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Abstract. For discrete-time control systems, notions of entropy for invariance are compared.
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1. Introduction. The purpose of this note is to analyze the relation between
two entropy notions for invariance properties of control systems (we just call them
control entropies, for short) which have been considered over the past years; there are
also several slightly differing versions around. Hence, it appears worthwhile to us to
clarify some relations between these concepts which have been introduced in order to
describe minimal data rates in control systems with restricted digital communication
channels.

In the paper by Nair, Evans, Mareels, and Moran [16] the notion of topological
feedback entropy was introduced. A main result, [16, Theorem 1], shows that the
invariance topological feedback entropy coincides with the feedback data rate using
certain symbolic controllers (coder-controllers). Based on this relation, the second
part of that paper shows that the minimal data rate for stabilizing systems via coder-
controllers coincides with a local version of the topological feedback entropy at an
equilibrium, where the control range is taken arbitrarily small.

Later, Colonius and Kawan [4] introduced invariance entropy for continuous-time
control systems. In the doctoral thesis [11] by Kawan and in his subsequent papers [12,
13, 14], as well as in Colonius and Kawan [5] and Colonius and Helmke [3] this notion
has been further elaborated and used to analyze properties of control systems. The
forthcoming monograph [15] will give a comprehensive presentation of these results.
In Da Silva [6], the notion of invariance entropy has been generalized to specific time-
dependent control systems, namely control systems with random dynamics modelled
by a measurable dynamical system.

Both notions of control entropy go back to topological entropy in the mathemat-
ical theory of dynamical systems. They differ in the following points: the control
entropy in [16] is based on feedbacks, it is defined for discrete-time systems, and it is
modelled after the original definition of topological entropy due to Adler, Konheim,
and McAndrew [1]. In contrast, the control entropy in [4] refers to open-loop, i.e.,
time-dependent control functions, it is given for continuous-time systems, and it is
closer in spirit to the definition of topological entropy in metric spaces due to Bowen
[2] and Dinaburg [8] (note, however, that, due to the presence of time-dependent con-
trols, these control systems are not dynamical systems.) In the present note we will
show that these control entropies are essentially equivalent. We restrict this compari-
son to the discrete-time setting, since the analysis of feedbacks in the continuous-time
case would presuppose more technicalities. Furthermore, we concentrate on the com-
parison between the feedback and the open-loop version, imposing a strong invariance

1



condition.
In Section 2 we briefly recall the definitions of topological entropy for maps,

and of invariance topological feedback entropy and invariance entropy for control
systems. Section 3 presents the main result, equivalence between the considered
control entropies, and Section 4 draws some conclusions and adds further comments.

Notation. The number of elements of a finite set S (its cardinality) is denoted
by #S. We write log for the logarithm to the basis 2.

2. Definitions of entropies. In this section, we briefly recall the concept of
topological entropy in the theory of dynamical systems and discuss concepts of control
entropies.

Consider a continuous map f : X → X on a compact topological space X, or the
associated discrete-time system given by the iteration scheme

xk+1 = f(xk), k ≥ 0.

Adler, Konheim, and McAndrew [1] define the topological entropy of an open cover
U of X (i.e., U consists of open sets whose union is X) as

H(U) := log min {#V | V a finite subcover of U} .

For two open covers U ,V of X, further open covers are defined by U∨V := {U∩V |U ∈
U , V ∈ V} (called the join of U and V) and f−1(U) := {f−1(U) | U ∈ U}. Then the
topological entropy of f with respect to an open cover U is

h(f,U) := lim
n→∞

1

n
H

(
n−1∨
i=0

f−i(U)

)
,

and the topological entropy of f is defined as

h(f) := sup {h(f,U) | U is an open cover of X} ∈ [0,∞) ∪ {∞}.

This number can be regarded as a measure for the fastest rate at which uncertainty
about the initial state is reduced by iterating the map f and tracking its trajectories
with respect to an open cover (that is, one can only distinguish between two points
if they lie in different elements of the open cover). Topological entropy has been
constructed in strict analogy to the measure-theoretic entropy due to Kolmogorov and
Sinai, where for an invariant measure µ instead of open covers measurable partitions
ξ = {Cα}α∈A are taken and and H(ξ) := −

∑
α µ(Cα) log µ(Cα); see, e.g., Katok and

Hasselblatt [10, Chapter 4], Downarowicz [9], or Walters [19].
An equivalent definition of topological entropy for a continuous map f on a com-

pact metric space (X, d), due to Bowen [2] and Dinaburg [8], is the following. For
ε > 0 and τ ∈ N a set S ⊂ X is called (τ, ε)-spanning, if for every x ∈ X there is
y ∈ S with d(f i(x), f i(y)) < ε for i = 0, 1, . . . , τ−1. Then let s(f, τ, ε) be the minimal
cardinality of such a set and define

hspan(f) := lim
ε→0

lim sup
τ→∞

1

τ
log s(f, τ, ε).

