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Abstract: Two models for ship roll motion and capsizing under sto-
chastic excitation are analyzed using Melnikov�s method and control set
analysis. The predictions given by these two methods are compared.

1 Introduction

A classical method to detect chaotic transitions in perturbed Hamiltonian
systems is Melnikov�s method ([Guckenheimer & Holmes, 1986; Wiggins,
1988]). Though designed as a tool for analyzing chaotic motions, it is also
used to derive a (conservative) criterion for the loss of system integrity under
deterministic or stochastic perturbations ([Simiu, 2002]). Another approach
to the investigation of system integrity with respect to deterministic or sto-
chastic time-varying perturbations is the analysis of invariance and control-
lability properties of an associated control system and the support theorem
of Stroock and Varadhan ([Colonius, de la Rubia & Kliemann, 1996]).

In the present paper, we compare these two methods by studying two
simple models (in dimensionless form) describing ship roll motion under
the action of ocean waves. In this special situation, we are able to give a
thorough analysis using each of these methods. We show to which degree
Melnikov�s method gives conservative results. In particular, it turns out that
for weakly perturbed Hamiltonian systems Melnikov�s method accurately
predicts when a controlled homoclinic or heteroclinic connection exists (here
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the time-dependent excitation is substituted by piecewise constant control
functions). We show that �under increasing amplitudes of the ocean waves
�this always precedes the loss of invariance. The latter can be characterized
by a control set analysis for which numerical tools are available.

The �rst model ([Kreuzer & Sichermann, 2004]) has an M�shaped po-
tential V (x) = 1

2x
2 � 1

4�x
4 and a nonlinear viscous damping. For additive

as well as multiplicative excitation the system is given by

�x+ �1 _x+ �3 _x
3 + [1 + um(t)]x� �x3 = ua(t); (1)

here �; �1, and �3 are nonnegative parameters. The deterministic or ran-
dom perturbations um(t); ua(t) take values in [��m; �m] and [��a; �a], re-
spectively (see below for more speci�c descriptions).

The second system is the so-called escape equation with time-periodic
excitation (see e.g. [Soliman & Thompson, 1991; Nusse, Ott & Yorke, 1995;
Szolnoki, 2003; Gayer, 2005]). Here the potential is V (x) = 1

2x
2� 1

3x
3 with

linear viscous damping under the in�uence of a periodic driving force,

�x+ 
 _x+ x� x2 = F sin!t+ ua(t) (2)

with nonnegative parameters 
; !, and F . Again the deterministic or ran-
dom perturbations ua(t) take values in [��a; �a]. In this system we only
consider additive perturbations. Note, however, that we allow for a dom-
inant periodic component in the perturbations, while the perturbations in
the �rst system are unstructured. For both systems we will consider the
question if capsizing occurs, i.e., if the system leaves the potential well with
positive probability. Here we will analyze the behavior for varying maximal
amplitudes �a and �m of the perturbations.

We note that the two methods are not directly comparable, since con-
trol set analysis gives results for �xed parameters, while Melnikov�s method
only claims results for su¢ ciently small"�perturbations from (Hamiltonian)
systems with homoclinic or heteroclinic orbits. Hence we will also perform
control set analysis for varying ".

The paper is organized as follows: In Section 3, we present some es-
sential facts on the relation between the stochastic systems and associated
control systems. Section 4 provides a controllability analysis for the sys-
tem withM�potential, while in Section 5 Melnikov�s method is applied and
the results are compared. Section 6 presents an analogous discussion for
the escape equation. Final Section 7 summarizes our major �ndings and
conclusions.
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2 A Model for Large Amplitude Roll Motions

Dynamic stability analysis of ships still poses serious problems. In particu-
lar, large amplitude roll motions related to additive or parametric excitations
may lead to capsizing in following seas. Note that the capsizing mechanism
has to be investigated at large deviations from the upright position. The
mechanisms have been investigated, in particular, by [Oh, Nayfeh & Mook,
2000]. Capsizing is considered to have a mechanical equivalent in the escape
from a potential well, where the potential is characterized by the righting
lever curve [Kreuzer & Sichermann, 2004]. Then the angle ' denoting the
deviation from the vertical position, satis�es a second order di¤erential equa-
tion for which a number of di¤erent models have been proposed; see, among
others, [Falzanaro, Shaw & Troesch, 1992; Hsieh, Troesch & Shaw, 1994;
Thompson, Rainey & Soliman, 1993]. In the following we analyze the model
(in dimensionless form) proposed by [Kreuzer & Sichermann, 2004] for roll
motion in following seas,

�x+ �1 _x+ �3 _x
3 + [1 + �m(t)]x� �x3 = �a(t);

here �; �1; �3 > 0 are physical parameters whose numeric values are obtained
by an analysis of a reference ship. The additive and the multiplicative
excitations �a and �m, respectively, are random with bounded amplitudes.
We note that the variations �m in the restoring force are mainly caused by
the immersion of the ship.

