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Abstract— For control systems described by ordinary dif-
ferential equations subject to almost periodic excitations the
controllability properties depend on the specific excitation. Here
these properties and, in particular, control sets and chain
control sets are discussed for all excitations in the closure of all
time shifts of a given almost periodic function. Then relations
between heteroclinic orbits of an uncontrolled and unperturbed
system and controllability for small control ranges and small
perturbations are studied using Melnikov’s method. Finally, a
system with two-well potential is studied in detail.

I. INTRODUCTION

This paper analyzes controllability properties of control

systems which are subject to almost periodic excitations. The

main topic are the relations between hetero- or homoclinic

orbits of an uncontrolled and unperturbed system and con-

trollability for small control ranges. Here Melnikov’s method

plays an important role. Furthermore, we apply our results to

a second order system modeling ship dynamics and capsizing

under wave excitations. See [5] for references, proofs and

further details.

The paper is organized as follows: After preliminaries

in Section II, we analyze chain control sets in Section III.

Section IV introduces control sets and presents relations to

chain control sets and to almost periodic solutions of the

uncontrolled system. Section V presents relevant results on

almost periodic perturbations of hyperbolic equilibria and

Melnikov’s method. This is used in Section VI to study

the relation between heteroclinic orbits of an unperturbed

system and controllability for small control ranges. Finally,

in Section VII we discuss a second order system with M -

potential modeling ship roll motion.

II. PRELIMINARIES

Consider the control system

ẋ(t) = f
(

x(t), z(t), u(t)
)

, u ∈ U , (1)

in an open set M ⊂ R
d with admissible controls in U , and

assume that z is an almost periodic function (compare e. g.,

Scheurle [13, Definition 2.6]). Define θ as the time shift

(θtz)(s) := z(t + s), s, t ∈ R. Let Z be the closure in

the space Cb(R,R
k) of bounded continuous functions of the

shifts of an almost periodic function. Then Z is a minimal

set; i. e., every trajectory is dense in Z . Observe that for z ∈
Z it holds that z(t) = (θtz)(0). Assuming global existence

and uniqueness, we denote by ϕ(t, t0, x, z, u) the solution of

the initial value problem ẋ(t) = f
(

x(t), z(t), u(t)
)

, x(t0) =
x. If t0 = 0, we often omit this argument. The solution

map of the coupled system is denoted by ψ(t, x, z, u) =
(

ϕ(t, x, z, u), θtz
)

. We assume that the set of admissible

controls is given by U = {u ∈ L∞(R,Rm), u(t) ∈
U for almost all t}, where U ⊂ R

m. If we denote also the

time shift on U by θt, we obtain the cocycle property ϕ(t+
s, x, z, u) = ϕ

(

s, ϕ(t, x, z, u), θtz, θtu
)

, t, s ∈ R. Finally,

the maps Φt : M × Z × U → M × Z × U , Φt(x, z, u) =
(

ψ(t, x, z, u), θtu
)

, t ∈ R, define a continuous flow, the con-

trol flow, provided that U ⊂ R
m is convex and compact and

f(x, z, u) = f0(x, z) +
∑m

i=1 uifi(x, z) with C1-functions

fi : R
d ×R

k → R
d; here U ⊂ L∞(R,Rm) is endowed with

the weak∗ topology. This follows by a minor extension of

Proposition 4.1.1 in [3].

The weak∗ topology on U is compact and metrizable.

Throughout this paper, we endow U with a corresponding

metric and assume that the conditions above guaranteeing

continuity of the control flow are satisfied. Note that the

space Z of almost periodic excitations is considered in the

norm topology of Cb(R,R
k). The shifts on each of these

spaces are continuous.

For convenience, we also assume that 0 ∈ U , and we

call the corresponding differential equation with u ≡ 0 the

uncontrolled system. For periodic and for quasi-periodic ex-

citations we may be able to replace Z by a finite dimensional

state space Z.

III. CHAIN CONTROL SETS

In this section we define and characterize chain control

sets relative to a subset of the state space working in the

general almost periodic case. It will be convenient to write

for a subset A ⊂ M × Z the intersection with a fiber over

z ∈ Z as Az := A∩(M×{z}). Hence A =
⋃

z∈Z Az . Where

convenient, we identify Az and {x ∈M, (x, z) ∈ Az}.

