‖ ≤ L ‖x1 − x2‖ for all u ∈ U .

Then the stabilization entropy of K satisfies

hstab(α,M) ≤ (L+ α)d.

Next we consider the stabilization entropy for linear control systems in IRn

of the form
ẋ(t) = Ax(t) +Bu(t), u ∈ U , (2.51)

with matrices A ∈ IRn×n and B ∈ IRn×m and control range U ⊂ IRm

containing the origin.

Theorem 2.19. Consider a linear control system of the form (2.51)
with 0 ∈ U . Assume that there are α > 0, M > 1 such that for every
initial value 0 �= x ∈ IRn there is a control u ∈ U with
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‖ϕ(t,x,u)‖ < Me−αt ‖x‖ for all t ≥ 0.

For every compact neighborhood K of the origin in IRn the (α,M)-
stabilization entropy of system (2.51) satisfies

hstab(α,M,K) =
∑

Real(λ)>−α

(α+Real(λ)); (2.52)

here summation is over all eigenvalues λ of A, counted according
to their algebraic multiplicities, with Real(λi) > −α. In particular,
hstab(α,M,K) is independent of K.

The next theorem establishes the announced relation between the stabiliza-
tion bit rate and the stabilization entropy.

Theorem 2.20. Consider a control system of the form (2.44) and
suppose that K ⊂ IRd is a compact neighborhood of the equilibrium
x∗ = 0. Assume that there are constants M > 1 and α∗ > 0 such
that for all 0 �= x ∈ K there is u ∈ U with

‖ϕ(t,x,u)‖ < Me−α∗t ‖x‖ for all t ≥ 0. (2.53)

Then for α ∈ (0, α∗) the stabilization bit rate and the stabilization
entropy satisfy

bstab(α,M) ≤ log2 e · hstab(α∗,M) <∞.

For linear control systems, one gets an easy corollary.

Corollary 2.5. Suppose that the linear control system (2.51) satis-
fies the assumptions of Theorem 2.20. Then for all α ∈ (0, α∗) the
stabilization bit rate satisfies

(log2 e)
−1 · bstab(α,M) ≤ hstab(α,M)

=
∑

Real(λ)>−α

(α+Real(λ))

and

(log2 e)
−1 · inf

α>0
bstab(α,M) = inf

α>0
hstab(α,M)

=
∑

Real(λ)>0

Real(λ).

For smooth nonlinear control systems and arbitrarily small control range, we
conjecture that a formula analogous to (2.52) holds, now for the Jacobian at
the equilibrium (cf. [270], Theorem 3, for such a claim in the context of local
uniform asymptotic stabilization).
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2.4 Dynamic Quantization for Feedback Stabilization
with Delayed Data-Rate Limited Communication

2.4.1 Problem Statement

In this section we consider networked control systems over a digital channel
with limited data rate. An inherent property of such channels is that data
needs to be quantized. Here we employ dynamic quantization for stabiliza-
tion. The term dynamic quantization refers to an approach where the size
of the quantization region as well as the center of the region change in time
according to the input received from system measurements. This informa-
tion from the system allows to estimate the region in which quantization is
required. With this approach limited bandwidth can be employed to commu-
nicate increasingly accurate information, which will eventually be sufficient
to achieve stabilization.

The class of systems under consideration is

ẋ(t) = f(x(t),k(x(t) + e(t))) , (2.54)

where x ∈ R
n and f : Rn × R

m → R
n. The aim is to stabilize the system

at the equilibrium (x∗,u∗) = (0,0). We assume that a controller k has
been designed which renders system (2.54) input-to-state stable (ISS) with
respect to the quantization error e. For a discussion of the ISS property, see
Section 5.5. We assume that f is sufficiently smooth to guarantee existence
and uniqueness of solutions. In particular f is Lipschitz in the first component
with Lipschitz constant L.

We will assume that the state of the system can be measured and that this
measured information needs to be transmitted to the controller via a digital
channel. We will present a encoder/decoder scheme that will result in a stable
system, given the information on f and k in (2.54). A particular problem in
networked control systems are delays and packet loss. Here we describe how
dynamic quantization can be implemented to cope with these phenomena.

2.4.2 Dynamic Quantization

In a first pass we ignore delay and packet loss and explain the idea behind
dynamic quantization with the help of Fig. 2.3. In our setup communication
attempts occur at the time instances t0 < t1 < t2 < . . .. At every communi-
cation instant the quantization region is a hypercube that is determined by
its center C and the edge length �. This hypercube is partitioned into Nn

smaller hypercubes of equal size; recall that n is the dimension of the state
space. The smaller hypercubes are called subregions. At the communication
event tk the encoder sends the number of the subregion in which the state
x(tk) of the system lies. At the time of transmission the estimate of the state
x̂ is the center of the subregion. In this case e represents the error between
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the actual value of the system and the midpoint of the subregion, which is
used as an approximation thereof.