In the following sections, we will use a very simple model for the stochas-
tic excitations due to ocean waves assuming essentially that they are super-
positions of trigonometric functions with random phase; see [Ochi, 1998] for
more information and more realistic models.

3 Background on Control Set Analysis

In this section we recall some facts from [Colonius, de la Rubia & Kliemann,
1996; Colonius, Gayer & Kliemann, 2008] about Markov di¤usion systems
and their relations to associated control systems. In order to avoid undue
technicalities, we mainly discuss the ship roll model (1); modi�cations nec-
essary for the periodically excited system (2) are indicated at the end of the
section.

We start with a slightly more general version of system (1) with stochas-
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tic perturbations in the form

�x+ �1 _x+ �3 _x
3 + [1 +

NX
i=1


i cos �i(t)]x� �x3 =
MX

i=N+1


i cos �i(t); (3)

where 
i > 0 and the background noise � = (�i) is determined by

d�i = 
it+DidWi for i = 0; 1; :::;M;

with independent white noise dWi with intensity Di > 0.
Writing this, as usual, as a �rst order equation one obtains the planar

system

_x1 = x2; _x2 = ��1x2 � �3x32 � x1 + �x31 � x1
NX
i=1


i cos �i +
MX

i=N+1


i cos �i:

The corresponding control system is

_x1 = x2; _x2 = ��1x2 � �3x32 � x1 + �x31 � x1
NX
i=1


iui(t) +

MX
i=N+1


iui(t);

here, formally, cos �i has been replaced by arbitrary piecewise continuous
functions ui(t) taking values in [�1; 1]; the ui are considered as controls.

Remark 3.1 We remark that, alternatively, the same noise may act addi-
tively and multiplicatively. This is easily taken into account by inserting the
same control function in the additive and multiplicative terms.

Obviously, the controllability properties of this system are the same as
those of the system with only two controls

_x1 = x2; _x2 = ��1x2 � �3x32 � x1 + �x31 � um(t)x1 + ua(t); (4)

where

(um(t); ua(t)) 2 [��m; �m]� [��a; �a] and �m :=
NX
i=1


i and �a :=
MX

i=N+1


i:

In other words: the controllability properties of the corresponding deter-
ministic system are independent of the number of the stochastic perturba-
tions. Hence we restrict attention to just one additive perturbation �a and
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one multiplicative perturbation �m. Then the stochastic system (3) (with
N = 1;M = 2) corresponding to (4) may be considered with state variables
(x; �a; �m) in the state space R2 � S1 � S1, where S1 denotes the unit circle
parametrized by [0; 2�).

We need some notations and results from control theory (see [Colonius &
Kliemann, 2000] for a thorough discussion). Denote the solution of (4) with
initial state x 2 R2 at time t = 0 by '(t; x; u). It depends on the control
function u = (ua; um) in the set U of control functions determined by the
parameter � = (�a; �m); dependence on � is here suppressed in the notation.
The positive and negative orbits at time t > 0 are

O+t (x) = f'(t; x; u); u 2 Ug; O�t (x) = f'(�t; x; u); u 2 Ug;

and we set

O+�T (x) =
[

t2[0;T ]
O+t (x); O��T (x) =

[
t2[0;T ]

O�t (x);O+(x) =
[

t2[0;1)
O+t (x):

A set D � M with nonvoid interior is a control set if it is a maximal set
with the property D � clO+(x) for every x 2 D. A control set D with
D = clO+(x) for every x 2 D is an invariant control set, the others are
called variant. If �a > 0, the considered system is locally accessible, i.e., for
all x 2 R2

intO+�T (x) 6= ? and intO
�
�T (x) 6= ? for all T > 0:

Then intD � O+(x) for all x 2 D. If only multiplicative perturbations
act on the system (i.e., �a = 0), the origin in R2 remains �xed and local
accessibility holds on R2 n f0g.

