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Abstract. A concept of “near invariance” is developed starting from sets that are actually invariant under
smaller perturbations. This is based on a theory for system dynamics of Markov diffusion processes
illuminating the idea of “large” noise perturbations turning invariant sets for smaller noise ranges
into transient sets. The controllability behavior of associated deterministic systems plays a crucial
role. This setup also allows for numerical computation of nearly invariant sets, the exit times from
these sets, and the exit locations under varying perturbation ranges. Three examples with additive
perturbations are included: a one degree of freedom system with double well potential and the
escape equation without and with periodic excitation.
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1. Introduction. Almost invariance is an often used concept for stochastic dynamical
systems that intends to describe sets such that the system

• stays within a set in the state space for a “long” time,
• exits from the set only under “large” noise perturbations,
• and may return to this set at a later, much “longer” time.

Hence almost invariance tries to describe a transient phenomenon of stochastic systems,
but on “large” time intervals. The interpretation of “large” time intervals and “large” per-
turbations usually depends on the application one has in mind.

Recently, these phenomena have found renewed interest. This includes approaches based
on transfer operator theory combined with set oriented numerics (Dellnitz and Junge [11],
[12], Froyland [20], [21], and Froyland and Dellnitz [22]) and graph theoretic methods (Dellnitz
et al. [14]) as well as extensions of metastability in the classical Freidlin–Wentzell theory [19]
in Huisinga, Meyn, and Schütte [27] and the analysis of dominant eigenvalues of transfer op-
erators (Schütte, Huisinga, and Deuflhard [37]; Deuflhard et al. [16]). An important approach
is also developed in the work of Bovier [2] and Bovier et al. [3], [4].

Applications of almost invariant sets include, e.g., the analysis of molecular dynamics,
where they can symbolize conformations of a molecule that are essential for its chemical
properties (Deuflhard and Schütte [15]); Mezic [34] proposes a different dynamical systems
explanation of conformation dynamics based on an interplay between local and global in-
terconnections for coupled oscillator networks. Similar problems of almost invariance occur,
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e.g., in dynamical astronomy (Dellnitz et al. [13]), in the analysis of dynamic reliability when
one tries to estimate rare occurrences of system failure due to large perturbations (see, e.g.,
Colonius, Häckl, and Kliemann [5]), and in other models in engineering and science.

The goal of this paper is to develop a theory that

• defines a plausible concept of “nearly invariant sets” based on the actual system dy-
namics of Markov diffusion processes,

• illuminates the idea of “large” noise perturbations turning invariant sets for smaller
noise ranges into transient sets,

• explores the idea of invariance over “large” time intervals,
• and allows for numerical computation of nearly invariant sets, the exit times from

these sets, and the exit locations under varying perturbation ranges.

Thus the concept of near invariance captures essential features of “almost invariance.”
Our approach is, roughly, as follows:

• We consider Markov diffusion models (i.e., the system does not anticipate future be-
havior of the noise) with perturbations entering as parameter or additive noise into
the system dynamics, which are modeled as a set of ordinary differential equations

(1) ẋ = X0(x) +

m∑
i=1

ξi(t, ω)Xi(x)

on a finite dimensional C∞ manifold M , where the C∞ vector field X0 describes the
unperturbed dynamics and ξ(t, ω) = (ξi(t, ω), i = 1, . . . ,m) is the vector of random
perturbation processes with C∞ dynamics X1, . . . , Xm. We model ξ as a function
ξ = f(η) of a background noise η, f : N → U , where N is the state space of the
background noise and U ⊂ Rm is the set of perturbation values. We assume η to be a
stationary, ergodic Markov process.

• The noise range is treated as a parameter ρ ≥ 0 of the system by introducing a family
fρ : N → Uρ, ρ ≥ 0, of functions such that the sets Uρ of perturbation values increase
with ρ. Setting U0 = {0}, we recover the unperturbed dynamics of the system (1).

• We identify the invariant sets of the stochastic system (1), depending on the noise
range. Under mild conditions, the invariant control sets of an associated control system
are the supports of the invariant measures of (1) and they form the cores of the
invariant sets for the system.

• Analyzing the change of the invariant sets as the noise range ρ ≥ 0 increases leads to
the study of the loss of invariance, specifically to the analysis of bifurcation points ρ0

where an invariant set loses its invariance and becomes transient or “nearly invariant.”
• Finally, we study the exit time distributions from invariant sets as they become tran-

sient under the influence of larger perturbations.

This approach develops a concept for near invariance starting from sets that are actually
invariant under smaller perturbations. In other approaches the term “almost invariance” is
used to describe the behavior in certain regions, usually in relation to an invariant probability
measure with support on the whole state space; see, e.g., Huisinga, Meyn, and Schütte in [27].
In the approach outlined above, such a reference measure need not exist, and we suggest the
term “near invariance” for the concept developed here.
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Though our analytical approach applies to systems in arbitrary finite dimension, numerical
evaluations appear possible for low dimensional systems only thus restricting the range of
applicability.

It is worth noting that recently, in the context of random diffeomorphisms, problems
similar to near invariance have been analyzed by Zmarrou and Homburg [41]. They analyze
average escape times from sets as functions of a bifurcation parameter.

In section 2 we describe the setup used in this paper and recall some background material
on Markov diffusion systems and their qualitative behavior, based on the analysis of associated
control systems with varying control range. Section 3 presents the definition of near invariance
together with the main result on the existence of nearly invariant sets. Theorem 3.3 and
Corollary 3.4 describe the bifurcation points where an invariant and a variant set merge
to generate a nearly invariant set. The rest of this section is devoted to the study of the
exit sets from variant sets. Section 4 discusses the numerical computation of exit times
for nearly invariants sets and the corresponding exit locations. Section 5 analyzes three
examples in some detail: a one degree of freedom system with double well potential and
additive perturbation and two perturbed versions of the escape equation, without and with
an extra periodic excitation; see, e.g., [40], [35], [17], [26], and the references therein. The
latter example is three dimensional and at the present limit of our computational possibilities.
The appendix, section 6, contains some background information on parameter dependent
deterministic control systems that is used throughout the paper.

2. Markov diffusion systems and associated control systems. In this section we recall
some facts about Markov diffusion systems, their relations to associated control systems, and
the support theorem of Stroock and Varadhan. We start from the system

(2) ẋ = X0(x) +

m∑
i=1

fi(ηt)Xi(x)

on a finite dimensional, C∞ manifold M with C∞ vector fields X0, . . . , Xm as in section 1.
First we specify our assumptions on the background noise η. Let N be a compact connected
finite dimensional C∞ manifold on which the stochastic differential equation

(3) dη = Y0(η)dt +

l∑
j=1

Yj(η) ◦ dWj

is defined. Here W = (Wj) is an l dimensional Wiener process, Y0, . . . , Yl are C∞ vector fields
on N , and “◦” denotes the Stratonovich stochastic differential. The compactness of the noise
space N rules out excitation processes with Gaussian statistics, and thus (3) can be regarded
as a realistic model of physical systems with bounded noise. We assume that (3) admits at
least one stationary Markov solution. Imposing the Lie algebra rank condition

(4) dimLA{Y1, . . . , Yl}(q) = dimN for all q ∈ N

as a nondegeneracy condition on N guarantees that this stationary solution is unique (see
Kunita [31]) and can be extended to a stationary Markov solution η∗t , t ∈ R.
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The noise process ξt := fi(ηt) in (2) is defined in the following way: Let U ⊂ Rm be a
compact convex set with 0 ∈ intU and U = cl intU . Let

f : N → U

be a continuous surjective function such that there exists a closed connected subset L ⊂ N .
f |L is C1 and Df(η) has full rank for all η ∈ L with f(η) ∈ U ; see [7]. Then ξt := f(η∗t ) is a
stationary process with values in U .

