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Abstract

Let '(t; �; u) be the �ow of a control system on a Riemannian
manifold M of constant curvature. For a given initial orthonormal
frame k in the tangent space Tx0M for some x0 2 M , there exists a
unique decomposition 't = �t � �t where �t is a control �ow in the
group of isometries of M and the remainder component �t �xes x0
with derivative D�t(k) = k �st where st are upper triangular matrices.
Moreover, if M is �at, an a¢ ne component can be extracted from the
remainder.

AMS 2000 subject classi�cation :
Key words: control �ows, group of a¢ ne transformations, isometries, non-
linear Iwasawa decomposition.
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1 Introduction

Dynamical systems in a �nite dimensional di¤erentiable manifold M (in-
cluding deterministic, random, stochastic and control systems) are globally
described by the corresponding trajectories in the group Dif(M) of global
di¤eomorphisms of the manifold M . In most interesting examples and ap-
plications, the manifold M has a Riemannian metric endowed with the cor-
responding geometric structure: orthonormal frame bundle O(M) over M ,
Levi-Civita horizontal lift, covariant derivative of tensors, geodesics, among
other structures whose constructions depend intrinsically on this metric.
Once a di¤erentiable manifold is endowed with a Riemannian metric, one

can distinguish the elements in the group of di¤eomorphisms Dif(M) which
preserve this metric, the group I(M) of isometries ofM . In general the group
Dif(M) is an in�nite dimensional Lie group, while the group of isometries
I(M) is �nite dimensional. This group carries geometric and topological
properties of M . Roughly speaking, what we describe in this paper is a
factorization of a �ow 't (a one-parameter family of di¤eomorphisms) into
a component �t which lies in this �nite dimensional subgroup of isometries
I(M) and another component (the remainder) �t which �xes a given point on
M and-via its derivative-contains the long time stability behavior (Lyapunov
exponents) of the system. The title of the paper is motivated by the classical
Iwasawa decomposition for linear maps which is the unique factorization, via
Gram-Schmidt orthonormalization, of a matrix as a product of an orthogonal
and an upper triangular matrix; hence one has a decomposition into an
isometry and a matrix containing the expansion/contraction terms.
A similar decomposition has appeared in Liao [13] for stochastic �ows,

with hypotheses on the vector �elds of the systems. A geometrical condition
on the manifold M (constant curvature), instead of on the vector �elds was
established in Ru¢ no [16], with some examples also in [17]. This paper
intends to apply the same technique to show that this decomposition also
holds in the context of control �ows.
We remark that a main interest in this kind of decomposition for (random)

dynamical systems is the fact that characteristic asymptotic parameters of
the systems (Lyapunov exponents and rotation numbers) appear separately
in each of the components of the decomposition. For details on the de�nitions
of these asymptotic parameters we refer to the articles by Liao [12], Ru¢ no
[17], Arnold and Imkeller [2] and the references therein. For control �ows
these questions need further study.
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The paper deals with control �ows which include a shift on time-varying
vector �elds. In more detail, the main result of this paper, the non-linear
Iwasawa decomposition for control �ows, can be described as follows: Assume
certain geometrical conditions on the vector �elds or that the manifold M
has constant curvature (cf. Theorem 5.1), and �x an initial condition x0 2M
and an initial orthonormal frame k of the tangent space Tx0M . Then there
exists a unique factorization

't = �t � �t; (1)

where �t corresponds to a control �ow in the group of isometries, �t �xes
the starting point x0 for all t � 0, i.e., �t(x0; X) � x0, and the derivative
in the space parameter satis�es D�(k) = k st where st are upper triangular
matrices. Adding some other restrictions on the vector �elds (or assuming
that M is �at, cf. Corollary 5.2) one can go further in the decomposition
and factorize the remainder �t of equation (1) to get a (dynamically) weaker
remainder (using the same notation �t):