Note that for system (3), (4) the required (Lie algebraic) assumptions
from [Colonius, de la Rubia & Kliemann, 1996; Colonius & Kliemann, 1999;
Colonius, Gayer & Kliemann 2008] are satis�ed. The background noise �
admits a unique invariant measure on N = S1�S1. The natural probability
space to work in is 
̂ := C(R+0 ;R2 �N) = f! : R+0 ! R2 �N; continuousg
and for �xed initial conditions (x; q) 2 R2 �N the pair process (4) induces
a probability measure P̂(x;q) on 
̂. By P̂(x;��) we denote the measure corre-
sponding to the stationary Markov solution f��t ; t � 0g in the ��component.
Its marginal distribution on 
 := C(R+0 ;R2) will be denoted by Px; x 2 R2.
The trajectories of the pair process are ('(t; (x; q); !); �(t; q; !)) for (x; q) 2
R2�N , and we will write the x�component under f��t ; t � 0g as '(t; x; !),
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x 2 R2. The transition probability from x 2 R2 to a set A � R2 in time
t � 0 is

P (t; x; A) = Px('(t; x; !) 2 A):

Using the tube method introduced by Arnold and Kliemann, it follows from
the support theorem of Stroock and Varadhan that

supp P (t; x; �) = cl
�
y 2 R2 j there is a piecewise continuous

u 2 U such that '(t; x; u) = y

�
:

It now follows from [Colonius & Kliemann, 1999] that the invariant Markov
probability measures � of (4) have support given by supp� = D�N , where
D is an invariant control set of (4), and these measures are unique on each set
of this form. Every bounded invariant control set D of (4) has the property
that D � N is the support of some invariant Markov measure. All other
points in R2 �N are transient.

In order to describe the consequences of the support theorem for the
relationship between the Markov di¤usion process and the control system
in more detail, we de�ne the �rst exit time from a set A � R2 starting at a
point x 2 R2 as the random variable

�x(A) := infft � 0; '(t; x; !) =2 Ag:

Due to Theorem 3.19 in [Colonius & Kliemann, 1999], for invariant control
sets D � R2 of system (4) the equation Px(�x(D) < 1) = 0 holds for all
x 2 D. For bounded variant control sets D � R2 on the other hand, it holds
that Px(�x(D) <1) = 1 for all x 2 D. Under the measure Px we even have
that the expectation of the sojourn time Ex[�x(D)] is �nite. Furthermore,
for an invariant control set D every point in the set

fx 2 R2; for all u 2 U there is T > 0 with '(T; x; u) 2 Dg

has �nite �rst entrance time into D with probability one.
In conclusion we see that the question if capsizing occurs in �nite time in

system (3) occurs with positive probability with the origin as initial value,
is equivalent to existence an invariant control set (around the origin). If
only multiplicative perturbations act, the origin is invariant, and one has
to look for initial values near the origin. For computation of the capsizing
probabilities, we have to recur to Monte Carlo simulation (see e.g. [Colonius,
Gayer & Kliemann 2008]).

For the periodic escape equation (2), similar concepts can be applied by
adding t 2 [0; 2�) to the state variables (see [Gayer, 2005]). It is well known
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that the behavior of the di¤erential equation

�x+ 
 _x+ x� x2 = 0

may change drastically, when time-periodic perturbations act. For example,
bifurcations may occur with respect to F � 0 in

�x+ 
 _x+ x� x2 = F sin!t:

If the intensity Di of the noise �i is very small it is not adequate to insert an
arbitrary control. Instead it will be more appropriate to consider stochastic
perturbations of this periodic di¤erential equation as in Section 6.

4 Control Set Analysis for the M�Potential

In this section we give a description of the controllability properties of system
(3) in the phase plane and discuss the consequences for the stochastically
perturbed system.

We �rst consider the deterministic control system (4) and throughout
we restrict the analysis to the technically relevant parameter values (for
following seas) given in [Kreuzer & Sichermann, 2004]

� = 0:674; �1 = 0:231; �3 = 0:375:

A sketch of the corresponding M�potential

V (x) =
1

2
x2 � �

4
x4;

@V (x)

@x
= x� �x3

is shown in Figure 1. It is easily seen that the unperturbed system (i.e., ua =
um = 0) has three equilibria, the asymptotically stable equilibrium e0 = 0 at
the origin and hyperbolic equilibria e1 and e2 on the negative and positive
x1�axis, respectively. Without damping, we obtain a Hamiltonian system
with two heteroclinic orbits connecting the hyperbolic equilibria (Figure 1).