We model variations in the size of the noise by introducing a parameter ρ ≥ 0 and the
noise ranges Uρ, satisfying the same assumption as U above. We consider the process η∗t
as a background noise, which for every ρ is mapped into the stochastic perturbation space
Uρ = {u : R → Uρ, measurable} by a continuous surjective function

fρ : N → Uρ,

which satisfies the assumptions on f above. Combining this perturbation model with sys-
tem (1), we arrive at the Markov diffusion system

dη = Y0(η)dt +
∑�

j=1 Yi(η) ◦ dWj , η0 = η∗0,

ẋ = X0(x) +
∑m

i=1 f
ρ
i (ηt)Xi(x)

(5)

on the state space M × N , for which we assume the existence and uniqueness of a strong
solution for all t ≥ 0. This system is degenerate since the Wiener process acts only on the
second component. Note that, in general, the component x(t) by itself is not Markovian.
The pair process (x(t), ηt) is, however, a Markov diffusion process for all ρ, if the initial
random variable x0 in M is independent of the increments of the Wiener process. Compare,
in particular, especially [29] for results on degenerate diffusions along these lines, and [7]
and [8] for more details on our setting in general.

The system (5) can be analyzed using control theory via the support theorem presented
by Stroock and Varadhan in [38]. To make this more precise, we set up the control system
associated with (5) to be

η̇ = Y0(η) +
∑�

j=1 wj(t)Yi(η),

ẋ = X0(x) +
∑m

i=1 f
ρ
i (ηt)Xi(x),

(6)

where w ∈ W := {w : [0,∞) → Rl, piecewise constant}, and we assume the Lie algebra
rank condition (4) for the η-component. Furthermore, we want the pair system (5) to be
regular; i.e., we want the topological support of its transition probabilities from each point
(x, p) ∈ M ×N to have nonvoid interior in M ×N . This is guaranteed by

(7) dimLA
{(

X0 +
∑

ηiXi(x)
Y0 +

∑
wj Yj

)
, w ∈ R

l

}(
x
η

)
= dimM + dimN

for all (x, η) ∈ M ×N (see Meyn and Tweedie [33] for a relaxation of this condition). Instead
of (6) it will be sufficient to consider the system

(8) ẋ(t) = X0(x(t)) +

m∑
i=1

ui(t)Xi(x(t)), u ∈ Uρ;
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see the appendix, section 6, for definitions and notation of control systems. Note that the
condition (7) implies local accessibility for the x-component (8).

We fix ρ ≥ 0 for the remainder of this section and drop it in the notation. For all
(x, η) ∈ M ×N the orbits O+(x, η) of system (6) are of the form clO+(x, η) = clO+(x)×N ,
where O+(x) is the forward orbit of the system (8) from x ∈ M . In particular, the invariant
control sets Ĉ ⊂ M × N of (6) correspond one-to-one to the invariant control sets C ⊂ M
of (8) via Ĉ = C×N . This follows from Lemma 3.17 in [7]. (We remark that in the statement
of that lemma one has to add the surjectivity assumption for f which is used in the proof.)
Therefore, the global control structure of the x-component (8) determines the control structure
of the pair process (6).

The natural probability space to work in is Ω̂ := C(R+
0 ,M × N) = {ω : R+

0 → M × N,
continuous} and for fixed initial conditions (x, q) ∈ M×N the pair process (5) induces a prob-
ability measure P̂(x,q) on Ω̂. By P̂(x,η∗) we denote the measure corresponding to the stationary

Markov solution {η∗t , t ≥ 0} in the η-component. Its marginal distribution on Ω := C(R+
0 ,M)

will be denoted by Px, x ∈ M . The trajectories of the pair process are (ϕ(t, (x, q), ω), η(t, q, ω))
for (x, q) ∈ M ×N , and we will write the x-component under {η∗t , t ≥ 0} as ϕ(t, x, ω), x ∈ M .
Then the “transition probability” from x ∈ M to a set A ⊂ M in time t ≥ 0 is

(9) P (t, x, A) = Px(ϕ(t, x, ω) ∈ A).

Using the tube method introduced by Arnold and Kliemann in [1], it follows (compare
with [28]) from the support theorem that

(10) suppP (t, x, ·) = cl

{
y ∈ M | there is a piecewise continuous

u ∈ U such that ϕ(t, x, u) = y

}
.

It now follows from [29] and [7] that the invariant Markov probability measures μ of (5)
have support given by suppμ = C ×N , where C is an invariant control set of (8), and these
measures are unique on each set of this form. We call ergodic sets those invariant control sets
C of (8) such that C ×N is the support of some invariant Markov measure, which includes,
in particular, all bounded invariant control sets. All points in M × N outside of invariant
control sets are transient.

To describe the consequences of the support theorem for the relationship between the
Markov diffusion process (5) and the control system (8) in more detail, we define the first
entrance time of (5) to a set A ⊂ M from a point x ∈ M as the random variable

τx(A) := inf{t ≥ 0, ϕ(t, x, ω) ∈ A},

and the first exit time of (5) from a set A ⊂ M starting at a point x ∈ M as the random
variable

σx(A) := inf{t ≥ 0, ϕ(t, x, ω) /∈ A}.

The corresponding exit location is given as

hx(A)(ω) :=

{
y ∈ M, y = ϕ(σx(A), x, ω) for σx(A)(ω) < ∞,

∅ for σx(A)(ω) = ∞.
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Due to Theorem 3.19 in [7], for invariant control sets C ⊂ M of system (8) the equation
Px(σx(C) < ∞) = 0 holds for all x ∈ C. For bounded variant control sets D ⊂ M , on the
other hand, it holds that Px(σx(D) < ∞) = 1 for all x ∈ D. Under the measure Px we even
have that the expectation of the sojourn time Ex[σx(D)] is finite (see [5, Theorem 11]).

3. Near invariance and mergers of control sets. If a bounded invariant control set Cρ for
ρ ≤ ρ0 becomes variant for ρ > ρ0, then the corresponding ergodic set of the Markov process
disappears and becomes transient. Nevertheless, although the disappearance of an ergodic
set changes the global behavior of a stochastic system considerably, we expect the system to
experience large exit times from the resulting variant control set as long as ρ is close to ρ0

(see [25] for an example that can serve as a prototype of this phenomenon). This behavior is
captured more generally in the following definition.

Definition 3.1. Consider the family of Markov diffusion systems (5)ρ. A closed set A ⊂ M
with intA 
= ∅ is nearly invariant in x0 ∈ intA for ρ > ρ0 if

(i) σρ
x0(A) < ∞ with positive probability for ρ > ρ0, and

(ii) for all x ∈ A one has σρ
x(A) ↗ ∞ almost surely for ρ ↘ ρ0 and σρ0

x (A) = ∞ almost
surely.

If A is nearly invariant in every x0 ∈ intA, the set A is called nearly invariant.
The following theorem reduces the search for nearly invariant sets to the search for closed

sets A which are invariant for the control range Uρ0 and lose their invariance under increased
control ranges.

Theorem 3.2. Suppose the Markov diffusion systems (5)ρ satisfy the Lie algebra rank con-
ditions (7) and (4) and that Uρ increases upper semicontinuously with respect to ρ ∈ (ρ∗, ρ∗).
Let x0 ∈ intA for some closed set A ⊂ M , intA 
= ∅, and consider ρ0 ∈ (ρ∗, ρ∗). Then the
set A is nearly invariant in x0 if and only if the set A is positively invariant for ρ0, and for
each ρ > ρ0

(11) int(Oρ,+(x0) � A) 
= ∅.