't = �t �	t � �t; (2)

where �t are isometries, 	t are in the group of a¢ ne transformations of
M (hence so does �t � 	t), and the new remainders �t are di¤eomorphisms
which again �x x0 for all t � 0, but the derivative with respect to the space
parameter x is given by the identity D�t � IdTx0M . In decomposition (2)
we have extracted the a¢ ne component from the previous remainder in (1).
Hence, in this second factorization, the dynamics of �t is reduced locally to
the identity, up to �rst order.
Section 2 provides an overview of control �ows and Section 3 recalls geo-

metric preliminaries for non-expert readers (these sections can be skipped
by those who are familiar with these topics). Section 4 derives the nonlin-
ear Iwasawa decomposition and proves that the isometric part is, by itself, a
control �ow, with appropriate vector �elds. Section 5 characterizes the mani-
folds for which the required assumptions are always satis�ed. Finally, Section
6 adapts some examples in [16] and [17] to the context of control �ows in
all simply connected manifolds of constant curvature: Euclidean spaces Rn,
spheres, and a hyperbolic space.
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2 Control Flows

In this section we describe some basic facts on control �ows. We consider a
control system in a complete connected d-dimensional Riemannian manifold
M given by a family F of smooth vector �elds F � X (M). We assume
that the linear span of F is a �nite dimensional subspace E � X (M), i.e.,
F is contained in a �nite dimensional a¢ ne subspace ofX (M). The time-
dependent vector �elds taking values in F , i.e. measurable curves in F , are

F = fX 2 L1(R; E); Xt 2 F for t 2 Rg: (3)

Throughout we will assume that all corresponding (nonautonomous) di¤er-
ential equations

_x = Xt(x) where X 2 F ; (4)

have unique (absolutely continuous) global solutions 't(x0; X); t 2 R; with
'0(x0; X) = x0. Then system (4) de�nes a �ow on F �M

�t(X; x0) = (�tX;'t(x;X)); t 2 R; (5)

here �t is the shift on F given by (�tX) (s) = Xt+s; s 2 R. We call this the
associated (non-parametric) control �ow (cp. also [5]). It is closely related
to control �ows as considered in [4] with the shift on the space U of control
functions, i.e. the space of measurable curves

U = fu 2 L1(R;Rm); u(t) 2 U for t 2 Rg;

where U is the control range. Here the time dependent vector �elds are
parametrized by the control functions and it has to be assumed that the
system is control-a¢ ne and the control rangeU is compact and convex. In
fact, the time-dependent vector �elds in F (and hence the control �ow (5))
can be parametrized as follows.

Proposition 2.1 (i) Let F � X (M) be a compact and convex subset of the
m-dimensional subspace E � X (M) spanned by F . Then there exist a convex
and compact subset U � Rm, 0 2 U and m + 1 vector �elds X0; : : : ; Xm 2
X (M) such that

F = fX0 +

mX
i=1

ui(�)Xi; u 2 L1(R;Rm); u(t) 2 U for t 2 Rg: (6)
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(ii) Conversely, consider a control-a¢ ne system onM of the form

_x = X0(x) +

mX
i=1

ui(t)Xi(x);

where m 2 N; X0; :::; Xm 2 X (M), u 2 U with control range U � Rm convex
and compact. Then

F = fX0 +

mX
i=1

uiXi; u 2 Ug (7)

is a convex and compact subset of a �nite dimensional space E � X (M) of
vector �elds and

fX 2 L1(R; E); Xt 2 F for t 2 Rg = fX0 +
mX
i=1

ui(�)Xi; u 2 Ug:

Proof: Starting from (ii): Clearly, for a compact and convex set U � Rm,
the set F in (7) is a convex and compact subset of a �nite dimensional
vector space in X (M). The vector space E spanned by the vector �elds
X0; X1; : : : ; Xm has dimension bounded by m + 1. Conversely, let F be a
convex and compact set generating an m�dimensional space E � X (M).
Fixing X0 2 F and a base X1; :::; Xm of E one �nds that every element
X 2 F can uniquely be written as

X0 +
mX
i=1

uiXi

with coe¢ cientsui 2 R. We may assume that X1; : : : ; Xm 2 F , since E
is generated by F . Clearly, the corresponding set U of coe¢ cients forms a
convex and compact subset of Rm (with 0 2 U). It remains to show that for
every X 2 F one can �nd a measurable selection u with

Xt = X0 +

mX
i=1

ui(t)Xi for almost all t 2 R.