For small �a; �m there are an invariant control set D0(�a; �m) around
the origin and two variant control sets D1(�a; �m) and D2(�a; �m) around
the hyperbolic equilibria (for (�a; �m) ! (0; 0) they converge to the corre-
sponding equilibria). Numerical experiments indicate that in addition to
this regime, there are two further regimes, depending on � = (�a; �m). For
increasing ��values, the two control sets around the hyperbolic equilibria
are �rst connected by �control heteroclinic�trajectories and merge and form
a control set D12(�). Only later they merge with the invariant control set
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Figure 1: M�potential (left) and heteroclinic orbits of the associated Hamil-
tonian system (right).

and form a control set D012(�) containing the origin; here invariance is lost.
Typical situations are shown in Figures 2, 3, 4 and 5.

For a quantitative description we specify two curves in �a � �m�space,
where these qualitative changes occur.

De�nition 4.1 The heteroclinic margin is

H(�a) = inff�m > 0; 9D12(�a; �m)g;

and the invariance margin is

I(�a) = inff�m > 0; 9D012(�a; �m)g:

The results in the preceding section imply that as long as the invariant
control set D0(�) exists, the system remains with probability one in the
potential well, more precisely, in the set fx 2 R2; for all u 2 U there is
T > 0 with '(T; x; u) 2 D0g. Outside of this set, the ship will capsize with
probability one. If the invariant control set has vanished (i.e., �m > I(�a)),
the ship will capsize from any initial point with probability one. It is clear
that for applications the invariance margin is the relevant object. On the
other hand, the heteroclinic margin is important in order to understand the
mechanisms leading to loss of invariance.

The numerical computations of control sets are based on set-valued nu-
merics (see [Dellnitz & Junge, 2002; Dellnitz & Hohmann, 1997]); we use the
MATLAB version of the program package GAIO from Junge. The control
sets are found using the implementation due to [Szolnoki, 2003]. If we �x
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Figure 2: The regime for small amplitudes: one invariant control set D0 in
the center, two variant control sets D1 (on the left) and D2 (on the right)
around the hyperbolic equilibria (�a = 0:20; �m = 0:10).

Figure 3: Heteroclinic regime: one invariant control set D0 in the cen-
ter, one variant control set D12 containing both hyperbolic equilibria (�a =
0:00; �m = 0:37).
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Figure 4: Heteroclinic regime: one invariant control set D0 in the cen-
ter, one variant control set D12 containing both hyperbolic equilibria (�a =
0:00; �m = 0:40).

Figure 5: Variant regime: only one control set D012 which is variant (�a =
0:30; �m = 0:06).
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the amplitude �a � 0 of the additive perturbations, one can numerically de-
termine the invariance margin by bisection. This yields the following results
for the invariance margin I(�a)

I(0) 2 (0:42; 0:43)

and for I�1(�m)

I�1(0:0) 2 (0:21; 0:22); I�1(0:1) 2 (0:15; 0:16); (5)

I�1(0:2) 2 (0:10; 0:11); I�1(0:3) 2 (0:05; 0:06):

Thus we obtain an approximately linear relation given by

I(�a) t �2�a + 0:42: (6)

Numerical computation of control sets near mergers is notoriously di¢ cult.
Hence we also follow an alternative approach to determine the heteroclinic
and the invariance margin. It is based on numerical computation of stable
and unstable manifolds, also performed using GAIO. This approach uses
special properties of the considered second order system.

4.1 The Heteroclinic Margin

First we observe that the control system (3) is symmetric with respect to
the x2�axis in the following sense: For every solution (x1(t); x2(t)) one �nds
that (y1(t); y2(t)) := (�x1(t);�x2(t)) satis�es

_y1 = y2

_y2 = � _x2 = �1x2 + �3x
3
2 + x1 � �x31 + um(t)x1 � ua(t)

= ��1y2 � �3y32 � y1 + �y31 � um(t)y1 � ua(t):

Thus
'(t; x1; x2; ua; um) = �'(t;�x1;�x2;�ua; um):

This implies for every control set D that also �D is a control set (here
D = �D is possible). Hence we restrict our analysis to the lower halfplane
with x2 � 0.