These definitions yield the same value. They present a way to measure the information
about the initial state generated by the iterates of the map f .

We note that also for noncompact spaces, the Bowen-Dinaburg definition applies
by considering compact sets of initial values and then taking the supremum over all
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compact sets, see Bowen [2]. A generalization of the open-cover definition to certain
maps on noncompact spaces has recently been given by Patrão [17]. This, however,
may give results which differ from Bowen’s version, in particular for linear maps on
Rn.

Next recall topological feedback entropy as defined by Nair, Evans, Mareels, and
Moran [16]. Let X be a topological space and consider a control system on X of the
form

xk+1 = F (xk, uk) = Fuk
(xk), k ≥ 0, (2.1)

where F : X×U → X, and U is an arbitrary set. Further assume that Fu := F (·, u) :
X → X is continuous for each u ∈ U . For a sequence u = (u0, u1, . . .) of controls in
U we write

ϕ : N0 ×X × UN0 → X, ϕ(k, x, u) := Fuk−1
◦ · · · ◦ Fu0

(x).

Here UN0 is the set of all functions from N0 := N ∪ {0} to U . Where convenient, we
use the notation ϕ(k, x, u) also if u is only defined on a finite interval {0, . . . , τ} with
τ + 1 ≥ k. Note that all maps ϕk,u(·) := ϕ(k, ·, u) on X are continuous.

Let Q ⊂ X be a compact set with nonvoid interior denoted by intQ which fulfills
the following strong invariance condition (essentially, this is assumption SI in [16,
p. 1586]):

For every x ∈ Q there is ux ∈ U with F (x, ux) ∈ intQ.
Let A be an open cover of Q, τ a positive integer, and G : A → Uτ a map

with components G0, . . . , Gτ−1 that assign control values to all sets in A, such that
for every A ∈ A the sequence of controls G(A) yields ϕ(k,A,G(A)) ⊂ intQ for
all k ∈ {1, . . . , τ}. Then we call the triple (A, τ, G) an invariant open cover of Q.
The existence of an invariant open cover easily follows from the strong invariance
assumption on Q and the continuity assumption for the maps Fu, u ∈ U . Now, for
any sequence α := (Ai)i≥0 of sets in A we define the control sequence

u(α) := (u0, u1, . . .) with (ul)
iτ−1
l=(i−1)τ = G(Ai−1) for all i ≥ 0. (2.2)

We further define for each j ≥ 1 the set

Bj(α) := {x ∈ X | ϕ(iτ, x, u(α)) ∈ Ai for i = 0, 1, . . . , j − 1} .

Then Bj(α) is an open set, since it can be written as the finite intersection of preimages
of open sets under continuous mappings,

Bj(α) =

j−1⋂
i=0

{x ∈ X | ϕ(iτ, x, u(α)) ∈ Ai} =

j−1⋂
i=0

ϕ−1iτ,u(α)(Ai).

Furthermore, for each j ≥ 1, letting α run through all sequences of elements in A,
the family

Bj :=
{
Bj(α) | α ∈ AN0

}
(2.3)

is an open cover of Q. Using the join operation for open covers, introduced above, we
can express Bj also by

Bj = A ∨ ϕ−1τ,u(α)(A) ∨ . . . ∨ ϕ−1(j−1)τ,u(α)(A).
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Let N(Bj |Q) denote the minimal number of elements in a finite subcover of Bj , and
define the invariance topological feedback entropy hfb(Q) by

hfb(A, τ, G) := lim
j→∞

1

jτ
logN(Bj |Q), hfb(Q) := inf

(A,τ,G)
hfb(A, τ, G), (2.4)

where the infimum is taken over all invariant open covers. Existence of the limit follows
from subadditivity of the sequence j 7→ logN(Bj |Q) and the following elementary
subadditivity lemma which we state and prove for completeness.

Lemma 2.1. Let (an)n∈N be a subadditive sequence of real numbers, i.e., am+n ≤
am + an for all m,n ∈ N. Then an/n converges (the limit may be −∞), and

lim
n→∞

an
n

= inf
n∈N

an
n

=: γ.