This follows from Filippov�s Theorem, see e.g. Aubin and Frankowska [3],
Theorem 8.2.10.

�
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Remark: If F is contained in an (m� 1)-dimensional a¢ ne subspace ofE,
then, in the second part of the proof, one can restrict the linear combination
tom vector �elds, instead of (m+1): just take e.g. X0 = X1 in the arguments
above.

This proposition shows that the nonparametric control �ows are just a
concise way of writing the control �ows corresponding to control-a¢ ne sys-
tems as considered, e.g., in [4]; here one uses the shift on the space U of
admissible control functions instead of the shift on the space of time de-
pendent vector �elds. Nonparametric control �ows inherit all properties of
control �ows; in fact they can also be considered as the special case

_x = u(t)(x); u 2 F = fu 2 L1(R; E); u(t) 2 F for t 2 Rg

(here the right hand side of the di¤erential equation denotes the vector �eld
u(t) evaluated at x:) For a �xed control function u(�), these equations reduce
to ordinary di¤erential equations, hence one can apply all the techniques of
existence and uniqueness of solution and di¤erential dependence on para-
meters. The family �t is a continuous skew-product �ow on F �M when
F � L1(R; E) is endowed with the weak� topology. Note that the M�
component of � satis�es the cocycle property

't+s(x;X) = 't('s(x;X); �sX):

When the time-dependent control vector �eld X is implicit in the context,
for sake of simplicity in the notation, we shall write simply 't instead of
't(�; X).

3 Geometric Preliminaries

In this section, we recall some geometric constructions; a general reference is
Kobayashi and Nomizu [9].
We shall denote the linear frame bundle over a d-dimensional smooth

manifold M by GL(M). It is a principal bundle over M with structural
group Gl(d;R). A Riemannian structure on M is determined by a choice of
a subbundle of orthonormal frames O(M) with structural subgroup O(d;R).
We shall denote by � : GL(M)!M and by �o : O(M)!M the projections
of these frame bundles onto M . The canonical Iwasawa decomposition given
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by the Gram-Schmidt orthonormalization in the elements of a frame k =
(k1; : : : ; kd) de�nes a projection ?: k 7! k? : GL(M) ! O(M) such that
GL(M) is again a principal bundle over O(M) with structural group S �
Gl(d;R), the subgroup of upper triangular matrices with positive elements in
the diagonal. The principal bundles described above factorize as � = �o � ?.
We recall that for a frame k in GL(M) a connection � determines a direct

sum decomposition of the tangent space at k into horizontal and vertical sub-
spaces which will be denoted by TkGL(M) = HTkGL(M)�V TkGL(M). An
analogous decomposition holds in the tangent bundle TO(M) � T GL(M).
For k 2 O(M), we have that HTkO(M) = HTkGL(M). Given a vector �eld
X on M , we denote its horizontal lift to GL(M) by HX(k) 2 TkGL(M).
Throughout this paper we restrict attention to the Levi-Civita connection.
The covariant derivative of a vector �eld X at x is a linear map denoted

by rX(x) : TxM ! TxM , we write rX(Y ) or rYX for a vector Y 2 TxM .
In terms of �bre bundles, the covariant derivative is de�ned as a derivative
along horizontal lift of trajectories, hence it has a purely vertical component.
Considering the right action of the structural group in the frame bundle
GL(M), via adjoint, we can associate to rX an element in the structural
group Gl(d;R) of the principal bundle GL(M) given by the matrix

~X(k) = ad(k�1)rX; (8)

which acts on the right such that rX(k) = k ~X(k). Note that, di¤erent from
rX, the right action of the matrix ~X(k) does depend on k.
The natural lift of X to GL(M) is the unique vector �eld �X in GL(M)

such that L�X(k)� = 0, where � is the canonical Rd-valued 1-form on GL(M)
de�ned by �(Hk(�)) = � for all � 2 Rd. This natural lift is given by:

�X(k) =
d

dt
[D�t(k)]jt=0: (9)

where D�t : Tx0M ! T�t(x0)M is the derivative of the local 1-parameter
group of di¤eomorphisms �t associated to the vector �eld X. Note that it
describes the in�nitesimal behavior of the linearized �ow of X in a basis k of
the space Tx0M . Naturally, �X is equivariant by the right action of Gl(d;R)
in the �bres.
The next lemma guarantees that the left action of the linearized �ow is

also well de�ned in the subbundle O(M). In fact, this is a well expected
result since the left action of Gl(d;R) is well de�ned even in smaller quotient
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space, e.g. in the associated �ag manifolds, see e.g. [18]. In any case, for the
reader�s convenience we shall present a proof of this simpler version which is
all that we need here.

Lemma 3.1 The projection ?: GL(M) ! O(M) is invariant for the lin-
earized �ow in the sense that, for all k 2 GL(M),

(D�t(k))
? = (D�t(k

?))?: (10)

Proof: This is a consequence of the commutativity of the right action of
Gl(d;R) (in particular, in this case, the action of the subgroup S of up-
per triangular matrices) on GL(M) with any other linear left actions (in
particular, in this case, the linearized �ow). In fact, consider the Iwasawa
decomposition k = k? � s(k) for some s(k) 2 S. Hence,

D�t(k
? � s(k)) = (D�tk?) � s(k) = (D�t(k))? � s(D�t(k)):

Equality (10) follows by the uniqueness of the Iwasawa decomposition.
�

The vertical component V �X(k) at k 2 ��1(x0) is given by the covariant
derivative rX(k) (see e.g. Elworthy [6, Chap. II, §2], or Kobayashi and
Nomizu [9, Chap. III, §1]). In terms of Lie algebra, consider the canonical
Iwasawa decomposition of the Lie algebra of matrices gl(d;R) = G = K � S
into a skew-symmetric and upper triangular component, respectively. By
projecting in each of these two components, we write (recall (8)) ~X(k) =
[ ~X(k)]K + [ ~X(k)]S . With this notation, we have the decomposition:

�X(k) = H(X) + k[ ~X(k)]K + k[ ~X(k)]S ; (11)

where H(X) is the horizontal lift of X to TkO(M),
The natural lift of X to the subbundle O(M), denoted by (�X)? is the

projection of �X onto O(M), i.e. for k 2 O(M),

(�X)?(k) :=
d

dt
[D�t(k)]

? jt=0:

Again, we have the decomposition of (�X)?(k) into horizontal and vertical
components: (�X)?(k) = H�X(k)+V (�X)?(k). In terms of the right action
of ~X(k), the vertical component is simply V (�X)?(k) = k[ ~X(k)]K. In terms
of the left action of (rX) we shall denote V (�X)?(k) = (rX(k))?k, where

8



(rX(k))? is a skew-symmetric map: TxM ! TxM . The characterization of
(rX(k))? in terms of its left action on O(M) is the content of the following
lemma. Although the formula looks quite intricate, it helps to understand
the corresponding right action of ~X(k).

Lemma 3.2 Let k = (k1; : : : ; kd) 2 O(M) with �o(k) = x. The image of the
j-th component kj under the matrix (rX(k))? is given by

(rX(k))?kj

= rX(kj)� hrX(kj); kjikj �
X
0<r<j

�
hrX(kr); kji+ hrX(kj); kri

�
kr:

Proof: For a di¤erentiable function t 7�! Vt : R 2 Rd with Vt 6= 0 for all
t 2 (��; �) and derivative _Vt one has

d

dt

�
Vt
kVtk

�����
t=0

=
_Vt

kVtk
� h

_Vt; Vti
kVtk3

Vt : (12)

For the sake of simplicity, �x a basis in TxM and denote by A the matrix
which represents the linear transformation rX(x). Formula (12) with t = 0
will be used in each coordinate of

(eAt(k))? =

�
V 1t
kV 1t k

; : : : ;
V dt
kV dt k

�
;

where each component comes from the orthogonalization process:

V jt = e
At(kj)�

X
0<r<j

heAt(kj); V rt i
hV rt ; V rt i

V rt :

One easily checks, by induction in j and using that kV j0 k = 1 for all j, that
the derivatives satisfy:

dV jt
dt

�����
t=0

= A(kj)�
X
0<r<j

�
hA(kj); kri+ hA(kr); kji

�
kr ;

which gives, by formula (12)

d

dt

 
V jt

kV jt k

!�����
t=0

= A(kj)�hA(kj); kjikj�
X
0<r<j

�
hA(kr); kji+ hA(kj); kri

�
kr :

�
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One sees the skew-symmetry of (rX(k))? by checking that

h(rX(k))?ki; kji = �h(ki;rX(k))?kji:

We shall consider the connected Lie group of di¤eomorphisms Dif(M)
which is generated by the exponential of the Lie algebra of smooth, bounded
vector �elds X (M). The exponential of vector �elds here means the associ-
ated �ow. We shall denote by A(M) the Lie subgroup of a¢ ne transforma-
tions of M whose elements are given by maps 	 2 Di�(M) such that their
derivatives D	 preserve horizontal trajectories in TM . This is equivalent to
saying that a¢ ne maps are those which preserve geodesics. Its Lie algebra
a(M) is the set of in�nitesimal a¢ ne transformations characterized by vector
�elds X such that the Lie derivative of the connection form ! on GL(M)
satis�es L�X! = 0. Thus X is an in�nitesimal a¢ ne transformation if for all
vectors �elds Y :

rAX(Y ) = R(X; Y );
where the tensor AX = LX �rX and R is the curvature (see e.g. Kobayashi
and Nomizu [9, Chap. VI, Prop. 2.6]).
For a �xed k 2 GL(M), the linear map

i1 : a(M)! TkGL(M); X 7! �X(k); (13)

is injective, see e.g. [9, Theorem VI.2.3]. We denote by �a(k) its image in
TkGL(M).

By I(M) � A(M) we denote the Lie group of isometries of M . Its Lie
algebra i(M) is the space of Killing vector �elds or in�nitesimal isometries,
characterized by the skew-symmetry of the covariant derivative, i.e., a vector
�eld X is Killing if and only if

hrX(Z);W i = �hZ;rX(W )i;

for all vectors Z;W in a tangent space TxM . Then, by Lemma 3.2, for any
orthonormal frame k we have that (rX(k))? = rX and (�X)?(k) = �X(k).
For a �xed k 2 O(M), the linear map

i2 : i(M)! TkO(M); X 7! �X(k); (14)

is a restriction of the map i1 de�ned above, hence it is also injective. We
denote by �i(k) its image in TkO(M).

10



Since the dynamics can be described as trajectories in Lie groups (of
di¤eomorphisms, isometries, a¢ ne transformations, etc.), whenever conve-
nient, we shall change from the usual dynamical terminology into the Lie
group terminology. For example, vector �elds are identi�ed with Lie algebra
elements which will generate right invariant vector �elds in the Lie group
Dif(M); furthermore, if � belongs to Dif(M), one identi�es the derivative
D� : TM ! TM (which sends vector �elds into vector �elds in M) with the
derivative of the left action L� : TDif(M) ! TDif(M). In fact, if � = eX ,
then, given another vector �eld Y , D�(Y ) = DeX(Y ) = L�(Y ).

4 Decompositions of Control Flows

This section describes conditions on the vector �elds of the control system for
the existence of the decomposition into isometric or a¢ ne transformations.
We start with a theorem which, under certain conditions on the vector

�elds X 2 F , factorizes the control �ow 't of equation (4) in the form
't = 	t � �t such that 	t is a control �ow in the a¢ ne transformations
group, and the remainder �t �xes the initial point and has trivial derivatives
(identity).
Let k be an element in GL(M) which is a basis for Tx0M , i.e. �(k) =

x0. We shall assume the following hypothesis on the vector �elds X 2 F
determining the control system (4) (recall formula (9)):

(H1) For every X 2 F , the lifted vector �eld �(X) is tangent to the orbit
of the frame k under the group of a¢ ne maps (acting on the bundle
GL(M)).