The equilibria of the system (3) with constant controls are given by
x2 = 0 and the three roots of

�x1 + �x31 + ua = 0:
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There are three equilibria, all on the x1�axis, one near the origin and de-
noted by e0(�a) and two hyperbolic equilibria denoted by e1(�a) and e2(�a)
(note that they are independent of �m). For ua = 0 the origin is an equilib-
rium and the hyperbolic equilibria e2(�a = 0) and e1(�a = 0) have abscissa
given by

x1 = �
p
1=� = �

p
1=0:674 t �1:2181:

A phase plane analysis shows that, for given � = (�a; �m), there are sets of
complete controllability around the hyperbolic equilibria: For the set around
the equilibrium e2(0), the left-most point on the x1�axis is the hyperbolic
equilibrium e2(�a) corresponding to ua = �a and the right-most point is the
hyperbolic equilibrium e2(��a) corresponding to ua = ��a. Analogously,
the set of complete controllability around e1(0) has as left-most point the
equilibrium e1(�a) and as right-most point the equilibrium e1(��a). For
�m � H(�a), these sets are control sets D2 and D1. If �m is in the interval
(H(�a); I(�a)] they are both contained in a single control set D12, but they
are still maximal within a neighborhood, and hence called local control sets.
The boundary of the (local) control set D2 is given by parts of the unstable
and stable manifolds of the equilibria e2(�a) and e2(��a), analogously for
D1.

The trajectories obey the following monotonicity condition: Since

_x2 = ��1x2 � �3x32 � x1 + �x31 � um(t)x1 + ua(t);

one �nds for constant controls and t > 0 that the second state component
satis�es for x1 > 0

um > u0m and ua � u0a implies '2(t; x; um; ua) < '2(t; x; u
0
m; u

0
a); (7)

and for x1 < 0

um > u0m and ua � u0a implies '2(t; x; um; ua) > '2(t; x; u
0
m; u

0
a); (8)

Now consider the unstable manifolds W�(e2(��a); �m;��a) of the equilib-
rium e2(��a) and the stable manifold W+(e1(��a); �m;��a) of the equilib-
rium e1(��a). They intersect the negative x2� axis transversally in unique
points with ordinate

w�(�m;��a) and w+(��m;��a).

As a consequence of (7) and (8), one �nds the following monotonicity prop-
erties (consider the unstable manifold in the quadrant x1 > 0; x2 < 0 and
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the stable manifold in the quadrant x1 < 0; x2 < 0):

if �m > �0m, then w
�(�m;��a) < w�(�0m;��a);

if �m > �0m, then w
+(��m;��a) > w+(��0m;��a):

This implies that for �xed �a, there is a unique �m = �m(�a) with

w�(�m;��a) = w+(��m;��a):

Furthermore, only for �m > �m(�a) it is possible to steer the system from
D2 to D1. Using the symmetry property indicated above, it follows that
one obtains a completely analogous situation in the upper halfplane. Thus
we conclude that H(�a) = �m(�a) (see Figure 3 for an illustration of the
control sets where �m � H(�a) > 0 is small). This reduces computation
of the heteroclinic margin to computation of stable and unstable manifolds
and their intersections with the x2�axis. Thus, using bisection, one can
approximate H(�a).

Figure 6 depicts the situation in the lower half plane. It shows part of the
stable manifold (to the left of the x2�axis) and the unstable manifold (to the
right of the x2�axis). On the left hand side are results for �m < H(�a), i.e.,
the two control sets around the hyperbolic equilibria remain distinct, and
on the right hand side are results for �m > H(�a), i.e. the control set D12
containing the right and left equilibria exists. It turns out that numerically
the heteroclinic margin is approximately linear. More precisely, we obtain
the following results for H(�a)

H(0:00) 2 (0:37; 0:38); H(0:01) 2 (0:35; 0:36); H(0:11) 2 (0:180; 0:185);

and for H�1(�m)

H�1(0:02) 2 (0:20; 0:21); H�1(0:00) 2 (0:22; 0:23): (9)

Note that Figure 3 shows a numerically computed set D12 which in fact, as
indicated above, does not exist, since H(0) > 0:37.

These results were obtained using GAIO (computing times on a LINUX
PC with 2:8Mz approximately 90 minutes for standard box depth 26; where
needed, box depth is taken as 28 with computing time approximately 150
minutes).

For a comparison of these results with Melnikov�s method, it will also be
necessary to consider the equations

_x1 = x2; _x2 = �"�1x2 � "�3x32 � x1 + �x31 � "um(t)x1 + "ua(t): (10)
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Figure 6: Stable manifolds W+(e1(��a);��m;��a) and unstable manifolds
W�(e2(��a); �m;��a) near the x2�axis for �a = 0:000 and �m = 0:370
(left) and �m = 0:380 (right).