The problem that has to be solved by the scheme lies in the fact that
encoder and decoder have to agree on center and length of the subregion
that is determined by the transmitted code word, so that the transmitted
information can be used to compute the control value k(x+ e).

x̂e(t1)

�(t1)

x(t1)

xe(t1)

x(t2)

x̂e(t2)

�(t2)

Fig. 2.3 Dynamic quantization

At a time tk a certain quantization region, i.e. its center and edge length, is
determined by the previous dynamics and it has to be ensured that the state
x(tk) is within the quantization region at time tk. Given that encoder and
decoder agree on the value x̂(tk), they perform identical numerical estimates
of the evolution of the system

ẋ(t) = f(x(t),k(x(t))) , x(tk) = x̂(tk) ,

and the solution x̂(tk+1) := x(tk+1; tk,x(tk)) of this initial value problem at
time tk+1 is the center of the quantization region at time tk+1.

In other words, the sensor determines the actual subregion in which the
state lies and calculates the center xe(tk). We will refer to this process as
encoding. The decoder on the other end of the channel has a copy of these
values, i.e. the decoder knows the center and length of the region and the
values n and N . Thus if we transmit the number of the subregion in which
the state lies, the decoder is able to reconstruct the value xe(tk).

If both encoder and decoder let the center xe of the subregion follow the
closed-loop dynamics until time t2, the error between the estimate xe and
the state x can grow by a certain factor. If we let the subregion grow by the
same amount (the augmented region is the dashed box in Fig. 2.3), we are
sure that the state at time t2 is still within the subregion. This subregion
becomes the new quantization region with the new center x̂e(t2) = xe(t

−
2 ).

Now we are in the same situation as previously, namely, we know a hypercube
containing the state and we can now repeat the same steps.
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If the quotient between the growth of the quantization region and the
reduction of the error due to N is smaller than 1, the quantization error
converges to 0 as the number of communication events increases.

During continuous flow of the system, the growth of the uncertainty of
the state (i.e., the quantization error) may be bounded with the help of the
Lipschitz constant L of the system (depicted by the dotted box in Fig. 2.3).
This bound ensures that the state is at any time in some region with known
size and center.

The growth of the error is countered by a reduction of the size of the
quantization region by a defined number N (in Fig. 2.3: N = 3), which is
the number of smaller regions (per dimension) within the quantization range
(depicted in Fig. 2.3 as the jump from the center of the large region to the
center of the smaller subregion in which the actual state lies).

Delays and Packet Loss. As sketched above it is important that encoder
and decoder agree on certain values. This is easily achieved, if there is no delay
in the channel, because the decoder can copy the behavior of the encoder
exactly.

If delays and packet loss are present then the information available at
the decoder and encoder side may be different. To account for this fact, we
will in the sequel use variables available at the encoder by xe, x̂e, etc., and
those available at the decoder by xd, x̂d, etc. The scheme described in the
following relies crucially on time stamps and on acknowledgments (acks). The
time stamps provide the information at which time certain information was
available at the other side and acks provide the encoder with the information
that data has been received by the decoder. Note that we assume acks to be
time-stamped as well.

For the communication channel we assume the following properties:

Assumption 2.1
1. All packets are time stamped with the current time they are sent.
2. Only packets sent from encoder to decoder are lost.
3. There exists a minimal delay from encoder to decoder, given by
τmin, i.e., t

∗
k − tk ≥ τmin and tk − t∗k−1 ≥ τmin.

4. The channel is able to transmit packets containing a value from
a set of Nn (N odd) discrete values within τmin units of time.

5. If τmax time elapses without receiving an ack, the packet sent last
time is considered lost and a new packet will be sent.

These assumptions have the following consequences:

• According to Part 1 we have to send the actual time together with the
encoded state information. It is not reasonable to be able to transmit the
state information quantized and the time information not. For the sake
of simplicity we omit details on time quantization but refer to [326] for a
discussion.
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• Part 2 is a major restriction on the channel used. As the acks are much
smaller than the state information the decoder could send many acks to
ensure that at least one arrives at the encoder. Without this assumption
we could not guarantee that the encoder and the decoder agree on their
states.

• Part 3 is in general not a restrictive one. In every real communication
channel such a minimal delay exists.