Proof. First we show that from positive invariance of A and upper semicontinuity of Uρ

at ρ = ρ0 property (ii) of Definition 3.1 follows. By Lemma 6.1, intA is also positively
invariant and hence σρ0

x (A) = ∞ almost surely. Now assume, contrary to the other assertion,
that there are x ∈ A, a positive time T > 0, and ρn ↘ ρ0 such that Px(σ

ρn
x (A) < T ) > 0.

Then from (10) it follows that for all ρn there is a control un ∈ Uρn with ϕ(T, x, un) /∈ A,
and, due to continuity, there are positive times tn < T such that ϕ(tn, x, un) ∈ ∂A. Since
Uρ is increasing, we can look upon the sequence un as a sequence in the compact set Uρ1

endowed with the weak∗-topology. Then there are subsequences, called (tn) and (un) again,
such that tn → t∗ and un → u∗. By (20) it follows that ϕ(tn, x, un) → ϕ(t∗, x, u∗). Now
observe that on a bounded interval weak∗-convergence in L∞ implies weak convergence in L2;
and here a subsequence of a weakly convergent sequence converges pointwise. Hence upper
semicontinuity of the closed sets Uρ implies that u∗ ∈ Uρ0 , because if u∗(t) was not in Uρ0

for some t, this would contradict un(t) ∈ Uρn for all n. Then by continuity it follows that
ϕ(t∗, x, u∗) ∈ ∂A, contradicting the positive invariance of intA.

Next we prove that assumption (11) implies property (i) of near invariance by showing
that Px0(σ

ρ
x0(A) < ∞) > 0 for all ρ > ρ0. Pick ρ > ρ0; then there are some open set
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V ⊂ int(Oρ,+(x0) � A), a positive time t0 < ∞, and a piecewise constant control u0 ∈ Uρ

such that ϕ(t0, x0, u0) ∈ V . By continuous dependence of the solutions of (8)ρ on u, there is
an open neighborhood V(u0) ⊂ Uρ such that ϕ(t0, x0, u) ∈ V for all u ∈ V(u0). The support
theorem implies that P (η ∈ C(R+

0 , N), fρ(η) ∈ V(u0)) > 0. Since the trajectories of (5) are
continuous, we obtain

Px0(σ
ρ
x0

(A) < ∞) ≥ Px0(σ
ρ
x0

(A) < t0)

≥ P (η ∈ C(R+
0 , N), fρ(η) ∈ V(u0)) > 0.

(12)

For the converse implication assume that A is nearly invariant in x0 ∈ intA for ρ > ρ0. Then
σρ
x0(A) < ∞ with positive probability for ρ > ρ0. Thus for every ρ > ρ0 there is a realization

of η and a time T such that with uρ := fρ(η) ∈ Uρ

ϕ(T, x0, u
ρ) /∈ A.

Thus ϕ(T, x0, u
ρ) ∈ Oρ,+(x0) � A. Local accessibility of (8) implies that

Oρ,+(x0) ⊂ cl intOρ,+(x0).

Since A is closed, we see that for every ρ > ρ0 condition (11) holds.

It remains to show that the set A is positively invariant for ρ0. This follows from
σρ0
x (A) = ∞ almost surely. In fact, if A is not positively invariant, we obtain a contra-

diction using the same reasoning as above in the proof that (11) implies property (i) of near
invariance.

This result shows that we have to look for closed sets which are positively invariant for
ρ0 and lose their invariance for ρ > ρ0. Naturally, the sets A that are nearly invariant for all
x0 ∈ intA are of particular interest. These sets are specified in the following theorem. Recall
from section 6 that Ainv(I) denotes the largest invariant set in the domain of attraction of a
set I.

Theorem 3.3. (i) Let the assumptions of Theorem 3.2 be satisfied and let Cρ0 be a compact
invariant control set for ρ0. For each ρ > ρ0 denote by Cρ the unique control set of (8)ρ for
which Cρ0 ⊂ Cρ. Suppose that there is x ∈ intCρ0 with

(13) int(Oρ,+(x) � Cρ0) 
= ∅ for all ρ > ρ0.

Then the invariant control set Cρ0 is nearly invariant for ρ > ρ0.

(ii) For every compact set K ⊂ M the intersection Ainv(Cρ0) ∩K is nearly invariant for
ρ0 if the intersection is positively invariant for ρ0.

(iii) If the invariant control set Cρ0 is nearly invariant for ρ > ρ0 and bounded, then
Pxo{σ

ρ
x0(C

ρ0) < ∞} = 1 for all x0 ∈ Cρ0 and all ρ > ρ0.

(iv) Condition (13) is satisfied, in particular, if Cρ0 merges with a variant control set Dρ0

with nonvoid interior, i.e., Dρ0 ⊂ Cρ for all ρ > ρ0, or if all (u, x) ∈ Uρ0 × Cρ0 are inner
pairs of system (8)ρ for every ρ > ρ0; compare with the appendix, section 6.

Proof. (i) We show that Cρ0 is nearly invariant for ρ > ρ0. Since int(Cρ � Cρ0) 
= ∅ and
Cρ is a control set, there are y ∈ int(Cρ � Cρ0) and x ∈ intCρ0 such that y ∈ Oρ,+(x). Due



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

86 F. COLONIUS, T. GAYER, AND W. KLIEMANN

to continuity, it follows that there is an open neighborhood V (y) ⊂ int(Cρ � Cρ0) of y such
that V (y) ⊂ Oρ,+(Cρ0), and therefore condition (11) holds.

(ii) Condition (13) implies that (11) is satisfied for every x0 ∈ A := Ainv(Cρ0), since

Oρ,+(x) ⊂ Oρ,+(x0) for all x0 ∈ Ainv(Cρ0).

(iii) According to [29], all points x ∈ M are either recurrent or transient, and points
in variant control sets are transient. Furthermore, the first exit time from bounded sets of
transient points is almost surely finite.

(iv) If Cρ0 merges with a variant control set Dρ0 with nonvoid interior, one has Dρ0∩Cρ0 =
∅ and Dρ0 ⊂ Cρ for ρ > ρ0, and therefore condition (13) is satisfied. Finally, from the
assumption that all (u, x) ∈ Uρ0 ×Cρ0 are inner pairs of system (8)ρ for ρ > ρ0, it ensues that
Cρ0 ⊂ intCρ according to Theorem 6.4. Therefore there is some open set V ⊂ Cρ �Cρ0 , and
condition (13) holds.

This theorem shows that control sets Cρ0 that are invariant for the perturbation range
ρ0, but variant for ρ > ρ0, are the key nearly invariant sets of a stochastic system. They
are contained in the variant control sets Dρ ⊃ Cρ0 as “nearly invariant” sets. If these nearly
invariant sets are also bounded, then property (i) of Definition 3.1 holds with probability 1.
In this situation, we also have the following consequence.

Corollary 3.4. Let the assumptions of Theorem 3.2 be satisfied and let Cρ0 be a compact
invariant control set for ρ0. For each ρ > ρ0 denote by Cρ the unique control set of (8)ρ

for which Cρ0 ⊂ Cρ. Assume that Cρ0 merges with a variant control set Dρ0 with nonvoid
interior, i.e., Dρ0 ⊂ Cρ for all ρ > ρ0. If Cρ is bounded, then Px{σρ

x(Cρ) < ∞} = 1 for all
x ∈ Cρ, ρ > ρ0, and σx(C

ρ) has finite expectation. This holds, in particular, for x ∈ Cρ0.