They represent small perturbations from the Hamiltonian situation. One
obtains

for " =
1

2
: H(0) 2 (0:385; 0:395); H�1(0) 2 (0:230; 0:240); (11)

for " =
1

4
: H(0) 2 (0:390:0:400); H�1(0) 2 (0:235; 0:245):

4.2 The Invariance Margin

Next we turn to the computation of the invariance margin I(�a). First we
show that

H(�a) < I(�a): (12)

In fact, for �m = H(�a) consider the trajectory '̂ starting in the left-most
point e2(�a) of the control set D2 with control

ua = ��a and ûm =
�
�m in the quadrant x1 > 0; x2 � 0
��m in the quadrant x1 � 0; x2 � 0

: (13)

This is the trajectory minimizing the x2�component. It reaches the x1�axis
in �nite time t > 0. In the quadrant x1 > 0; x2 � 0 it remains above the
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unstable manifoldW�(e2(��a); �m;��a) and in the quadrant x1 � 0; x2 � 0
it remains above the stable manifold W+(e1(��a);��m;��a). Thus, using
monotonicity again, the region bounded by the x2�axis and '̂(t) in the lower
half plane can only be left through the x2�axis. Analogous properties hold
in the upper halfplane. Thus there exists an invariant control set in this
positively invariant region (cp. [Colonius & Kliemann, 2000]). The same
situation occurs if �m > H(�a) and the trajectory '̂ intersects (for the �rst
time) the x2�axis above the point w+(��m;��a), cp. Figure 7.

Note that the bounded region R bounded by the control set D12 is pos-
itively invariant; this follows from the de�nition of control sets as maxi-
mal sets of complete controllability and the fact that every point R can be
reached from D12. Now suppose that the intersection point of '̂ with the
x2�axis is below w+(��m;��a), then it is possible to steer the system from
e2(��a) to �1. By continuous dependence on the initial value, this is also
possible from points in R (cp. Figure 8). This contradicts positive invari-
ance, implying that the region R is void, i.e., �m � I(�a). We have shown
that I(�a) is given by the �m�value where the intersection point of '̂ with
the x2�axis coincides with w+(��m;��a).

Figure 7: Stable manifoldW+(e1(��a);��m;��a) (blue), unstable manifold
W�(e2(��a); �m;��a) (red) and trajectory '̂(�) (green) corresponding to
control (13) for �a = 0:000 and �m = 0:380. Here H(0) < �m < I(0).

Again using monotonicity one can, by bisection, approximate the invari-
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Figure 8: Stable manifoldW+(e1(��a);��m;��a) (blue), unstable manifold
W�(e2(��a); �m;��a) (red) and trajectory '̂(�) (green) corresponding to
control (13) for �a = 0:230 and �m = 0:000. Here �a > I�1(0).

ance margin by analyzing the relative positions of intersection points with
the x2�axis. Hence, in analogy to the heteroclinic margin, computation of
the stable manifold W+(e1(��a);��m;��a) and the trajectory '̂ near the
x2�axis yields the following inclusions for the invariance margin I(�a):

I(0) 2 (0:42; 0:43); I�1(0:30) 2 (0:06; 0:07); I(0:11) 2 (0:20; 0:21): (14)

One �nds good agreement with the results (5) based on control set numerics.
However, for �m = 0 a slightly higher interval is obtained:

I�1(0) 2 (0:22; 0:23): (15)

5 Melnikov Analysis and Comparison

In this section, we apply Melnikov�s method to the system with M�potential
(10) and compare the results to those from the control set analysis in the pre-
ceding section. We freely use results for Melnikov�s method originally devel-
oped on the basis of a two-dimensional Poincaré map of a periodically forced
planar system (for a detailed discussion see [Guckenheimer & Holmes, 1986;
Wiggins, 1988]). An extension to a sequence of maps for quasi-periodically
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forced systems of the type (3) was given by [Beigie, Leonard & Wiggins,
1991]. In the limiting case (as the number of frequency components tends
to in�nity) a generalized Melnikov function can be de�ned for an arbitrary
time-dependent excitation [Simiu, 2002].