• Part 4 states that the bandwidth of the channel B must be large enough
to transmit the state information within τmin units of time. For instance,
if binary encoding is used we require

B ≥ n log2N

τmin
. (2.55)

If this condition is not met, the decoder could introduce an artificial delay
by waiting to ensure that τmin is large enough to fulfill the bandwidth
constraint.
The choice for N to be odd guarantees that the center of the quantization
region lies in the interior of one of the subregions. Although this is not
needed in general, it eases the presentation.

• By Part 5, the values τmin and τmax may be regarded as design parameters.
While choosing τmin too small can violate the bandwidth constraint, a
larger value can degrade the performance of the overall system. Similar
statements hold for τmax. If τmax is chosen too small, no ack will arrive
at the encoder before a new packet will be sent and again choosing τmax

too large may have a negative effect on the performance.

Further assumptions that will be of importance are the following:

Assumption 2.2. The clocks of encoder and decoder are synchro-
nized and the time t1 = 0 when the encoder sends the first packet is
known by the encoder and the decoder.

Assumption 2.3. Both the encoder and the decoder know the same
bound of the initial state of the system (i.e., encoder and decoder agree
on a constant R > 0 such that |x(0)| ≤ R).

We consider TCP-like packet-based transmissions over a noiseless, error-free
channel with delay and packet loss.

The encoder encodes the state and sends a symbol from a finite alphabet
to the decoder together with the time when the state was encoded (time
stamping). As soon as a packet arrives, the decoder reconstructs the encoded
state and sends an acknowledgment back to the encoder. If this ack arrives at
the encoder or a predefined time elapses without receiving one, it repeats the
encoding. Denote by tk the k-th time instance the encoder received an ack.
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The time when the k-th information sent by the encoder is received by the
decoder is denoted by t∗k. Note that we assume that there is no time delay
between the arrival of an information and the sending of the next packet, i.e.
tk and t∗k are also the time instances when the encoder sends information and
the decoder sends an ack, respectively.

We now detail the complete description of encoder and decoder. A funda-
mental element of the encoder is the map ϕ, which yields the subregion in
which the state x lies as a function of the center of the quantization region
xe and the edge length �. It is given by

ϕ(xe,x, �) =

⌊
N

�
(x− xe) +

1

2

[
1 . . . 1

]�⌋
, (2.56)

where the floor function �·� is applied in each component.
Encoder and the decoder are initialized trivially by

k = 1, t0 = 0, t∗0 = 0, t1 = 0, t∗1 = 0 and x̂d(0) = x̂e(0) = 0

xe(0
−) = xd(0

−) = 0 and �e(0
−) = �d(0

−) = 2R.

Encoder Dynamics. For the encoder three cases have to be treated: (i)
times at which an acknowledgment of a previous packet is received by the
encoder, (ii) times at which the maximal admissible time span τmax passes
without the receipt of an acknowledgment, at which time the previous data
will be considered lost, and (iii) intermediate times. The required actions for
each of these cases are given as follows. In both cases ((i) and (ii)) ts and
s(ts) are auxiliary variables, describing the data payload of the packets sent
from encoder to decoder.

(i) Every time an ack arrives at the encoder (t = tk) the following operations
are invoked:

ts := t (2.57)

�e(tk) := �e(tk−1)e
L(tk−tk−1)/N (2.58)

xe(t
−
k ) := xe(tk−1) +

∫ t∗k−1

tk−1

f(xe(τ),k(x̂e(τ))) dτ

+

∫ tk

t∗k−1

f(xe(τ),k(xe(τ))) dτ (2.59)

s(ts) := ϕ(xe(t
−
k ),x(tk), �e(tk)) (2.60)

xe(tk) := xe(t
−
k ) + s(ts)

�e(tk)

N
(2.61)

x̂e(tk) = xe(t
−
k ). (2.62)

Accordingly, the encoder updates the length of the quantization region ac-
cording to the growth of the error on the last interval (2.58). The center
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of the quantization region is updated via (2.59). Both integrals are needed
to account for the change in the control action on the decoder side at time
t∗k−1 which is known to the encoder by the time stamp of the ack. The
subregion in which the state lies is determined by (2.60). This information
will be sent to the decoder together with the actual time (2.57). The jump
from the center to the subregion is done by Eq. (2.61). The value of the
old quantization region is copied by (2.62) in order to have access to this
information in case that the current communication event fails.