The proof of this lemma is a direct consequence of Theorem 11 in [5].

We now analyze how the stochastic system can exit from variant control sets. The following
propositions show how the continuity results for exit boundaries of control sets (see section 6)
can be translated to the stochastic situation.

Proposition 3.5. Suppose the family of Markov diffusion systems (5)ρ fulfills the Lie algebra
rank conditions (4) and (7) for all ρ ∈ [ρ∗, ρ∗].

Let Dρ ⊂ M be a bounded variant control set of (8)ρ with nonvoid interior such that
Dρ∗ ⊂ Dρ, and let x ∈ Dρ. For each ρ we define a probability measure on M via

Qx(D
ρ)(A) := Px(ω ∈ Ω, hx(D

ρ)(ω) ∈ A) for all Borel sets A ⊂ M,

with support cl ∂exD
ρ. If the mapping ρ → clDρ is continuous in the Hausdorff distance at

ρ0 and if the perturbation range Uρ increases lower semicontinuously at ρ0, then the support
of Qx(D

ρ) changes continuously.

Proof. Recall that Px(σx(D) < ∞) = 1 for a bounded variant control set D with x ∈ D,
and since all trajectories ϕ(t, x, ω) are continuous, Qx(D

ρ) is a probability measure. Equa-
tion (10) implies that suppQx(D

ρ) = cl ∂exD
ρ by definition of ∂exD

ρ. The desired continuity
follows from the deterministic situation in Theorem 6.5.

Finally, we study the exit locations when an invariant control set merges with a variant
control set. The deterministic situation is described in Theorem 6.5.
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Proposition 3.6. Suppose the family of Markov diffusion systems (5)ρ fulfills the Lie algebra
rank conditions (4) and (7) for all ρ ∈ [ρ∗, ρ∗]. For ρo ∈ (ρ∗, ρ∗) let Cρ0 and Dρ0 be an
invariant and a variant control set, respectively, satisfying the conditions of Theorem 6.6.

Then for the stochastic system (5)ρ0 we have for the first entrance time τx(C
ρ0) to the set

Cρ0 that the probability px := Px(τx(C
ρ0) < ∞) < 1 for x ∈ Dρ0. By

Qx �→Cρ0 (Dρ)(A) := 1
1−px

Px

(
ω ∈ Ω, hx(D

ρ) ∈ A and τx(C
ρ0) = ∞

)
for all Borel sets A ⊂ M

a probability measure is defined on M with support cl ∂ex�→Cρ0Dρ. Furthermore, for the variant
control set F ρ ⊃ Cρ0 ∪Dρ0 we have that

suppQx(F
ρ) → suppQx �→Cρ0 (Dρ0) for ρ ↘ ρ0

in the Hausdorff metric.

Proof. We first show that px < 1 for x ∈ Dρ0 . Since it is assumed that the exit boundary
of Dρ0 can be nontrivially decomposed into ∂ex→Cρ0Dρ0 and ∂ex �→Cρ0Dρ0 , it follows that
cl ∂ex�→Cρ0Dρ0 
= ∅. Then (10) implies px < 1.

Thus Qx �→Cρ0 (Dρ0) is well defined and Qx �→Cρ0 (Dρ0)(M) = 1. As before, due to (10) and
the continuity of the trajectories, suppQx �→Cρ0 (Dρ0) = cl ∂ex�→Cρ0Dρ0 . Now the asserted right
continuity follows from Theorem 6.6.

4. Computation of exit times and exit locations for nearly invariant sets. In this section
we present an algorithm to compute exit times of stochastic systems from sets, based on set
oriented methods as they were developed for dynamical systems by Dellnitz, Hohmann, and
Junge (see [10], [11]) and for control systems by Szolnoki (cf. [39]). We start from the setup
in Theorem 3.3 and Corollary 3.4: For the parameter interval [ρ∗, ρ∗] we assume that there
is a “bifurcation point” ρ0 such that Cρ0 is an invariant control set that is contained in a
variant control set Cρ for ρ > ρ0. According to Theorem 3.3, points x in the set Cρ0 and in
Ainv(Cρ0) ∩K of the stochastic system (5)ρ0 can be expected to be identified in the analysis
of system (5)ρ for ρ > ρ0, with ρ− ρ0 small, by significantly large first exit times. However, it
is impossible to analytically compute σx(C

ρ) in general. We know, however, that for bounded
variant Cρ we have Px(σx(C

ρ) < ∞) = 1 for all x ∈ Cρ. For more detailed information on
exit time distributions, one has to use numerical methods.

The following algorithm produces a numerical approximation to the distribution of exit
times from sets in the state space. We will concentrate here on the distribution Px{σx(Cρ) ≤
t}, t ≥ 0, for bounded variant control sets Cρ of the system (5)ρ.

Algorithm.

Step 1. Compute the bounded variant control set Cρ ⊂ M of the control system (8)ρ.

Step 2. Choose a compact set K ⊂ M with clCρ ⊂ intK and define a partition P of K
into finitely many boxes Bi. Define the collection C = {B1, B2, . . . , BN} of all boxes in P that
have nonvoid intersection with Cρ, and denote by BN+1 the “sink box” which symbolizes the
area outside of

⋃N
i=1 Bi. Since Cρ ⊂

⋃N
i=1 Bi, and we are interested in the first exit time, one

box suffices to cover the area of “no return.”
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Step 3. Choose a discretization time T > 0, and compute the “transition probabilities”
pij := 1

m(Bi)

∫
Bi

P (T, y,Bj) dy for the ensuing discretized system, with P (T, y,Bj) as defined

in (9) for i = 1, . . . , N . Here m(·) denotes the Lebesgue measure. We set pN+1,j = 1 for
j = 1, . . . , N +1. The resulting matrix P := (pij) ∈ R(N+1)×(N+1) is row stochastic and hence
the transition matrix of a certain Markov chain on the box space.

Step 4. Compute the cumulative distribution function (cdf) of the first exit time σx(C
ρ)

for x ∈ Bi: P{σx(Cρ) ≤ nT} is approximated by the ith entry in the last column (p
(n)
i,N+1) of

Pn. Specifically, for a given time Texit we find ne with (ne − 1)T ≤ Texit ≤ neT , and the last
column of Pne approximates the probability to exit Cρ from Bi until time Texit.

For the approximation of the control sets, numerical methods have been developed in [39]
relying on subdivision techniques for the numerical analysis of dynamical systems from [10],
[11]. These references also describe the generation of a partition P and of the boxes.

For the approximation of the dynamics of (5)ρ we have created a Markov chain on a finite
box partition. After choosing a discretization time T in Step 3, the transition probabilities
between the states are computed by Monte Carlo simulation. This idea is rather old and goes
back to Metropolis, Ulam, and von Neumann (see [32]). Although in the meantime many
sophisticated variants for different disciplines have been developed, there are no general error
estimates available; hence one can never be sure that the Monte Carlo simulation recognizes
all relevant behavior of the stochastic system. This is especially problematic if one wants to
compute stationary measures or long time simulations of stochastic processes that visit certain
areas of the state space only infrequently. There have been some developments to overcome
these problems for specific systems. For instance, for systems with purely additive noise, the
deterministic part and the noise influence can be decoupled, as has been done by Fischer in [17]
and Fischer and Kreuzer in [18] following some work by Froyland [20]. Subsequent application
of the so-called exhaustion algorithm produces some error bounds for such systems. In the
algorithm described above we start from a given partition P, a fixed discretization time T , and
several starting points within each box Bi. Hence this algorithm does not follow a simulated
trajectory of one initial point over a long time period, and it has proven to be quite reliable.