Setting " = 0 in system (10) we obtain the Hamiltonian equation

_x1 = x2; _x2 = �x1 + �x31:

The equilibria are the origin (a center) and the hyperbolic equilibria e1(0)
and e2(0). Furthermore, one �nds two heteroclinic orbits connecting e1(0)
and e2(0) and vice versa given explicitly (cp. [Simiu, 2002]) by

x1h(t) = �
1p
�
tanh

tp
2

and x2h(t) = �
1p
2�
sech2

tp
2

with �1 < t <1.
For " > 0 the Melnikov function M(t0) measures the distance between

the stable and the unstable manifold in a two-dimensional cross section in
phase space at time t0

M(t0) = �
Z 1

�1

�
�1x

2
2h(t) + �3x

4
2h(t)

�
dt

+

Z 1

�1
[ua(t+ t0)x2h(t)� um(t+ t0)x1h(t)x2h(t)] dt:

If the Melnikov function has simple zeros, the stable and the unstable man-
ifolds intersect transversally for small " > 0.

Considering the harmonic control functions

ua(t) = �a cos(!at+  a); um(t) = �m cos(!mt+  m); (16)

the Melnikov function yields

M(t0) = ��1
2
p
2

3�
� �3

8
p
2

35�2

+ �a

p
2�!a cos(!at0 +  a)
p
� sinh

p
2�!a
2

� �m
�!2m sin(!mt0 +  m)

� sinh
p
2�!m
2

:

For given frequencies !a; !m and phases  a;  m one may �nd amplitudes
�a; �m such that M(t0) = 0, i.e. that transverse intersections occur.

Concerning the relation between the control set analysis and Melnikov�s
method, we have the following results.
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Theorem 5.1 Suppose that the Melnikov function for the periodic control
functions (16) with amplitudes �a and �m, respectively, has a simple zero at
" = 0. Then for all " > 0, small enough, there exists a heteroclinic control
set D"

12 containing both sets of hyperbolic equilibria for system (10).

Proof. Fix " > 0, small enough. The equilibrium e"2(0; 0) of the system
with �a = �m = 0 is in the interior of a control set D"

2. The period map
for (16) has a hyperbolic �xed point f"2 (�a; �m) and it is in the interior of a
control set. Also for all �a 2 [0; �a) and �m 2 [0; �m) the hyperbolic �xed
points f"2 (�a; �m) corresponding to the periodic controls

ua(t) = �a cos(!at+  a); um(t) = �m cos(!mt+  m)

are in the interior of some control sets. Since these �xed points change
continuously with �a and �m and f"2 (0; 0) = e"2(0; 0) , all these points are
in the interior of the same control set. The same arguments apply to the
hyperbolic �xed points f"1 (�a; �m) on the left side.

Since the Melnikov function depends continuously di¤erentiable on the
amplitudes �a and �m of the periodic controls, it also has a simple zero for
amplitudes less than �a and �m. Thus, in the lower halfplane, one �nds,
arbitrarily close to the hyperbolic �xed points f"2 (�a; �m) and f

"
1 (�a; �m),

points on the unstable and on the stable manifolds. Hence it is possible to
steer the system from the control set around the right set of equilibria to
the control set around the left set of equilibria. Similarly, one can steer the
system in the upper halfplane in the other direction. This proves that the
heteroclinic control D"

12 containing both sets of hyperbolic equilibria exists.

A consequence of this theorem is that Melnikov�s method will predict a
positive capsize probability for all

�m > inf
">0

H"(�a);

where H"(�a) is the heteroclinic margin for system (10).
Next we compare the results above with those obtained from the control

set analysis in Section 4. Replacing the harmonic functions by

ua(t) = �a; um(t) = ��msgn t;

the Melnikov function yields

M(t0) = �
2
p
2�1
3�

� 8
p
2�3

35�2
+
2�ap
�
+
�m
�
sech2

t0p
2
:
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Obviously, the Melnikov function has simple zeros for

�m >
2
p
2�1
3

+
8
p
2�3
35�

� 2
p
��a:

For the parameter values � = 0:674, �1 = 0:231, and �3 = 0:375, we obtain

�m > 0:3976� 1:6420�a:

These results are compared to the numerical computation for " = 1; 12 ;
1
4 ,

see Table 1. Apparently, the heteroclinic margin for " ! 0 approaches the
critical value predicted by Melnikov�s method.

Table 1: Comparison of the heteroclinic margin and the results of Melnikov�s
method for " = 1; 12 ;

1
4 .

Case H(�a = 0) H�1(�m = 0)
� = 1 0:370 : : : 0:380 0:220 : : : 0:230
� = 1

2 0:385 : : : 0:395 0:230 : : : 0:240
� = 1

4 0:390 : : : 0:400 0:235 : : : 0:245
Melnikov 0:398 0:242

6 The Perturbed Escape Equation

In this section we discuss the perturbed escape equation and again compare
results from Melnikov�s method with results based on control set analysis;
for the latter, we rely in particular on the paper by [Gayer, 2005].