A controlled (ε, T )-chain along z ∈ Z is given by T0,
. . . , Tn−1 ≥ T , controls u0, . . . , un−1 ∈ U , and points x0,
. . . , xn ∈ M with d

(

ϕ(Tj , xj , θT0+···+Tj−1
z, uj), xj+1

)

<
ε for all j = 0, . . . , n− 1.

Definition 1: A chain control set relative to a closed set

Q ⊂ M × Z is a nonvoid maximal set E ⊂ M × Z such

that
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1) for all (x, z), (y, w) ∈ E and all ε, T > 0 there exists a

controlled (ε, T )-chain in Q along z from x to (y, w),
i. e., x0 = x, xn = y, and d(θT0+···+Tn−1

z, w) < ε,
and

ψ(t, xj , θT0+···+Tj−1
z, uj) ∈ Q

for all t ∈ [0, Tj ] and for all j; (2)

2) for all (x, z) ∈ E there is u ∈ U with ψ(t, x, z, u) ∈ E
for all t ∈ R.

The condition (2) can be written as ϕ(t, xj , θT0+···+Tj−1
z,

uj) ∈ Qθtzj
. Note that the three components x, z and

u are treated in different ways: Jumps are allowed in x,

approximate reachability is required for z, and no condition

on the controls is imposed. It is easy to show that chain

control sets are closed.

The following result clarifies the relations between chain

control sets and their fibers.

Proposition 2: Consider system (1) in a closed subset

Q ⊂M ×Z .

1) Suppose that Q is compact, and let Ez ⊂ Qz , z ∈ Z,
be a maximal family of sets satisfying the following

conditions:

a) For every z ∈ Z and all x, y ∈ Ez and all ε, T >
0 there exists a controlled (ε, T )-chain in Q from

x along z to (y, z).
b) For every z ∈ Z and every x ∈ Ez there exists a

control u ∈ U such that ϕ(t, x, z, u) ∈ Eθtz for

all t ∈ R.

c) If xn ∈ Ezn
with (xn, zn) → (x, z) ∈ M × Z ,

then x ∈ Ez .

If E :=
⋃

z∈ZE
z ⊂ intQ, then E is a chain control

set.

2) Let E be a chain control set. Then the fibers Ez , z ∈
Z, are contained in a maximal family Ẽz ⊂ Qz , z ∈
Z , of sets satisfying conditions a)–c) above. If Ẽ :=
⋃

z∈Z Ẽ
z ⊂ intQ, then E = Ẽ.

Proof: See [5, Proposition 3.5].

Remark 3: In condition b) of Proposition 2 one does not

have that a trajectory exists which after an appropriate time

comes back to Ez (as for periodic excitations, where one

comes back into the same fiber after the period). In the gen-

eral almost periodic case the trajectory will never come back

to the same fiber. Instead, the weaker property formulated in

b) holds together with condition c), which locally connects

different fibers and is an upper semi-continuity property of

z 7→ Ez .

It is of great interest to see if the behavior in a single fiber

determines chain control sets. In fact, one can reconstruct

chain control sets from their intersection with a fiber.

Theorem 4: Consider system (1), and assume that Q ⊂
M × Z is compact. For some z0 ∈ Z let Ez0 ⊂ Q × {z0}
be a nonvoid maximal set such that for all x0, y0 ∈ Ez0 and

all ε, T > 0 there exists a controlled (ε, T )-chain in Q from

x0 along z0 to (y0, z0).

Then the set

E := cl























(x, z) ∈M × Z, for all ε, T > 0 there are

x0, y0 ∈ Ez0 and controlled (ε, T )-chains

in Q from x0 along z0 to (y0, z0) such that

(x, z) = ψ(t, xj , θT0+···+Tj−1
z0, uj) for

some j and t ∈ [0, Tj ]























is a chain control set relative to Q.

Proof: See [5, Theorem 3.7].

Remark 5: Theorem 4 shows that, up to closure, one

can find chain control sets by looking at a single fiber,

i. e., a single almost periodic excitation. This significantly

simplifies numerical computations, since only one almost

periodic excitation z(t), t ≥ 0, has to be considered. Then

the resulting sets must be considered for those times T where

z and θT z are close. In the quasi-periodic case, one has to

look for (large) times t where all ωit are close to zero modulo

2π.