(ii) If τmax time instants elapse without receipt of an ack the following sim-
plified actions need to be taken:

ts := t (2.63)

�e(t) := �e(tk)e
L(t−tk) (2.64)

xe(t
−) := x̂e(t) (2.65)

s(ts) := ϕ(xe(t
−),x(t), �e(t)) (2.66)

xe(t) := xe(t
−) + s(ts)

�e(t)

N
. (2.67)

Accordingly, the packet sent last time is considered lost and a new one is
sent. Similarly to the case of no loss, the encoder updates the length of
the quantization region (2.64). Note that there is no division by N , as the
reduction effect provided by the transmitted information is not present.
Equation (2.65) cancels the jump from the center to the subregion per-
formed in the last encoding step. Equations (2.66) and (2.67) follow the
same reasoning as in the case of no loss.

(iii) In between transmission events only the center of the quantization region
has to be updated by

˙̂xe(t) = f (x̂e(t), k(x̂e(t))). (2.68)

We need (2.68) to know the trajectory which will be used to close the
loop on the decoder side. It is also needed to treat the case of packet loss
in (2.65).

Decoder Dynamics. For the decoder only two cases have to be distin-
guished: (i) the arrival of information at times t∗k and (ii) the times in between
arrivals.

(i) Every time a packet arrives at the decoder (t = t∗k) the following opera-
tions are carried out:

�d(ts) := �d(tk−1)e
L(ts−tk−1)/N (2.69)

xd(t
−
s ) := x̂d(t

∗
k−1) +

∫ ts

t∗k−1

f (xd(τ),k(xd(τ))) dτ (2.70)
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xd(ts) := xd(t
−
s ) + s(ts)

�d(ts)

N
(2.71)

x̂d(t
∗
k) := xd(ts) +

∫ t∗k

ts

f(xd(τ),k(x̂d(τ))) dτ. (2.72)

(ii) Otherwise
˙̂xd(t) = f(x̂d(t),k(x̂d(t))). (2.73)

The decoder copies the behavior of the encoder with the help of (2.69)-
(2.71). Equation (2.72) compensates for the delay between encoder and
decoder.

Encoder

t1 t∗1 t2 t∗2

x

xe

x̂e

xe

x̂e

Decoder

t1 t∗1 t2 t∗2

x

xd

xd

x̂d

x̂d

x̂d

Fig. 2.4 Snapshot of the different trajectories at time t∗2

A sketch of the evolution of the different trajectories is depicted in Fig. 2.4.
The overall effect of this encoder/decoder scheme is that if at time t the
state lies within the quantization region, the error between the state and the
estimate shrinks by N because of the jump from the center of the region to
the center of a subregion. Hence we guarantee that

|x(t)− xe(t
−)| ≤ �

2
⇒ |x(t)− xe(t)| ≤

�

2N
(2.74)

holds, which can be seen from (2.56) and (2.61). Overall, the evolution of the
closed-loop system is given by

ẋ(t) = f(x(t),k(x̂d(t))) . (2.75)

For this system it is possible to show the following stabilization result.
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Theorem 2.21. Consider a control system with a time-stamped dy-
namic quantization encoder/decoder scheme. If

N > eLτ∗
,

where τ∗ is the long time average between successful transmissions,
then the closed-loop system is asymptotically stable.

It is worth mentioning that the quantity N is directly related to the band-
width of the communication channel.

2.4.3 Markovian Communication Models

One shortcoming of the results presented so far lies in the deterministic nature
of the model of the communication channel. For many practical examples the
appropriate models for the dynamic behavior are of stochastic nature. This
can be seen for example for TCP and for the wireless case, where packet loss
frequently is due to the influence of an environment which can be suitably
modeled as random.

In this section we derive conditions for the stabilization of system (2.54)
under the condition that the communication channel can be described by a
(time-homogeneous) Markov process.

In the following we assume as given a communication channel in which
external perturbations such as average load of other users is stationary. We
consider a Markov chain {X(k)}k∈N, where the state X lies in a state space of
the chain S. This state space has to be specified with the concrete situation
in mind. As we only send information at discrete time instances, a Markov
process which is discrete in time is justified.