Consider the perturbed escape equation

_x1 = x2; _x2 = �"
 x2 � x1 + x12 + "F sin!t+ "ua(t)

with u(t) 2 [��a; �a] and parameter values


 = 0:1; ! = 0:85; F = 0:06: (17)

The corresponding Hamiltonian system (" = 0, see Figure 9) has an equilib-
rium at the origin (a center) and a hyperbolic equilibrium e0 = (1; 0) with
a homoclinic orbit given by

x1h(t) =
3

2
tanh2

t

2
� 1
2
; x2h(t) =

3

2
sech2

t

2
tanh

t

2
: (18)
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Figure 9: Potential (left) and corresponding homoclinic orbit (right) of the
escape equation.

For the perturbation ua(t) = �asgn t, we obtain the Melnikov function

M(t0) = �
6


5
+
6F�!2 cos!t0
sinh�!

+ 3�asech
2 t0
2
:

Thus, transverse intersections occur �rst close to t0 = 0 if

�a >
2


5
� 2F�!2

sinh�!
:

In the absence of periodic forcing (i.e., F = 0), the critical control amplitude
is

�a = 0:04:

This value coincides with the numerical calculations in [Gayer, 2003] (for
" = 1). For the parameters (17) the critical control amplitude is

�a = 0:0021: (19)

On the other hand, the numerical control set analysis performed in [Gayer,
2005] for the case " = 1 shows the following, more elaborate pattern when
the amplitude �a is increased:

First we recall that the uncontrolled system su¤ers a bifurcation when
F is increased from zero. For the parameters (17) there are two orbitally
stable periodic solutions and two hyperbolic periodic solutions. Then, for
small amplitude �a = 0:005, they are included in the interior of control sets
D1; D2; D3; D4. Here D1 and D3 are invariant control sets, while D2 (in
the potential well) and D4 (on the potential hill top) are variant control
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sets. For �a = 0:0085, the two control sets D1 and D2 have merged into a
variant control set D12, while D3 and D4 remain distinct. For �a = 0:01
also the control sets D12 and the invariant control set D3 have merged into
an invariant control set D123 and, �nally, for �a = 0:013 also the control set
D4 has merged with D123 forming a variant control set D1234. In this latter
situation, no invariance properties prevail. Hence Gayer�s numerical results
in [Gayer, 2005] show that the invariance margin Iinv(�a) satis�es

0:01 < I�1inv(0) < 0:013:

This is an enclosure for the critical amplitude where loss of invariance occurs,
since for �a � 0:01 all points in the invariant control set D123 containing the
origin remain in this set with probability one; for �a � 0:013 the control set
D1234 around the origin has lost its invariance and for every x in this control
set the expectation of the sojourn time is �nite.

As a consequence of the Melnikov result, we see that, due to the transver-
sal intersections of the stable and unstable manifolds of the hyperbolic �xed
point f"(�a), there exists a homoclinic control set D"

44 for small " > 0 pro-
vided that �a is greater than the critical amplitude (19). In its interior it
contains the (chaotic) invariant set of a k�fold concatenation of the period
map as predicted by Melnikov; furthermore it contains the hyperbolic �xed
point f"4 (0). Thus the set of complete controllability D

"
4 containing the peri-

odic solution on the hill top is a proper subset of D"
44 and hence D

"
4 is not a

control set, but just a local control, i.e., a subset of complete controllability
which is maximal only in a neighborhood. Note, however, that analytically,
it is not clear if the control set D"

44 also exists for " = 1 (this is the situation
discussed in [Gayer, 2005]).

7 Conclusions

The analysis of two models for ship roll motion and capsizing illustrates that
Melnikov�s method does not indicate the loss of integrity; instead it is related
to the existence of heteroclinic connections and hence to the heteroclinic
margin which is strictly less than the invariance margin. The same appears
to hold as well for perturbations of Hamiltonian systems with homoclinic
orbits. Furthermore, in its range of validity Melnikov�s methods gives very
accurate predictions for the homoclinic or heteroclinic margin.

For a dominant sinusoidal (in the escape equation), the value predicted
by the Melnikov method is far below numerical results for the invariance
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margin. Hence it appears to be far too conservative. Certainly, the situ-
ation of perturbations with dominant sinusoidal components needs further
analysis.
Acknowledgements. We thank Oliver Junge for making his program
package GAIO available. The numerical computation of the control sets are
due to Johannes Taubert and Dirk Wohlgemuth.
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