To approximate the dynamics of (5)ρ, in Step 3 we first simulate a large number of tra-
jectories η̂l, l = 1, . . . , s1, of the background noise process η. For this we choose initial values
in the compact space N according to the stationary solution η∗ (provided this is known) and
approximate solutions of the stochastic differential equation (3) until time T . Strong schemes
are the methods of choice for the approximation because information about the whole solution
path of (3)ρ is needed for solving the x-component of (5)ρ (see Kloeden and Platen [30] for
an introduction to numerical methods for stochastic differential equations).

Subsequently, s2 starting points xk are picked in each box Bi. From each starting point,
the solution of the x-component of (5)ρ is approximated for all samples η̂l generating s1s2

target points, denoted by ϕ̂(T, xk, η̂l). The transition probability from box Bi to Bj is then
approximated by

pij =
1

m(Bi)

∫
Bi

P (T, x,Bj) dx ≈ 1

s1s2

s2∑
k=1

s1∑
l=1

χBj

(
ϕ̂(T, xk, η̂l)

)
,

where χBj denotes the characteristic function of the set Bj . The question as to how many



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

NEAR INVARIANCE FOR MARKOV DIFFUSION SYSTEMS 89

boxes, starting points, and sample paths of the background process should be used depends
on the properties of the system, the time length T , and the box size—and, of course, on the
availability of computing resources. While the number of boxes N + 1 is mainly limited by
available memory (note that it is necessary to multiply full matrices with (N + 1)2 entries
in Step 4), we have observed that the algorithm is more sensitive to a change of the noise
realization than to a change of the initial values within a box. It seems that the solution
trajectories η∗· (ω) of (3) are less smooth than the solutions of the system (2). Therefore, it is
reasonable to increase the number of realizations of the background noise at the expense of
initial values in each box when computing resources become an issue.

Repeated multiplication of the matrix P with itself in Step 4 may pose a problem for
fine partitions, particularly in higher dimensions. When computing the cdf of the first exit
time, this problem cannot be avoided. If one is interested mainly in the probability of exit
until some large time Texit, one can save certain iterations: Instead of performing ne = Texit

T

multiplications with P , we find n̂ = max{n ∈ N, 2n̂ ≤ ne} and compute P 2n̂ in n̂ steps. If
2n̂ < ne, we continue the same process with ne − 2n̂, etc., until Pne is computed. (Of course,
bases other than 2 can be used and sometimes lead to fewer factors in the decomposition of
ne.) For Texit = 104 and T = 10−2, this process results in 25 matrix multiplications instead
of 106. If the cdf of the first exit time is not required in a resolution corresponding to ne time
intervals, one can proceed similarly by expressing the size of the desired resolution in powers
of a prime, e.g., of 2. In our example, choosing a resolution of 103T , we compute P 1000 with
14 multiplications, and then P 1000k, k = 2, . . . , 1000, resulting in 1013 steps.

Recall that for bounded variant control sets Cρ the expected exit time from a point x ∈ Cρ

is finite and given by

E[σx(C
ρ)] =

∫ ∞

0
t dPσ,

where Pσ is the distribution of σx. This expected value can be approximated by

Ê[σx(C
ρ)] = T

∞∑
n=1

n (p
(n)
i,N+1 − p

(n−1)
i,N+1) for x ∈ Bi.

For the actual computation, naturally an upper limit nmax on n has to be chosen, which
results in an approximation of the expected exit time before nmaxT .

To compute the exit locations for the system (2), we again approximate its dynamics by
the Markov chain defined in Step 3. For an initial value x ∈ Cρ we identify the box Bi

with x ∈ Bi. As before, p
(n)
i,j is the probability to reach the state Bj from Bi in n steps. If

Bj 
= BN+1, and if p
(n+1)
j,N+1 > 0, then the Markov chain exits from C in step n+ 1. In this case

the state Bj is an exit state for the chain, starting from Bi. Let hi denote the corresponding
random exit location. We then have

P{hi = Bj} =

∞∑
n=0

p
(n)
ij p(j,N + 1),

and this distribution approximates that of hx(C
ρ) as defined in section 2. In practice, again

one will have to choose a maximal time Texit ∈ N, and the finite sum with Texit + 1 terms is
computed.
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5. Examples.

5.1. A perturbed escape equation. As a first example we will present some results for
the perturbed escape equation. It describes the movement of a particle with unit mass in the
potential V (x) = 1

2x
2− 1

3x
3 with inertia and linear viscous damping under the influence of some

perturbation. This equation has attracted great interest and has been analyzed thoroughly
(see, e.g., [40], [35], or [17] and the references therein). We consider the perturbed escape
equation

ẍ + γẋ + x− x2 = ρ sin ηt

with a background noise process ηt on the one dimensional sphere S1. The Wiener process on
this sphere is considered as the one dimensional Wiener process on R modulo 2π. For t ≥ 0
and x̄, ȳ ∈ S1 and x, y ∈ R such that x̄ ≡ x mod 2π and ȳ ≡ y mod 2π, the transition densities
of this process, resulting from the corresponding normally distributed process on R, are given
by

p(t, x̄, ȳ) =
1√
2πt

∞∑
n=−∞

exp

(
−(y − x + 2nπ)2

2t

)
.

The sum on the right-hand side converges uniformly and absolutely. Then, for an integrable
nonnegative function f : S1 → R, it holds that

Utf(x̄) :=
∫
S1 p(t, x̄, ȳ) f(ȳ) dȳ

= 1√
2πt

∫ 2π
0

(∑∞
n=−∞ exp

(
− (y−x+2nπ)2

2t

))
f(y) dy

= 1√
2πt

∫∞
−∞ exp

(
− (y−x)2

2t

)
f(y mod 2π) dy.

The function f(x̄) ≡ 1
2π fulfills Utf(x̄) = f(x̄). Thus f(x̄) is the unique stationary density of

the noise process because (4) obviously holds.
The perturbed escape equation driven by this background process is given by

ẋ(t) = y(t),

ẏ(t) = −γ y(t) − x(t) + x(t)2 + ρ sin(ηt),(14)

dηt = dWt mod 2π.

As we saw, the stationary process η∗t has the uniform distribution on S1 as its one dimensional
distribution.

The associated controlled version of this equation on R2 reads

(15)

(
ẋ(t)
ẏ(t)

)
=

(
y(t)

−γ y(t) − x(t) + x(t)2

)
+

(
0

u(t)

)
,

where u(t) ∈ Uρ := [−ρ, ρ]. For our computations we set the damping coefficient γ to 0.1.
Computation of the control sets using the method described in section 4 yields for ρ = 0.04
the existence of one invariant control set C0.04 that contains the stable fixed point (0, 0) of the
uncontrolled equation and one variant control set D0.04 containing the hyperbolic fixed point
(1, 0) of the uncontrolled equation (cf. Figure 1). Increasing the control range, one finds that
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Figure 1. Control sets for the controlled escape equation for ρ = 0.04 (left) and ρ = 0.045 (right).

the two control sets merge for some ρ0 close to 0.0411 (see [23]) to form one variant control
set. The assumptions of Theorem 6.6 are satisfied for this example.