Since the operation � of lifting vector �elds commutes with the translation
by a di¤eomorphism, an a¢ ne transformation	 maps tangent spaces to the
orbit onto tangent spaces. Hence hypothesis (H1) is equivalent to

(H1�) �[D	(X)](k) 2 �a(k), for all a¢ ne transformations	 2 A(M).

Observe that in the �nite dimensional case (classical a¢ ne control sys-
tem), this condition holds if it holds for the vector �elds X0; :::; Xm in the
representation (6). Intuitively, a vector �eld X satis�es hypothesis (H1�)
(hence (H1)) if the associated �ow carries x0 and its �in�nitesimal neigh-
borhood� (i.e., a basis in Tx0M) along trajectories which �instantaneously�
coincide with the trajectories of an in�nitesimally a¢ ne transformation.
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Theorem 4.1 Suppose that every vector �eld X 2 F of the control system
(4) satis�es the hypothesis (H1) (or equivalently (H1�)) for a �xed frame
k 2 GL(M), and let x0 = �(k). Then the associated control �ow 't factorizes
uniquely as

't = 	t � �t;
where 	t is a control �ow in the group of a¢ ne transformationsA(M), and
the remainder �t satis�es �t(x0) � x0 and D�t = Id(Tx0M) for all t � 0.

Proof: Since the linear map i1 of equation (13) is injective, by hypothesis
(H1), for each X 2 F we can uniquely de�ne the in�nitesimal a¢ ne transfor-
mation Xa which satis�es �Xa(k) = �X(k). Hence, by the comments after
Lemma 3.1, one easily sees that

Xa(x0) = X(x0) and rXa(x0) = rX(x0): (15)

Let 	t be the solution of the following equation in the Lie group A(M), with
	0 = IdM :

_	t = 	t[D	
�1
t (Xt)]

a ; t 2 R with X 2 F ; (16)

where the elements [ � ]a in the Lie algebra a(M) act on the right in A(M).
We recall that, in the Lie algebra terminology, Xt here means Xt(	t), the
right invariant vector �eld evaluated at 	t.
Equation (16) is obviously a control system in A(M) and the solution 	t

generates a control �ow on A(M): Indeed, it is generated by the convex and
compact set of vector �elds on A(M)

	 7! 	[D	�1(X)]a ; X 2 F;

which is contained in the �nite dimensional vector space obtained by consid-
ering all X 2 E. Using that 	t	�1t = IdM one easily �nds that the control
system for the inverse 	�1t in A(M) is

_	�1t = �[D	�1t (Xt)]
a	�1t ; t 2 R with X 2 F :

We de�ne �t = 	�1t � 't. In the Lie group of di¤eomorphisms of M we have
the following equation for �t:

_�t = D	
�1
t ( _'t) + ( _	

�1
t )'t

= D	�1t (Xt('t))� [D	�1t (Xt)]
a	�1t 't

=
�
D	�1t (Xt)� [D	�1t (Xt)]

a
	
(�t): (17)
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In the last line we use the right invariance of the X and the fact that
D	�1t (Xt('t)) = L	�1(R�tXt(	t)), which (by commutativity of right and
left action) yields D	�1t (Xt(	t)) (�t). That is, it is a direct application of
the formula Lg(X)(h) = Lg(X(g

�1h)) for right invariant vector �elds in a
Lie group (with Lg = D	�1; h = �t; g = 	�1).
By de�nition of Xa (equation (15)) and equation (17) we have that not

only _�t(x0) = 0 but also that �
�
D	�1t Xt� [D	�1t (Xt)]

a
	
(�t) = 0, hence the

derivative of the linearization d
dt
D�t(u) = 0. This establishes the properties

of each component of the factorization of 't = 	t � �t stated in the theorem.
For uniqueness, suppose that 	0t � �0t = 	t � �t where 	0t and �0t also

satisfy the properties stated. This implies that 	�1t 	
0
t(x0) = x0 for all t � 0.