IV. CONTROLLABILITY AND CHAIN CONTROLLABILITY

The main aim in this section is to analyze when an almost

periodic solution of the uncontrolled system is contained in

the interior of a subset of complete controllability. For this

purpose, we ask when a reachable point is contained in the

interior of the reachable set and discuss chain controllability.

This leads us to control sets and their relation to chain control

sets.

Again, consider control system (1). For a closed subset

Q ⊂ M × Z , a point x ∈ Q, and z ∈ Z we define

the positive and negative orbits along z relative to Q as

O+(x; z,Q) := {ϕ(t, x, z, u), with ψ(s, x, z, u) ∈ Q, s ∈
[0, t] for some t ≥ 0, u ∈ U}, O−(x; z,Q) := {ϕ(t, x, z, u),
with ψ(s, x, z, u) ∈ Q, s ∈ [t, 0] for some t ≤ 0, u ∈ U}.

Observe that ϕ(t, x, z, u) ∈ Qθtz . Analogously the orbits

O+
t (x; z,Q),O−

t (x; z,Q), etc. are defined, if we restrict the

times accordingly. If Q = M ×Z , we omit the argument Q.

In addition to chain control sets it is also of interest to

discuss control sets, i. e., maximal subsets of approximate

controllability.

Definition 6: For a closed subset Q ⊂ M × Z a subset

D ⊂ Q is a control set relative to Q if it is maximal with

the following properties:

1) For all (x, z), (y, w) ∈ D there are Tn ≥ 0, un ∈ U
with ψ(Tn, x, z, un) → (y, w) and ψ(t, x, z, un) ∈ Q
for t ∈ [0, Tn].

2) For every z ∈ Z and every x ∈ Dz there exists a

control u ∈ U such that ψ(t, x, z, u) ∈ D for all t ≥
0.

In condition 1), it is clear that Tn → ∞, unless the

excitation is periodic. Condition 2) immediately implies that

the projection of the control set is dense in Z; the inclusion

may be rewritten as ϕ(t, x, z, u) ∈ Dz(t+·) for all t ≥ 0.
For periodic excitations, one can characterize control sets

by looking at the discrete time system defined by the

Poincaré map (Gayer [9]). We will show that also, in the

almost periodic case, it is possible to characterize control

sets fiberwise.
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The following result clarifies the relations between control

sets and their fibers.

Theorem 7: Consider system (1) in a closed subset Q ⊂
M ×Z .

1) Let Dz ⊂ Qz , z ∈ Z , be a maximal family of sets

satisfying the following conditions:

a) For every z ∈ Z and all x, y ∈ Dz there are

Tn → ∞ and un ∈ U with ψ(Tn, x, z, un) →
(y, z) and ψ(t, x, z, un) ∈ Q for all t ∈ [0, Tn].

b) For every z ∈ Z and every x ∈ Dz there exists a

control u ∈ U such that ϕ(t, x, z, u) ∈ Dθtz for

all t ≥ 0.

c) For every (x, z) ∈ Dz and all Tn > 0 with

θTn
z → w ∈ Z there are y ∈ M and un ∈ U

such that ψ(Tn, x, z, un) → (y, w) ∈ Dw and

ψ(t, x, z, un) ∈ Q for all t ∈ [0, Tn].

Then D :=
⋃

z∈Z D
z is a control set.

2) Let D be a control set. Then the fibers Dz form a

maximal family of sets satisfying conditions a) and b)

above.

Proof: See [5, Theorem 4.4].

Our next aim is to prove that under an inner-pair condition

every almost periodic solution of the uncontrolled equation

is contained in the interior of a control set. For a periodic

excitation, the state space Z = S
1 is (trivially) completely

controllable. However, already for a quasi-periodic excitation

with two noncommensurable (i. e., rationally independent)

frequencies ω1, ω2, this is no longer true. Hence it does not

make sense to consider exact controllability properties in the

z-component. This is different in the x-component as shown

by the following proposition.

Proposition 8: Let ψ(t, x0, z0, 0) ∈ Q, t ∈ R, be

an almost periodic solution of the uncontrolled system,

and define A := cl{ψ(t, x0, z0, 0), t ∈ R}. Assume that

there are ε, T > 0 such that for every (x, z) ∈ A it

holds that Bε

(

ϕ(T, x, z, 0)
)

⊂ O+
T (x; z,Q). Then for all

(x, z), (y, w) ∈ A there is τ > 0 such that Bε/2(y) ⊂
O+

τ (x; z,Q), and for every y0 ∈ Bε/2(y) there are τn ≥ 0
and un ∈ U with ϕ(τn, x, z, un) = y0 in Q and θτn

z → w.