For the computation of the exit times from the merged control set we set ρ = 0.15 and
distinguish two different scenarios. The first one explores the exit time distribution for a very
short time, i.e., Texit ≤ 1.0. In this case we choose a fine partition of the compact set K
containing D0.15. The second one aims at long times, and we choose a coarser partition to
accelerate the computation time. In both cases we pick only the center of each box as the
initial value because the system (14) proves to be more sensitive to a variation in the noise
sample than to a small change of the initial value.

In order to approximate the background noise process in the short time case (Texit ≤ 1.0),
we choose η̂l0 = l · 2π/100 for l = {0, 1, . . . , 99} as initial values to represent the uniform
distribution of η∗t . Then the background noise part of (14) is solved for each of these initial
values with step size 0.1 until time 1.0, generating 100 sample paths η̂l of the Wiener process
on S1. For this integration, a simple Euler scheme can be used efficiently because drift and
diffusion coefficients are both constant. The exit probability from a box Bi is then approx-
imated directly by solving the (x, y)-component for each sample η̂l starting at the center of
Bi. This way, the upper left graph in Figure 2 was produced, where different colors represent
different exit probabilities until time Texit = 1.0. The other three graphs in Figure 2 follow
the same procedure for Texit = 5, 30, and 220.

To compute the distribution of the exit times σx(D
0.15), which requires large time intervals,

we follow the same scheme to integrate the Wiener process, but compute more samples by
starting from η̂l0 = l · 2π/10000 for l = {0, 1, . . . , 9999} to compensate for the increased box
sizes. Once again, the approximation of the (x, y)-component for each sample η̂l starts at the
center of Bi. Here the limiting factor for the number of boxes is the multiples of the transition
matrix P that are to be computed. Multiples Pn of P are computed for n = 2, . . . , 1500. The
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Figure 2. Exit probabilities from D0.15 for ρ = 0.15 until Texit.

minimum over all boxes of the exit probabilities mini p
(1500)
i,N+1 until Texit = 1500 is then 0.98,

and the computation is terminated. The left-hand graph in Figure 3 shows the distribution
of the exit probability until time n = 1500 for the initial value (0, 0), and Figure 4 shows
the distribution for the initial values (0.0,−0.5) and (0.9,−0.1), now on a logarithmic scale.
Both graphs show an exponential tail for the exit time distribution. Indeed, these numerically
computed distributions (after some oscillations during the initial settling-in period) closely
resemble a three-parameter Weibull distribution, which is the standard model for lifetime
distributions in reliability theory. The oscillations stem from the deterministic dynamics of
system (14). Computing an unperturbed solution that starts not too far away from (0, 0)
on the positive x-axis, one obtains a time of roughly 6.5 before the trajectory intersects
the positive x-axis again. This is exactly the average distance between two maxima in the
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Figure 3. Exit time distribution and expected exit times until time 1500.
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Figure 4. Exit time distribution starting from (0.0,−0.5) and (0.9,−0.1).

histograms of the distributions. The right-hand graph in Figure 3 shows the expected value
of the exit time from all boxes in D0.15. These expected times reflect the separation between
long sojourn times in the formerly invariant region and short ones outside this area; compare
with Figure 1.

5.2. A system with perturbed double well potential. Next we investigate a particle in
a two-well potential and consider the following equation:
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Figure 5. Control sets for the double well potential at ρ = 0.085.

ẋ(t) = y(t),

ẏ(t) = −γ y(t) − x(t) (2x2(t) + 2x(t) − 4) + ρ sin(ηt),(16)

dηt = dWt mod 2π,

with associated control system

(17)

(
ẋ(t)
ẏ(t)

)
=

(
y(t)

−γ y(t) − x(t) (2x2(t) + 2x(t) − 4)

)
+

(
0

u(t)

)
,

where again u(t) ∈ Uρ := [−ρ, ρ] and the damping coefficient γ is set to 0.1. For ρ = 0.07 there
are two invariant control sets C0.07

1 and C0.07
2 that contain the stable fixed points (1, 0) and

(−2, 0), respectively, of the uncontrolled equation and one variant control set D0.07 containing
the hyperbolic fixed point (0, 0) of the uncontrolled equation. Increasing the control range,
one finds that the control sets Cρ0

1 and Dρ0 merge for some ρ0 close to 0.085 and form one
variant control set (see Figure 5). Note that before the merger of the control sets, the variant
control set increases discontinuously and forms a ring around the invariant control set.

At some ρ1 close to ρ = 0.2 the remaining control sets Cρ1
2 and Dρ1 merge in a similar

way (see Figures 6, 7, and 8).

Thus the corresponding stochastic system (16) possesses one nearly invariant region Cρ0
1

and one nearly invariant region Cρ1
2 . Figure 9 shows the exit probabilities until the given exit
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Figure 6. Control sets for the double well potential at ρ = 0.19.

times from the colored subsets for ρ = 0.4. Again, a comparison of the regions of large exit
time in Figure 9 with the invariant control sets Cρ0

1 in Figure 5 and Cρ1
2 in Figure 7 show

remarkable agreement. Also the invariant domains of attraction of the control sets become
visible in Figure 9 as regions, whose exit times are rather large.

5.3. The escape equation with periodic excitation. Our third example is a perturbed
escape equation with a periodic excitation and the same noise process as above. The standard
way of removing the periodic time dependence leads to a three dimensional system which we
analyze via its Poincaré sections. Specifically, we consider

ẋ(t) = y(t),

ẏ(t) = −γy(t) − x(t) − x(t)2 + F sin z(t) + ρ sin ηt,

ż(t) = ω mod 2π,

dηt = dWt mod 2π

with parameters

(18) F = 0.06, ω = 0.85, γ = 0.1, and ρ = 0.02.

The somewhat involved control set structure of the associated control system has been studied
in detail in [26]. For ρ = 0.0 there are two orbitally stable periodic solutions and two hyperbolic
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Figure 7. Control sets for the double well potential at ρ = 0.2.

periodic solutions. For small amplitude, e.g., for ρ = 0.005, they are included in the interior
of control sets D0.005

1 , D0.005
2 , D0.005

3 , D0.005
4 . Figure 10 shows a slice at the phase π/ω; the

potential hill top is to the right. Here D0.005
1 and D0.005

3 (in red) are invariant control sets,
while D0.005

2 (in the potential well) and D0.005
4 (on the potential hill top) are variant control

sets. The white regions around D0.005
1 and D0.005

3 show their domains of attraction A(D0.005
1 )

and A(D0.005
3 ), respectively.

For ρ = 0.0085, the two control sets D0.005
1 and D0.005

2 have merged into a variant control
set D0.0085

12 , while D0.0085
3 and D0.0085

4 remain distinct. For ρ = 0.01 also, the control sets
D0.0085

12 and the invariant control set D0.0085
3 have merged into an invariant control set D0.01

123 ,
and, finally, for ρ ≥ 0.013 also, the control set D0.01

4 has merged with D0.01
123 forming a variant

control set Dρ
1234. In this latter situation, no invariance properties prevail.

We remark that the results presented in [26] have to be slightly modified: For the periodic
control u(t) = 0.0064 sinωt, t ∈ R, there is a hill top periodic solution which, for ρ > 0.0064, is
contained in the interior of Dρ

4. Numerical results show that its stable and unstable manifolds
have transversal intersections. Hence, for these ρ-values, there exists a homoclinic orbit which
is also contained in the control set Dρ

4 (compare with [9]).

Figures 11–13 show, for Poincaré sections at the phase π/ω, the exit probabilities from
initial points in the control set D0.2

1234 for different exit times (note that the color coding differs).
One sees, as expected, that exit is highly probable from a first area above the hill top. It
is also probable from an area below the hill top. Here, in fact, an intersection point of the
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Figure 8. Control sets for the double well potential at ρ = 0.4.

stable and the unstable manifolds of the hill top periodic solution lies, and one iteration of
the Poincaré map leads into the first area.