Besides, the derivative Dx0(	
�1
t 	

0
t) = Id, hence the natural lift to GL(M)

satis�es the di¤erential equation d
dt
D(	�1t 	

0
t) = 0 . Since the map i1 is

injective, it follows that 	�1t �	0t = IdM .
�

Remark. We emphasize that the a¢ ne transformation system	t does
depend on the choice of the initial frame k.
Remark. Observe that, in general, �t is not a control system in Di�(M)
since the vector �elds involved in the equation do not depend exclusively
on Xt and on the point �t. On the other hand, the control �ow 	t may
be considered as a skew product �ow in F � A(M). This follows at once
from its de�nition. Then (	t; �t) is a skew product �ow in the �ber bundle
F � A(M)�M ! A(M)�M with base �ow 	t. In the linear case, this is
well known and was used, e.g., by Johnson, Palmer and Sell [7] in their proof
of the Oseledets theorem for linear �ows on vector bundles.
For the next theorem, �x an element k 2 O(M). We shall assume the

following hypothesis on the vector �elds X 2 F of the system (recall that
i(k) denotes the image of the map i2 de�ned in (14)):

(H2) For every X 2 F , the lifted vector �eld �(X) is tangent to the orbit
of the frame k under the group of isometries (acting on the bundle
O(M)).

Again, the operation � of lifting vector �eld (in Gl(M)) and its ortho-
normalization ? commute with the translation by an isometry �; hence �
maps tangent spaces to the orbit onto tangent spaces and hypothesis (H2) is
equivalent to

(H2�) [�(D�(X))(k)]? 2 �i(k) for every isometry � 2 I(M).

13



Intuitively, a vector �eld X satis�es hypothesis (H2) if the associated �ow
carries x0 and its �in�nitesimal neighborhood�(i.e., an orthonormal basis in
Tx0M) along trajectories which �instantaneously�coincide with trajectories
of a Killing vector �eld (in�nitesimal isometry). That is, a vector �eld X
violates (H2), if there is no isometry which rotates and translates the �in�n-
itesimal neighborhood�of x0 into the same directions as the �ow induced by
X does.
The nonlinear Iwasawa decomposition is described in the following theo-

rem.

Theorem 4.2 Suppose that for a certain frame k 2 O(M) with x0 = �o(k),
all vector �elds X 2 F of the control system (4) satisfy hypothesis (H2)
(hence (H2�)). Then, the associated control �ow 't has a unique decomposi-
tion

't = �t � �t;
where �t is a control �ow in the group of isometries I(M), �t(x0) = x0 and
Dx0�t(k) = k st for all t � 0, where st lies in the group of upper triangular
matrices.

Proof: The �rst part of the proof proceeds similarly to the proof of Theorem
4.1, replacing the group A(M) by I(M): Since the linear map i2 of equation
(14) is injective, for every X 2 F , we can take X i, the unique in�nitesimal
isometry which satis�es �X i(u) = (�X)?(u). Analogously to equation (15),
we have that

X i(x0) = X(x0) and rX i(k) = (rX(k))?k: (18)

We de�ne the following system in the group I(M), with initial condition
�0 = IdM :

_�t = �t[D�
�1
t (Xt)]

i (19)

Note that the equation above is a control system in I(M) and the solution
�t generates a control �ow on I(M): Indeed, it is generated by the convex
and compact set of vector �elds on I(M)

� 7! �[D��1(X)]i ; X 2 F:

The control system for the inverse ��1t in I(M) is given by

_��1t = �[D��1t (Xt)]
i��1t ; t 2 R with X 2 F :

14



We de�ne �t = ��1t � 't. In the Lie group of di¤eomorphisms of M we have
the following equation for �t (by the same arguments as for equation (17)):

_�t = D�
�1
t ( _'t) + ( _�

�1
t )'t

= D��1t (Xt('t))� [D��1t (Xt)]
i��1t 't

=
�
D��1t (Xt)� [D��1t (Xt)]

i
	
(�t): (20)

By the �rst part of equation (18) and equation (20) we have that _�t(x0) =
0. Moreover, by the decomposition of formula (11) and the second part of
equation (18) we have that, for a given k 2 O(M),

�
�
D��1t (Xt)� [D��1t (Xt)]

i
	
(k) = k

�
^D��1t (Xt)

�
S
;

where
�

^D��1t (Xt)

�
S
on the right hand side are upper triangular matrices.