Proof: See [5, Proposition 4.6].

This proposition allows us to show that almost periodic

solutions of the uncontrolled system are contained in the

interior of control sets. In other words, around an almost

periodic solution we have complete controllability along the

almost periodic excitations.

Theorem 9: Let ψ(t, x0, z0, 0) ∈ Q, t ∈ R, be an almost

periodic solution of the uncontrolled system, and let A :=
cl{ψ(t, x0, z0, 0), t ∈ R}. Assume that there are ε, T > 0
such that for every (x, z) ∈ A

Bε(ϕ(T, x, z, 0)) ⊂ O+
T (x; z,Q) and

Bε(ϕ(−T, x, z, 0)) ⊂ O−
T (x; z,Q).

(3)

Then there exists a control set D such that for every (x, z) ∈
A one has x ∈ intDz.

Proof: See [5, Theorem 4.7]

Remark 10: Condition (3) is analogous to the inner-pair

condition (but slightly stronger) for autonomous control

systems; see [3, Definition 4.1.5].

Next, we generalize Theorem 9 in order to show a relation

between chain controllability and controllability.

Theorem 11: Let 0 ≤ ρ1 ≤ ρ2, and consider a compact

subset Q ⊂M ×Z . Let Eρ1 be a chain control set relative

to Q for system (1) with controls in Uρ1 . Assume that there

are ε, T > 0 such that for every (x, z) ∈ Eρ1 and u ∈ Uρ1

Bε

(

ϕ(T, x, z, u)
)

⊂ O+,ρ2

T (x; z,Q) and

Bε

(

ϕ(−T, x, z, u)
)

⊂ O−,ρ2

T (x; z,Q).
(4)

Then there exists a control set Dρ2 such that for every

(x, z) ∈ Eρ1 one has x ∈ intDρ2

z .
Proof: See [5, Theorem 4.11]

Remark 12: Using this theorem we can, as in [3, Theo-

rem 4.7.5], show that for all up to at most countably many

ρ-values the closures of control sets and the chain control

sets coincide. Hence, by Theorem 4 one may also determine

the fibers of control sets via the fibers of the chain control

sets. For this purpose, one has to consider ‘long’ times, since

these fibers are determined only on long time intervals; cf.

Remark 5. At first sight, this is different if the excitation is

periodic; here only the Poincaré map and hence the period

length are needed; see [5, Proposition 3.6]. Nevertheless,

also in this case approximate controllability is relevant (the

entrance boundary of a control set is reached from the interior

only for time tending to infinity), and hence also these objects

are determined only on long time intervals.

V. ALMOST PERIODIC SOLUTIONS AND HETEROCLINIC

ORBITS

In this section we recall results on almost periodic pertur-

bations of hyperbolic equilibria and Melnikov’s method.

It is well-known that, under small periodic perturbations, a

hyperbolic fixed point of an autonomous differential equation

becomes a periodic solution; see e. g., [1, Theorem 25.2]

for details on this result, which is known as the Poincaré

continuation. This result can be generalized to almost peri-

odic perturbations, in which case the existence of an almost

periodic solution can be shown. Consider the differential

equation

ẋ = g(x) + µh(t, x, µ) (5)

for g : R
d → R

d and h : R × R
d × R → R

d. The parameter

µ ∈ R is interpreted as a small perturbation. Setting µ = 0
in system (5) leads to the equation ẋ = g(x), which will

be referred to as the unperturbed system. Throughout we

assume that (5) satisfies the following conditions:

The function g is C1, h is continuous, hx exists, and there

are a bounded and open subset V ⊂ R
d containing x0 and

a constant µ̄ > 0 such that h and hx are almost periodic

in t, uniformly with respect to (x, µ) ∈ clV × [−µ̄, µ̄], and

solutions of (5) exist for all starting points in V , all µ ∈
[−µ̄, µ̄], and all times.