One also notes remarkable differences of exit probabilities from other areas of the control
set. This is explored in more detail in Figures 14–16, which show slices through the domain
of attraction A(D0.2

1234) for different exit times.
In Figure 16 one can discern two areas color coded by blue and brown. A comparison to

Figure 10 reveals that they correspond to the domains of attraction of the two invariant control
sets Dρ

1 and Dρ
3 (before their merging). They are separated by an area which corresponds

to the (variant) control set Dρ
2 in the potential well. These results illustrate that the near

invariance property is still present for control range ρ = 0.02, which is well above the control
ranges where the two invariant control sets Dρ

1 and Dρ
3 lose their invariance.

We remark that, particularly due to memory requirements as discussed above, a direct
numerical analysis of the three dimensional problem would be much harder. Furthermore,
Poincaré sections are convenient for visualization of the results.

6. Appendix: Some background on nonlinear control systems. In this appendix, we
recall some facts on nonlinear control systems. See, for example, [6] for more information.

6.1. Accessibility and control sets. Consider the control-affine system (8) given by

(19) ẋ(t) = X0(x(t)) +

m∑
i=1

ui(t)Xi(x(t))
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Figure 9. Exit probabilities from the colored region around Cρ0
1 until time T = 10 (right) and from the

colored region around Cρ0
2 until time T = 1000 (left) for ρ = 0.4. Parts of the invariant domains of attraction

Ainv(Cρ0
1 ) and Ainv(Cρ0

2 ) become visible.

with C∞ vector fields X0, . . . , Xm on a C∞ manifold M of dimension d < ∞. We obtain
a family of systems by specifying an increasing family of compact convex control ranges
0 ∈ intUρ ⊂ Rm with Uρ = cl intUρ for all ρ ∈ [ρ∗, ρ∗] and define corresponding sets of
control functions Uρ = {u : R → Uρ, measurable}. Setting u ≡ 0 models the uncontrolled
system. We assume that there exists a unique solution ϕ(t, x, u) of (19) for each ρ, for every
u ∈ Uρ, for every initial state x ∈ M , and for all t ∈ (−∞,∞). If the dependence on ρ is not
important, we will simply omit the notation of ρ in the following.

The positive and negative orbits at time t > 0 are

O+
t (x) = {ϕ(t, x, u), u ∈ U}, O−

t (x) = {ϕ(−t, x, u), u ∈ U},

and we set

O+
≤T (x) =

⋃
t∈[0,T ]

O+
t (x), O−

≤T (x) =
⋃

t∈[0,T ]

O−
t (x),

O+(x) =
⋃

t∈[0,∞)

O+
t (x), O−(x) =

⋃
t∈[0,∞)

O−
t (x),

respectively. A set D ⊂ M with nonvoid interior is a control set if it is a maximal set with
the property D ⊂ clO+(x) for every x ∈ D. A control set C with C = clO+(x) for every
x ∈ C is an invariant control set; the others are called variant. Throughout we assume that
system (8) is locally accessible, i.e.,

intO+
≤T (x) 
= ∅ and intO−

≤T (x) 
= ∅ for all T > 0.
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Figure 10. Control sets and domains of attraction for ρ = 0.005.

This is guaranteed by the Lie algebra rank condition dimLA{X0, . . . , Xm}(x) = d for all
x ∈ M . We endow the set of control functions U ⊂ L∞(R,Rm) with the weak∗- (or L1-)
topology, which makes U a compact metric space. Then for tn → t, xn → x, and un → u in
U , it follows that

(20) ϕ(tn, xn, un) → ϕ(t, x, u).

We note the following lemma which states that the interior of a positively invariant set is
positively invariant.

Lemma 6.1. Suppose that I ⊂ M is closed and satisfies ϕ(t, x, u) ∈ I for all t ≥ 0, x ∈ I,
and u ∈ U . Then ϕ(t, x, u) ∈ int I for all x ∈ int I, u ∈ U , and t ≥ 0.

Proof. Suppose that there are x ∈ int I, t > 0, and u ∈ U with ϕ(t, x, u) /∈ int I. Then
τ := sup{s ∈ (0, t], ϕ(t, x, u) ∈ int I} satisfies ϕ(τ, x, u) ∈ ∂I. Hence there is a neighborhood
V of ϕ(τ, x, u) with V ∩ (M \ I) 
= ∅. Continuous dependence on initial conditions implies
that there are y ∈ int I with ϕ(τ, y, u) /∈ I contradicting the positive invariance of I.

Invariant control sets and hence their interiors are positively invariant. For a set I ⊂ M
with nonvoid interior the domain of attraction is

A(I) =
{
x ∈ M, clO+(x) ∩ int I 
= ∅

}
.

Domains of attraction are open, since by local accessibility clO+(x) = cl intO+(x). We define
the invariant domain of attraction as the largest invariant set contained in A(I) (sometimes
called its invariance kernel).
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Figure 11. Exit probabilities from the control set D0.2
1234 until time Texit = 2π/ω.

Definition 6.2. For I ⊂ M the invariant domain of attraction is

Ainv(I) = {x ∈ A(I), ϕ(t, x, u) ∈ A(I) for all u ∈ U and t ∈ R+}.

This set is related to invariant control sets by the following observation.
Proposition 6.3. Assume that A(I)∩K is positively invariant for a compact set K. Then

(21) Ainv(I) ∩K =

{
x ∈ A(I) ∩K,

if C ⊂ clO+(x) is an invariant
control set, then C ∩ int I 
= ∅

}
,

and this set is compact. Furthermore, int[Ainv(I) ∩K] is positively invariant.
Proof. Let x ∈ Ainv(I)∩K and suppose that C ⊂ clO+(x) is an invariant control set. Then

intC ⊂ O+(x). If C ∩ int I = ∅, invariance of intC implies that we can find y ∈ C ∩ O+(x),
which is not in A(I), contradicting x ∈ Ainv(I). For the converse, let x ∈ A(I)∩K be in the
set on the right-hand side of (21). Consider ϕ(t, x, u) with u ∈ U and t ∈ R+. Then by [6,
Theorem 3.2.8] there is an invariant control set C ⊂ clO+(x) ∩K. Then C ∩ int I 
= ∅ and
it follows that ϕ(t, x, u) ∈ A(I), and hence x ∈ Ainv(I) ∩K. This proves the other inclusion.
In order to see closedness, let xn ∈ Ainv(I) ∩ K with xn → x. Then x ∈ K and, again by
[6, Theorem 3.2.8], there is an invariant control set C ⊂ clO+(x) ∩ K. We find T > 0 and
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Figure 12. Exit probabilities from the control set D0.2
1234 until time Texit = 10 ∗ 2π/ω.

u ∈ U with ϕ(T, x, u) ∈ intC. Then for n large enough, also ϕ(T, xn, u) ∈ intC and hence
C ⊂ clO+(xn). Now (21) implies C ∩ int I 
= ∅ and x ∈ Ainv(I) ∩K follows. Invariance of
the interior follows by Lemma 6.1.

Note also that every invariant control set C satisfies C ⊂ Ainv(C), but not necessarily
C ⊂ intAinv(C).