Proof. Fix N ∈ N and write n = k(n)N +r(n) with k(n) ∈ N0 and 0 ≤ r(n) < N ,
hence k(n)/n → 1/N for n → ∞. Clearly, ak is bounded for 0 ≤ k < N for any N .
By subadditivity, for any n ∈ N

γ ≤ an
n
≤ 1

n

[
ak(n)N + ar(n)

]
≤ 1

n

[
k(n)aN + ar(n)

]
.

Hence, for ε > 0 there exists an N0(ε,N) ∈ N such that for all n > N0(ε,N)

γ ≤ an
n
≤ aN

N
+ ε.

Since ε and N are arbitrary, this implies

γ ≤ lim inf
n→∞

an
n
≤ lim sup

n→∞

an
n
≤ γ,

which concludes the proof.
Comparing the definition of topological feedback entropy in (2.4) to the topolog-

ical entropy of maps, one realizes that it appears as a natural generalization, where,
instead of a single map, all combinations of maps generated by feedback are consid-
ered. Then the infimum is taken, since, in contrast to the theory of dynamical systems,
not the maximal amount of information generated by the system is of interest, but
the minimal amount of information needed for making the subset Q invariant.

We turn to the definition of invariance entropy as in Colonius and Kawan [4],
adapted to the setting above. For a natural number τ ∈ N, a set S ⊂ Uτ is called
(τ,Q)-spanning if for every x ∈ Q there is u ∈ S such that ϕ(j, x, u) ∈ intQ for all
j ∈ {1, . . . , τ}. The minimal cardinality of such a set is denoted by rinv(τ,Q) and we
define the invariance entropy of Q by

hinv(Q) := lim sup
τ→∞

1

τ
log rinv(τ,Q). (2.5)

The following proposition shows that this number is finite and the limit superior is in
fact a limit.

Proposition 2.2. Assume that the strong invariance condition is satisfied. Then
rinv(τ,Q) <∞ for all τ > 0 and

hinv(Q) = lim
τ→∞

1

τ
log rinv(τ,Q) = inf

τ≥1

1

τ
log rinv(τ,Q). (2.6)
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Proof. Let τ ≥ 1 and pick an arbitrary x ∈ Q. By strong invariance, we find
u1, . . . , uτ ∈ U with xj := ϕ(j, x, (u1, . . . , uτ )) ∈ intQ for all j. Each xj has an open
neighborhood Vj ⊂ intQ. By continuity, we find an open neighborhood Wx of x with
ϕ(j,Wx, (u1, . . . , uτ )) ⊂ Vj for j = 1, . . . , τ . By compactness of Q, finitely many of
such neighborhoods are sufficient to cover Q. The corresponding control sequences
form a finite (τ,Q)-spanning set. To show (2.6), we apply the subadditivity lemma
2.1 to the sequence τ 7→ log rinv(τ,Q). In order to show subadditivity, consider a
(τ1, Q)-spanning set S1 and a (τ2, Q)-spanning set S2. Then define control sequences
of length τ1 + τ2 by

w := (u0, . . . , uτ1−1, v0, . . . , vτ2−1) ∈ Uτ1+τ2

for each u := (u0, . . . , uτ1−1) ∈ S1 and v := (v0, . . . , vτ2−1) ∈ S2. The set of all such
control sequences w is a (τ1 + τ2)-spanning set of cardinality #S1 ·#S2, which implies
log rinv(τ1 + τ2, Q) ≤ log rinv(τ1, Q) + log rinv(τ2, Q).

This definition of invariance entropy is closer in spirit to the Bowen-Dinaburg
definition of topological entropy, since spanning sets are used; here they are sets of
control functions, not of initial states, and it is not required that trajectories remain
close up to time τ , but it is required that they remain in Q.

3. Equivalence between entropies. In the following, we show that the in-
variance topological feedback entropy (2.4) and the invariance entropy (2.5) based on
feedbacks and on open-loop controls, respectively, coincide.

Theorem 3.1. Let Q ⊂ X be a compact subset that satisfies the strong invariance
condition for control system (2.1). Then hfb(Q) = hinv(Q).

Proof. For a fixed τ ≥ 1, let S be a minimal (τ,Q)-spanning set. Define for u ∈ S

A(u) := {x ∈ Q | ϕ(j, x, u) ∈ intQ for j = 1, . . . , τ} .