As noted in Scheurle [13, Remark 2.7], almost periodicity

of hx uniformly with respect to (x, µ) is equivalent with hx

being uniformly continuous on R × clV × [−µ̄, µ̄].
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Next recall the notion of exponential dichotomies, which

generalize the idea of hyperbolicity to nonautonomous sys-

tems; cf. Coppel [6].

Definition 13: Consider the system

ẋ = A(t)x (6)

for a piecewise continuous matrix function A : J → R
d×d

defined on an interval J ⊂ R, and let X(t) be a fundamental

matrix function for (6). System (6) has an exponential

dichotomy on J if there is a projection P : R
d → R

d and

constants K ≥ 1, α > 0 such that ‖X(t)PX−1(s)‖ ≤
Ke−α(t−s) for s ≤ t and ‖X(t)(I − P )X−1(s)‖ ≤
Ke−α(s−t) for s ≥ t.

Then the following result holds (this is essentially [13,

Lemma 2.8]).

Proposition 14: Suppose that the unperturbed system cor-

responding to (5) has a hyperbolic fixed point x0; i. e.,

g(x0) = 0 and the real parts of the eigenvalues of gx(x0) are

different from 0. For all (small) η > 0 there is µ0 = µ0(η) >
0 such that for |µ| ≤ µ0 there exists a unique solution ζµ(t)
of system (5) satisfying ‖ζµ(t)−x0‖ ≤ η for all t ∈ R. This

solution is almost periodic.

Proof: See [5, Proposition 5.4].

If we suppose that in our setting there exist two hyperbolic

fixed points x± ∈ R
d of the unperturbed system, Proposition

14 implies the existence of almost periodic solutions ζµ
± near

x± for sufficiently small µ. If there is a heteroclinic orbit ζ
from x− to x+, the question arises how the system behaves

near ζ for small perturbations µ.

For time-periodic perturbations Melnikov’s method gives

a handy criterion for the existence of transversal heteroclinic

points. Palmer has developed a generalization of Melnikov’s

method in [12] which, in our setting, yields the following

theorem.

Theorem 15: Consider the system ẋ = g(x)+µh(t, x, µ),
and let the following assumptions be satisfied:

1) There are a bounded and open subset V ⊂ R
d and

a constant µ̄ > 0 such that g : V → R
d is C2 and

h : R × V × [−µ̄, µ̄] → R
d is continuous. The partial

derivatives ht, hx, hµ, hxx, hxµ, hµx and hµµ exist

and are bounded, continuous in t for each fixed x, µ,

and continuous in x, µ uniformly with respect to t, x
and µ.

2) The functions h and hx are almost periodic in t,
uniformly with respect to (x, µ) ∈ clV × [−µ̄, µ̄].

3) The unperturbed equation ẋ = g(x) has hyperbolic

fixed points x± ∈ V with stable and unstable mani-

folds of the same dimensions.

4) There is a heteroclinic orbit ζ from x− to x+ contained

in V .

5) The function ∆(t0) :=
∫ ∞
−∞ ϕ(t) ·h

(

t+ t0, ζ(t), 0
)

dt
has a simple zero at some t0 ∈ R, where ϕ(t) is the

unique (up to a scalar multiple) bounded solution of

the adjoint system ẋ = gx

(

ζ(t)
)T
x and “·” denotes

the inner product in R
d.

Then there exists δ0 > 0 such that for sufficiently small

µ the perturbed system (5) has a unique solution x(t, µ)

satisfying ‖x(t, µ) − ζ(t − t0)‖ ≤ δ0 for all t ∈ R.

Furthermore supt∈R
‖x(t, µ)−ζ(t− t0)‖ = O(µ) for µ→ 0

holds, and ẋ =
[

gx

(

x(t, µ)
)

+ µhx

(

t, x(t, µ), µ
)]

x has an

exponential dichotomy on R.

Finally, it holds that limt→±∞ ‖x(t, µ) − ζµ
±(t)‖ = 0

for sufficiently small µ, where ζµ
± are the almost periodic

solutions near x±.

Proof: [5, Theorem 5.5]

Remark 16: This theorem is also applicable to homoclinic

orbits by letting x− = x+.

Remark 17: If in the two-dimensional case g is Hamilto-

nian, ∆(t0) coincides with the Melnikov function up to a

scalar multiple, Marsden [11].