We assume as given two continuous maps describing the communication,
namely

T : S → [Tmin,∞) , g : S → N , (2.76)

where T (X) denotes the length of the next communication interval depending
on the state X of the channel and g(X) denotes the number of bits that can
be sent in that interval. Thus if communication starts at a time t1 ∈ R and
l := n log2N + b bits have to be sent, where b is the acknowledgment size in
bits, we define a stopping time of the Markov chain by

k∗1 = min

⎧⎨
⎩k

∣∣∣∣∣∣
k∑

j=0

g(X(j)) ≥ l or
k∑

j=0

T (X(j)) ≥ τmax

⎫⎬
⎭ (2.77)



2 Analysis of Networked Systems 77

and until k∗1
k∗
1∑

j=0

T (X(j)) =: τ(1)

units of time elapse. If τ(1) ≥ τmax (with τmax > 0 as a design parameter),
we consider the information to be lost. To ensure the Markovian property of
our description, we assume that X(k) has the strong Markov property, i.e.
the evolution of the process only depends on the state of the chain at the
stopping time k∗. The next time we want to send information, i.e. at time
t1 + τ(1) we define the next stopping time k∗2 by

k∗2 = min

⎧⎨
⎩k

∣∣∣∣∣∣
k∑

j=k∗
1

g(X(j)) ≥ l or
k∑

j=k∗
1

T (X(j)) ≥ τmax

⎫⎬
⎭

and the duration from k∗1 until k∗2 by
∑k∗

2

j=k∗
1
T (X(j)) =: τ(2). If we repeat

this procedure a sequence of time instances is given by {τ(j)}j∈N.
We now assume ergodicity of the Markov chain, which ensures that almost

surely

τ∗M := lim
k→∞

1

k

k∑
j=0

τ(j)1{τ(j) < τmax} (2.78)

exists, where 1 denotes the indicator function.
With the above considerations we are able to state a stochastic version of

Theorem 2.21, where the long time average is given by τ∗M instead of τ∗.

Theorem 2.22. Consider a control system with a time-stamped dy-
namic quantization encoder/decoder scheme. Assume that the com-
munication channel is given by a strongly ergodic Markov process X,
and maps T and g given in (2.76) and with stopping times as in
(2.77). If

N > eLτ∗
M , (2.79)

where τ∗M is given by (2.78), then the closed loop system is asymptot-
ically stable with probability 1.

Again this result relates the error growth due to the systems dynamics given
by the Lipschitz constant L with the information that can be sent on average
using the communication channel and the refinement of the quantization.

As this point we see the relation to the results in Section 2.3: In general,
with the information provided by entropy considerations finer bounds on the
necessary information can be obtained. However, information on the entropy
of the process is frequently hard to obtain, so that in the results presented
in this section we have settled for a coarse estimate as given by the Lipschitz
constant.
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Example 2.3 Dynamic quantization for the inverted pendulum

We discuss the results of the previous section for the example of a pendulum on a
cart that is stabilized in the upright position. The dynamic equations are given by

d

dt

⎡
⎢⎢⎣
x1

x2

x3

x4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
0 0 1 0
0 0 0 1
0 mg

M
0 0

0 − g(m+M)
lM

0 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣
x1

x2

x3

x4

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

0
0
1
M

− 1
lM

⎤
⎥⎥⎦u (2.80)

where x1, x3 are angle and angular velocity of the pendulum and x2 resp. x4 denote
the position and velocity of the cart.

In the simulations the values m = 0.329, M = 3.2, l = 0.44, g = 9.81 have been
used. The shaded grey area in Figs. 2.5 and 2.6 represents the quantization region
as a function of time. Between communication events this region grows according
to the Lipschitz constant of the system. It shrinks if new information is received.

In the simulation a stochastic model has been used for the generation of delays,
but so that the conditions of Theorem 2.22 are satisfied. It can be seen that the
quantization region quickly approximates the trajectory, so that the information
at the controller becomes increasingly accurate. The discontinuous lines in both
figures represent the value that is used for controlling the system. Because of the
delay in the system the discontinuities of these control values do not occur at the
communication times; the latter are indicated by dots on the horizontal axis.
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Fig. 2.5 Trajectory of angle (x1)
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Fig. 2.6 Trajectory of angular velocity
(x3)

The error between system state and estimate used by the controller is shown
in Figs. 2.7 and 2.8. �

Bibliographical Notes

The approach of dynamic quantization we are using here, was introduced by [41]
and has been extended to the nonlinear case in [231]. However, the notion of non-
static quantization is not new. It was first mentioned within the control community
in [359] or even earlier within the communication community (c.f. [137]).
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One of the main problems in this area is that the amount of information that
can be sent from the sensing device to the controller is limited and can be cor-
rupted in several ways. This type of problems has received considerable attention,
see [84–86, 163, 178, 276, 326] as a starting point. First steps in this area consid-
ered communication constraints such as limited bandwidth or data rate, but issues
as delays and packet loss were not treated. Also the communication channel was
treated as static [86, 178, 276], whereas many realizations of communication chan-
nels use protocols which define internal dynamics of the channel. Examples of this
are given by TCP and certain wireless protocols.

The results presented here are amenable to more dynamic communication chan-
nels. They were first published in [325, 326].
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