It is clear that the sets A(u) form an open cover A of Q. Now define τ maps Gk :
A → U by

Gk(A(u)) := uk, k = 0, . . . , τ − 1.

Since S is minimal, this definition makes sense. Clearly, (A, τ, G) is an invariant open
cover of Q. We have the trivial inequality #Bj ≤ (#A)j (cf. (2.3)), which implies

hfb(Q) ≤ lim
j→∞

logN(Bj |Q)

jτ
≤ log #A

τ
=

1

τ
log rinv(τ,Q).

Since this holds for each τ ≥ 1, we obtain hfb(Q) ≤ hinv(Q). To show the converse
inequality, let (A,τ,G) be an invariant open cover of Q. Choosing a finite subcover A′
of A and restricting the functions Gk to that subcover, we obtain another invariant
open cover (A′, τ, G′) such that hfb(A′, τ, G′) ≤ hfb(A, τ, G). Therefore, we may
assume that A is finite. Then we can construct a (jτ,Q)-spanning set Sj for each

j ≥ 1 with N(Bj |Q) elements as follows: Let B̃j be a minimal subcover of Bj . Each

element of B̃j corresponds to a particular sequence of elements in A and an associated
control sequence u(α) as defined in (2.2). The set of these control sequences obviously
forms a (jτ,Q)-spanning set. Hence, we obtain

rinv(jτ,Q) ≤ N(Bj |Q) for all j ≥ 1,
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implying

hinv(Q) = lim
j→∞

1

jτ
log rinv(jτ,Q) ≤ lim

j→∞

1

jτ
logN(Bj |Q) = hfb(A, τ, G).

Since this holds for every (A, τ, G), the desired inequality follows.
We finish the paper with a simple example.
Example 3.2. Consider a scalar linear control system given by

xk+1 = axk + uk, uk ∈ U := [−1− ε, 1 + ε], (3.1)

for some ε > 0 and a > 1. We claim that the compact interval Q := [− 1
a−1 ,

1
a−1 ]

satisfies the strong invariance condition and that its entropy is given by

hfb(Q) = hinv(Q) = log a.

Indeed, take some x0 ∈ Q and let u0 := (1− a)x0 ± δ with 0 < δ ≤ ε. Then

−1− ε ≤ (1− a)x0 ± δ ≤ 1 + ε.

Hence, u0 is an admissible control value, and putting it into equation (3.1) we obtain

x1 := ax0 + (1− a)x0 ± δ = x0 ± δ.

This implies that every initial state in Q can be steered into the interior of Q in one
time step, showing strong invariance of Q.

Now, let us compute the entropy of Q. To show that hinv(Q) ≥ log a, we use a
volume argument for the Lebesgue measure λ. Let S be a minimal (τ,Q)-spanning set
and define

Qu := {x ∈ Q : ϕ(j, x, u) ∈ intQ for j = 1, . . . , τ} , u ∈ S.

By definition of spanning sets, Q =
⋃
u∈S Qu. Since ϕ(τ, ·, u) maps Qu into intQ, it

holds that

λ
(
ϕ(τ,Qu, u)

)
= aτλ

(
Qu
)
≤ λ (intQ) ,

which implies

λ (intQ) ≤
∑
u∈S

λ
(
Qu
)
≤ #S ·max

u∈S
λ
(
Qu
)
≤ #S · λ(intQ)

aτ
.

Hence, we obtain rinv(τ,Q) ≥ aτ for all τ which yields the desired estimate.
To show the upper estimate, we explicitly construct (τ,Q)-spanning sets. First

note that the transition map ϕ for constant control sequences u = (u, u, . . .) is

ϕ(τ, x, u) = aτx+

τ−1∑
i=0

aτ−1−iu = aτ
(
x+

u

a− 1

)
− u

a− 1
. (3.2)

Now we construct (τk, Q)-spanning sets for the times

τk :=

⌊
k

log a

⌋
− 1, k ≥ k0,
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where k0 is chosen large enough so that bk0/ log ac ≥ 2. Note that

aτk < a
k

log a = (2log a)
k

log a = 2k. (3.3)

For each k ≥ 1 we subdivide Q into 2k subintervals of the same length:

Qj := − 1

a− 1
+

2

a− 1

[
j

2k
,
j + 1

2k

]
, j = 0, 1, . . . , 2k − 1.

Then we associate to each Qj with j /∈ {0, 2k − 1} a constant control sequence defined
by

uj := (uj , uj , . . . , uj) ∈ Uτ , uj := 1− 2j

2k − 1
∈ [−1, 1] ⊂ U.