VI. HETEROCLINIC ORBITS AND CONTROLLABILITY

In this section, we show that existence of a heteroclinic

solution of the unperturbed uncontrolled equation implies

a controllability condition for perturbed systems with small

control influence. Conversely, if the controllability condition

holds for small control influence, existence of a heteroclinic

solution of the unperturbed equation follows. These results

are used to relate heteroclinic cycles to the existence of

control sets.

Consider the following family of control systems depend-

ing on a parameter µ:

ẋ = g(x) + µh(x, z(t), µ, u(t)), u ∈ U , (7)

with continuous functions g and h and control range U ⊂
R

m containing the origin; the functions z are in the hull Z of

a single almost periodic function. We refer to ẋ = g(x) and

ẋ = g(x) + µh(t, x, µ, 0) as the unperturbed uncontrolled

system and the perturbed uncontrolled system, respectively.

For fixed µ this is a special case of the control system (1);

we use the notation introduced in Sections II, III and IV

with a superfix µ to indicate dependence on this parameter.

In particular, solutions (whose existence we always assume)

are denoted by ϕµ(t, x0, z, u), t ∈ R, x0 ∈ R
d, z ∈ Z and

u ∈ U .

Proposition 18: Assume that system (7) with control u =
0 satisfies the assumptions 1)–5) of Theorem 15. Let ζµ

± be

the almost periodic solutions near the hyperbolic equilibria

x± of the unperturbed uncontrolled system and let x(t, µ) :=
ϕµ(t, xµ, z0, 0) be the solution near the heteroclinic orbit

ζ from x− to x+ for some xµ ∈ R
d, z0 ∈ Z . Let µ

be a parameter value such that the conclusions of Theo-

rem 15 hold, and assume that there are ε = ε(µ), T =
T (µ) > 0 such that for every (x, z) ∈ Q := clV ×
Z it holds that Bε(ϕ

µ(T, x, z, 0)) ⊂ Oµ,+
T (x; z,Q) and

Bε(ϕ
µ(−T, x, z, 0)) ⊂ Oµ,−

T (x; z,Q). Then there are a

control function uµ ∈ U and times tµ− < tµ+ such that the

corresponding solution ϕµ(t, xµ, z0, u
µ) of (7) satisfies

ϕµ(t, xµ, z0, u
µ) =

{

ζµ
−(t) if t ≤ tµ−,

ζµ
+(t) if t ≥ tµ+.

Proof: [5, Proposition 6.1]

The previous proposition shows that existence of a hetero-

clinic orbit for the unperturbed uncontrolled equation implies
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the existence of a control steering the system with almost

periodic excitation from the almost periodic solution near

one equilibrium to the almost periodic solution near the

other equilibrium. The following result considers a converse

situation where the unperturbed equation has equilibria x+

and x− and we want to conclude from existence of controlled

trajectories of the perturbed system from points near x−
to x+ that a heteroclinic orbit of the unperturbed equation

exists.

Proposition 19: Suppose that g and h(x, z(t), µ, 0) satisfy

assumptions 1) and 2) of Theorem 15 for all z ∈ Z; i. e.,

these assumptions hold for system (7) with u = 0. More-

over, assume that the chain recurrent set of the unperturbed

uncontrolled system ẋ = g(x) relative to clV is equal to

{x+, x−}.

Suppose furthermore that the control range U is bounded

and there are µn → 0, almost periodic excitations zn ∈ Z ,

control functions un ∈ U , times tn− < tn+, and points xn ∈
clV such that the solution ϕn(t) := ϕµn(t, xn, zn, un), t ∈
R, of (7) is contained in clV and satisfies ϕn(tn−) → x−
and there is δ > 0 with ‖ϕn(t) − x−‖ ≥ δ for all t ≥ tn+
and all n.

Then the unperturbed uncontrolled system has a hetero-

clinic orbit from x− to x+.

Proof: [5, Proposition 6.2]

Next we discuss consequences of these results for control

sets of systems with almost periodic excitations. Roughly,

the results above imply that the existence of a heteroclinic

cycle of the unperturbed uncontrolled system is equivalent to

the existence of a control set containing all almost periodic

solutions near the equilibria for the systems with almost

periodic excitation and small control ranges.

Recall that a heteroclinic cycle of the unperturbed equation

is given by a finite set x0, x1, . . . , xn = x0 of equilibria

together with heteroclinic solutions ζi from xi to xi+1 for

i = 0, . . . , n − 1. Existence of heteroclinic cycles can be

expected in the presence of symmetries.