6.2. Parameter dependent control systems. In this section we describe the behavior of
control sets under perturbations of the control range. Here, in addition to control sets, also
chain control sets are needed. A nonvoid set E ⊂ M is a chain control set for (19) if it is
a maximal set such that for all x ∈ E there is a control u ∈ U with ϕ(t, x, u) ∈ E for all
t ∈ R, and for every ε > 0, T > 0 any two points x, y ∈ E can be connected by controlled
(ε, T )-chains; i.e., there are

n ∈ N, x0 = x, . . . , xn = y, u0, . . . , un−1 ∈ U , and T0, . . . , Tn−1 > T

with
d(ϕ(Ti, xi, ui), xi+1) < ε for all i = 0, . . . , n− 1.

For a given interval [ρ∗, ρ∗] of parameters, we denote by (19)ρ the corresponding control system
with control range Uρ, ρ ∈ [ρ∗, ρ∗]. For every control set Dρ∗ and every chain control set Eρ∗
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Figure 13. Exit probabilities from the control set D0.2
1234 until time Texit = 100 ∗ 2π/ω.

of the system (19)ρ∗ there are unique control sets Dρ and unique chain control sets Eρ for each
ρ ∈ [ρ∗, ρ∗] such that Dρ∗ ⊂ Dρ and Eρ∗ ⊂ Eρ. If all involved sets are bounded, it is well known
that the increasing compact-valued mappings ρ �→ clDρ and ρ �→ clEρ are continuous with
respect to the Hausdorff metric at all but countably many ρ-values (Scherbina’s lemma [36]).

In order to obtain stronger results on the behavior of control sets and chain control sets,
the following inner-pair condition is needed. A pair (x, u) ∈ M × U is called an inner pair of
the control system (19) if there exists T > 0 such that φ(T, x, u) ∈ intO+(x). The family of
systems (19)ρ is said to satisfy the inner-pair condition if for all ρ1 < ρ2 each pair (x, u) ∈
M × Uρ1 is an inner pair of the ρ2-system (19)ρ2 . We say that a set K ⊂ M fulfills the
no-return condition if x ∈ O+(K) ∩Kc implies that O+(x) ∩K = ∅, where Kc denotes the
complement of K in M .

The following theorem (see [6, Lemma 4.7.3, Lemma 4.7.4, and Theorem 4.7.5]) describes
the close relation between control sets and chain control sets if the inner-pair condition holds.

Theorem 6.4. Consider the family of control-affine systems (19)ρ for ρ ∈ [ρ∗, ρ∗], where
ρ �→ Uρ is continuous with respect to the Hausdorff metric. Let Dρ∗ be a control set and Eρ∗

be a chain control set of (19)ρ∗ such that Dρ∗ ⊂ Eρ∗. Then for all ρ it holds that Dρ ⊂ Eρ,
where the sets Dρ and Eρ are defined as above. Suppose Eρ∗ ⊂ K for a compact set K ⊂ M
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Figure 14. Exit probabilities from the domain of attraction A(D0.2
1234) until time Texit = 2π/ω.

that fulfills the no-return condition for the ρ∗-system, and assume that the family (19)ρ satisfies
the inner-pair condition in [ρ∗, ρ∗].

Then for ρ1 < ρ2 in (ρ∗, ρ∗] it holds that clDρ1 ⊂ Eρ1 ⊂ intDρ2, and for all up to at most
countably many ρ-values, the equation clDρ = Eρ is satisfied. The map (ρ∗, ρ∗) → C(K) :
ρ �→ clDρ is continuous at ρ if and only if clDρ = Eρ; the same is true for the map ρ �→ Eρ.
Here C(K) denotes the space of compact subsets of K.

In [24] it is shown that the inner-pair condition holds for an important class of systems
that includes, in particular, the escape equation (15) and the double well equation (17).

We also need some results on the boundaries of control sets D. Define the entrance and
exit boundaries by

∂exD := {x ∈ ∂D | there is y ∈ intD such that x ∈ O+(y)},(22)

∂enD := {x ∈ ∂D | there is y ∈ intD such that y ∈ O+(x)},

and the tangential boundary ∂tgD := ∂D \ (∂exD ∪ ∂enD). The sets ∂exD and ∂enD are
disjoint and open in ∂D, and ∂tgD is closed in ∂D. Furthermore, ∂tgD = cl ∂exD ∩ cl ∂enD
and int∂D ∂tgD = ∅. The following theorem from [24] shows that exit and entrance boundaries
change continuously if the control range Uρ increases lower semicontinuously and if the control
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Figure 15. Exit probabilities from the domain of attraction A(D0.2
1234) until time Texit = 254 ∗ 2π/ω.

sets themselves change continuously.
Theorem 6.5. Consider the set-valued mapping [ρ∗, ρ∗] → C(M), ρ �→ clDρ, as in the

previous theorem, where now Dρ∗ is a control set of (19)ρ∗ and Dρ denotes the unique control
set of (19)ρ with Dρ∗ ⊂ Dρ. If this map is continuous in the Hausdorff distance at ρ0 ∈
(ρ∗, ρ∗), Dρ∗ is bounded, and if the control range Uρ increases lower semicontinuously at ρ0,
then the mappings ρ �→ ∂Dρ, ρ �→ cl ∂exDρ, and ρ �→ cl ∂enDρ are continuous in the Hausdorff
distance at ρ0.

Next we will examine more closely how an invariant control set C loses its invariance
when merging with a variant control set D while the control range Uρ is increased. For this
we introduce two further specifications of exit boundaries: the part from where under all
admissible controls exactly one invariant control set C can be reached, and the part from
where C cannot be reached at all. We denote the first set by

∂ex→CD :=

{
x ∈ ∂exD | O+(x) bounded, and if for some invariant

control set C ′ ⊂ M we have C ′ ∩ O+(x) 
= ∅, then C = C ′

}

and the second one by

∂ex�→CD := {x ∈ ∂exD | O+(x) ∩ C = ∅}.
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Figure 16. Exit probabilities from the domain of attraction A(D0.2
1234) until time Texit = 1000 ∗ 2π/ω.

Note that from [6, Theorem 3.2.8] it follows that O+(x) ⊂ O−(C)∩O+(D) for all x ∈ ∂ex→CD.

If the exit boundary of Dρ0 can be decomposed into ∂ex→Cρ0Dρ0 and ∂ex�→Cρ0Dρ0 , then
the exit boundary of the merged set is continuous in the following sense [24].

Theorem 6.6. Let K ⊂ M be a compact set such that all control sets of the control sys-
tems (19)ρ have void intersection with the boundary of K. Assume that system (19)ρ0 has
precisely one invariant control set Cρ0 ⊂ K and one variant control set Dρ0 ⊂ K such that
Cρ0 ∩ clDρ0 
= ∅. For each ρ > ρ0 let there be precisely one variant control set F ρ ⊂ K
of (19)ρ and Cρ0 ∪ Dρ0 ⊂ F ρ. Suppose that clF ρ are chain control sets of (19)ρ for each
ρ > ρ0 and cl(Oρ0,−(Cρ0)∩Oρ,+(Dρ0)) is a chain control set of (19)ρ0. Finally, assume that
Uρ depends continuously on ρ with respect to the Hausdorff metric at ρ0 and let δex→Cρ0Dρ0

and δex�→Cρ0Dρ0 be a nontrivial decomposition of δexDρ0.

Then cl ∂exF ρ → cl ∂ex�→Cρ0Dρ0 in the Hausdorff metric for ρ ↘ ρ0.

Acknowledgments. The algorithms used have been implemented into the MATLAB ver-
sion of the program package GAIO by Junge. Thus the box handling algorithms from Junge
could be used. The control sets are found using methods based on Szolnoki [39]. The neces-
sary solvers for stochastic differential equations and the routines for the computation of the
transition matrix were added into the GAIO structure.
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