For j = 0 and j = 2k − 1 we use the control values u0 := 1 + δ and u2k−1 := −1− δ,
respectively, where δ > 0 is chosen sufficiently small.

Now we apply the control sequence uj to the interval Qj. We use the abbreviation

b := a− 1 and first assume that j /∈ {0, 2k − 1}. Then for each t ∈ {1, . . . , τk}, using
(3.2), we obtain

ϕ

(
t,−1

b
+

2

b

j

2k
, uj

)
=

1

b

(
2jat

(
1

2k
− 1

2k − 1

)
−
(

1− 2j

2k − 1

))
≥ 1

b

(
2jaτk

(
1

2k
− 1

2k − 1

)
−
(

1− 2j

2k − 1

))
(3.3)
>

1

b

(
2j2k

(
1

2k
− 1

2k − 1

)
−
(

1− 2j

2k − 1

))
=

1

b

(
− 2j

2k − 1
−
(

1− 2j

2k − 1

))
= −1

b
,

where we used that 1/2k − 1/(2k − 1) < 0. For j = 0 we obtain

ϕ

(
t,−1

b
, u0

)
= at

δ

b
− 1 + δ

b
= −1

b

(
1− (at − 1)δ

)
> −1

b
.

A similar estimate as above yields for j /∈ {0, 2k − 1}

ϕ

(
t,−1

b
+

2

b

j + 1

2k
, uj

)
<

1

b
,

and for j = 2k − 1

ϕ

(
t,

1

b
, u2k−1

)
= at

−δ
b

+
1 + δ

b
=

1

b

(
1− (at − 1)δ

)
<

1

b
.

Note that the corresponding estimates for the right endpoint of Q0 and the left endpoint
of Q2k−1 are trivial. Since for each t, ϕ(t, ·, u) maps Qj onto a compact interval
without reversing the left and right endpoints, we have shown that the set Sk :=
{u0, . . . , u2k−1} is (τk, Q)-spanning, which implies

rinv(τk, Q) ≤ 2k for all k ≥ 1.
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This gives

lim sup
k→∞

1

τk
log rinv(τk, Q) ≤ lim sup

k→∞

k
k

log a − 2
= log a. (3.4)

If (mn)n≥1 is an arbitrary sequence of integers with mn → ∞, for each n let kn be
the minimal integer such that mn ≤ bkn/ log ac− 1. Then b(kn− 1)/ log ac− 1 ≤ mn.
This implies

mn ≥
kn − 1

log a
− 1 =

kn
log a

−
(

1

log a
+ 1

)
︸ ︷︷ ︸

=:d

≥
⌊
kn

log a

⌋
− d.

Using monotonicity of τ 7→ rinv(τ,Q), this yields

lim sup
n→∞

1

mn
log rinv(mn, Q) ≤ lim sup

n→∞

1

b knlog ac − d
log rinv

(⌊
kn

log a

⌋
− 1, Q

)
= lim sup

n→∞

1

τkn
log rinv (τkn , Q)

(3.4)

≤ log a.

Hence, we have proved that log a is an upper bound for hinv(Q).
There are many variants of the definitions above which also make sense. For

example, in the definition of strong invariance, one can fix a compact set Q′ in the
interior of Q and require that ϕ(j, A,G(A)) ⊂ intQ′. Or one may add a further
compact set K ⊂ Q of initial values and then require that one remains within Q and,
finally reaches Q′ ⊂ intQ. In all of these cases, the arguments above show that the
feedback definition and the open-loop definition coincide.

Changing the definitions slightly, the strong invariance condition may be weak-
ened by assuming just invariance of Q (i.e., for every x ∈ Q there is ux ∈ U with
F (x, ux) ∈ Q.) Then one may obtain existence of finite spanning sets by allowing
that the corresponding trajectories are within ε-neighborhoods of Q, and then, after
taking the limit superior for time tending to ∞ letting ε→ 0 (see [4, Section 3]).

4. Conclusions. For discrete-time systems, the discussion in Section 3 has
shown that the two considered notions of entropy for the problem to render a compact
subset of the state space invariant are equivalent, provided that the strong invariance
condition is satisfied. Either, one may consider the growth rate of the number of sub-
sets (in an open cover) where the feedback law is constant when time goes to infinity;
or one may consider the growth rate of the number of different open-loop controls
as time tends to infinity. We also remark that for continuous-time systems it seems
easier to use the second notion which avoids the discussion of appropriate regularity
properties of feedbacks.
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