Theorem 20: Let x0, x1, . . . , xn = x0 be pairwise dif-

ferent hyperbolic equilibria of the unperturbed uncontrolled

system ẋ = g(x), and consider control system (7) with a

bounded control range U containing the origin. For |µ| 6= 0,

small, and z ∈ Z denote the almost periodic solutions near

xi for excitation z by ζµ
i (z). Assume that system (7) with

u = 0 satisfies assumptions 1) and 2) of Theorem 15 for all

z ∈ Z on an open set V containing all equilibria xi.

1) Assume that for all i there are open subsets Vi ⊂
R

d containing the equilibria x− = xi and x+ =
xi+1 such that assumptions 3)–5) of Theorem 15 are

satisfied for (7) with u = 0, and let xi(t, µ, z) =
ϕµ(t, xµ

i , z, 0) be the solution near the heteroclinic

orbit ζi(z) from xi to xi+1 . Assume that for all

sufficiently small |µ| 6= 0 there are εi, Ti > 0
such that for every (x, z) ∈ Qi := clVi × Z it

holds that Bεi
(ϕµ(Ti, x, z, 0)) ⊂ Oµ,+

Ti
(x; z,Qi) and

Bεi
(ϕµ(−Ti, x, z, 0)) ⊂ Oµ,−

Ti
(x; z,Qi). Then for all

|µ| 6= 0, small, there exists a control set Dµ such that

for all z ∈ Z and all i the almost periodic solutions

satisfy ζµ
i (t) ∈ Dµ

z(t+·) and the heteroclinic solutions

satisfy xi(t, µ, z) ∈ Dµ,z(t+·).
2) Conversely, suppose for all i there are open subsets Vi

containing xi and xi+1 such that the chain recurrent

set of the unperturbed uncontrolled system ẋ = g(x)
relative to clVi is equal to {xi, xi+1}. Furthermore,

suppose that for a sequence 0 6= µn → 0 there are con-

trol sets Dµn containing the almost periodic solutions

ζµn

i near xi for almost periodic excitations zn ∈ Z .

Then the unperturbed system has a heteroclinic cycle

through the xi.

Proof: See [5, Theorem 6.3]

VII. AN OSCILLATOR WITH M -POTENTIAL

In this section we will apply our results to a second order

system with M -potential, which models ship roll motion.

Consider the system

ẍ+ µβ1ẋ+ µβ3ẋ
3 + x− αx3 = µz(t) + µu(t) (8)

with positive parameters α, β1 and β3, a small perturbation

parameter µ ∈ R, almost periodic excitations z : R → R,

and control functions u : R → [−ρ, ρ] for a control radius

ρ > 0. This model, proposed in Kreuzer and Sichermann

[10], has been studied in Colonius et al. [4] without time-

dependent excitation z. Note that in this application the terms

u(·) are interpreted as time-dependent perturbations (not as

controls) where only the range [−ρ, ρ] is known. Here the

control sets give information on the global stability behavior:

An invariant control set around the origin indicates stability.

If (for large perturbation amplitudes) it has merged with a

variant control set and itself becomes variant, stability is lost.

Hence it is of interest to compute all control sets.

By [5, Proposition 4.9], assumption (4) in Theorem 11 is

satisfied for all ρ2 > ρ1 ≥ 0. Thus every compact chain

control set Eρ1 is contained in the interior of a control set

Dρ2 , and hence, for all up to countably many ρ > 0, Remark

12 shows that the compact chain control sets coincide with

the closures of control sets.

Writing (8) as a first order system yields the two-

dimensional perturbed Hamiltonian system

ẋ1 = x2, (9)

ẋ2 = −x1 + αx3
1 + µ

(

−β1x2 − β3x
3
2 + z(t) + u(t)

)

.

Denote by ϕµ(t, x, z, u) the solution of this system, and let

ψµ(t, x, z, u) :=
(

ϕµ(t, x, z, u), θtz
)

. In the unperturbed and

uncontrolled case µ = 0 system (9) has a fixed point in the

origin and two hyperbolic fixed points at (±1/
√
α, 0). The

hyperbolic fixed points are connected by two heteroclinic

orbits given by xh
±(t) := ±

(

x1(t), x2(t)
)

, where x1(t) :=
1/

√
α tanh(t/

√
2), x2(t) := 1/

√
2α sech2(t/

√
2), t ∈ R; cf.

Simiu [14, p. 131]. In the perturbed uncontrolled case u ≡ 0
denote by ∆± the Melnikov functions of system (9) with

respect to xh
± and denote by ζµ

± the almost periodic solutions

near (±1/
√
α, 0), which exist for sufficiently small µ (see

Proposition 14). Let z0 ∈ Z be the corresponding excitation

and ξµ
±(t) :=

(

ζµ
±(t), θtz0

)

.
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Proposition 21: Assume that the almost periodic excita-

tion z is continuously differentiable with bounded derivative.

If the functions ∆± have simple zeros and µ is small enough,

then system (9) has a control set D containing ξµ
±(R). Then

D will be called a heteroclinic control set.

Proof: See [5, Proposition 7.1]

First we study the periodic case and choose z(t) :=
F cosωt for positive parameters F and ω. The excitation

z is C1 and its derivative is bounded, so Proposition 21

is applicable. The Melnikov functions ∆± can easily be

computed using the residue theorem:

∆±(t0) = −2
√

2β1

3α
− 8

√
2β3

35α2
±

√
2πωF√

α sinh πω√
2

· cosωt0.

The Melnikov functions ∆± have simple zeros if and only

if F exceeds a certain critical amplitude Fc, i. e., if F >

Fc := A−1B for A :=
√

2πω
(√
α sinh(πω/

√
2)

)−1
and B :=

2
√

2β1/3α + 8
√

2β3/35α2.
Corollary 22: If F > Fc, system (9) with z(t) :=

F cosωt has a heteroclinic control set for sufficiently small

µ.

Proof: This follows from Proposition 21.

As the excitation is T -periodic for T := 2π/ω, it is

possible to compute fibers of control sets by looking at the

discrete control system given by the time-T map. For the

following computations we restrict our view to the parameter

values α = 0.674, β1 = 0.231 and β3 = 0.375 (see [10]

for a discussion of these parameters and this choice) and

choose ω = 2.5 and ρ = 1.0. Then Fc ≈ 5.62880, so let

F := 6 > Fc. Fig. 1 shows the fiber in phase 0 for µ = 0.1.

−1.5 −1  −0.5 0   0.5 1   1.5 

−0.8

−0.6

−0.4

−0.2

0 

0.2 

0.4 
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0.8 

1 

x
1

x
2

Fig. 1. Fiber of control sets for the periodically excited system (9) with
z(t) := F cos ωt. Computed in phase 0 for α = 0.674, β1 = 0.231,
β3 = 0.375, ω = 2.5, ρ = 1.0, F = 6 and µ = 0.1.

The control sets were approximated with the graph algorithm

(see Dellnitz and Junge [8] and Szolnoki [15]) using the

implementation in GAIO [7]. For a spatial discretization into

boxes, this algorithm computes strongly connected compo-

nents of an associated graph whose nodes are given by the

boxes and whose edges indicate reachability. The union of

the resulting boxes is an approximation to a chain control

set; as noted above, for system (8) the chain control sets

typically coincide with the closures of control sets. Note that

this figure shows the fiber of two control sets: an invariant

control set around the origin (black) and the heteroclinic

control set (red).

Remark 23: The main interest in this result comes from

the relations between the deterministic system and a related

stochastic system, where u(t) is replaced by a stochastic

perturbation. Then the invariant control sets correspond to

the supports of invariant measures (see, e. g., Colonius,

Gayer and Kliemann [2]). For small perturbation amplitudes,

system (8) has an invariant control set around the origin and

hence small random perturbations will not lead to capsizing

(i. e., there are no unbounded solutions x(t) starting near

the origin). For large perturbation amplitudes, there is no

invariant control set and capsizing will occur with probability

1. Hence it is of interest to analyze how invariance is lost.

The results above indicate that this happens when the invari-

ant control set around the origin unites with the heteroclinic

control set. This shows that the picture is more complicated

than indicated in [9] (where, as a simplified model, the

escape equation with a single hyperbolic equilibrium was

discussed).
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Verlag, 2004, pp. 689–696.

[11] J. E. Marsden, “Chaos in dynamical systems by the Poincaré-
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