As mentioned before, the canonical lift of a vector �eld gives the in�nitesimal
behavior of the linearized �ow acting on a basis, that is by the de�nition in
(9),

d

dt
D�t(k) = D�t(k)

�
^D��1t (Xt)

�
S
:

Since the Lie algebra element on the right hand side is upper triangular and
D�0(k) = k, one can write D�t(k) = k st where st are upper triangular
matrices which solve the following left invariant di¤erential equation in the
Lie group of upper triangular matrices:

_st = st [
^D��1t (Xt)]S ; s0 = Id:

This establishes the derivative property of the remainder �t. Uniqueness of
the decomposition follows easily from the fact that the map i2 is injective,
analogous to uniqueness in Theorem 4.1.

�
Note that in Theorem 4.2, again, the decomposition depends on the initial

orthonormal frame k 2 O(M) and the �ow �t may be viewed as a skew
product �ow on F�I(M). Now, juxtaposing the decompositions established
by Theorems 4.1 and 4.2, we have the following factorization of 't into three
components.
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Corollary 4.3 Suppose all vector �elds X 2 F in the control system (4) sat-
isfy conditions (H1) and (H2) for a certain frame k 2 O(M), with x0 = �o(k).
Then, for the associated control �ow 't, one has the unique decomposition

't = �t �	t � �t;

where each of the components �t, 	t, �t have the properties stated in Theo-
rems 4.1 and 4.2. Moreover �t � 	t corresponds to a control system in the
group of a¢ ne transformations.

Proof: Let 't = 	0t � �t be the unique decomposition according to Theorem
4.1, where 	0t is a control system in the group of a¢ ne transformationsA(M),
�t(x0) = x0 and D�t = IdTx0M for all t � 0.
Let 't = �t � �0t be the unique decomposition according to Theorem 4.2,

where �t is a control system in the group of isometries I(M) with �0t(x0) = x0
and Dx0�

0
t(k) = k s

0
t for a certain family s

0
t in the group of upper triangular

matrices.
Take the process �t and �t of the statement of this corollary as de�ned

above and de�ne the process 	t = ��1t 	
0
t. These assignments de�ne the

decomposition.
It only remains to prove that there exists a family on the group of upper

triangular matrices such thatD	t(k) = k st. By the properties above,D	0t =
D't, hence

D	t(k) = D�
�1
t �D	0t(k) = D��1t �D't(k) = D�0t(k) = k s0t:

Thus the upper triangular matrix family st of the statement is given by s0t.
This con�rms the expected fact that although, in general, 	t is di¤erent
from 	0t they have the same derivative behavior (which carries the Lyapunov
information of the system).

�

5 Conditions on the Manifold

This section characterizes Riemannian manifolds such that every vector �eld
satis�es hypotheses (H1) and (H2), respectively, and hence the corresponding
decompositions hold. These manifolds are precisely Riemannian manifolds
with constant curvature (simply connected or quotients of them) for the
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isometric decomposition and �at space for the a¢ ne transformations decom-
position. In particular, the three-factor decomposition of Corollary 4.3 exists
for every control system if and only if M is a �at space. More precisely, we
have the following result.

Theorem 5.1 If M is simply connected with constant curvature (or its quo-
tient by discrete groups), then for every control system (4) and every or-
thonormal frame k0 2 O(M), the control �ow admits a unique non-linear
Iwasawa decomposition 't = �t � �t as in Theorem 4.2. Conversely, if every
control �ow on M admits this decomposition, then the space M has constant
curvature.

Proof: For a simply connected manifoldM of constant curvature the dimen-
sion of I(M) equals d(d+ 1)=2. Hence the linear map i2 de�ned in equation
(14) is bijective. Therefore, hypothesis (H2) is always satis�ed for any set of
vector �elds.
Conversely, assume that for all vector �elds X and for every orthonor-

mal frame k 2 O(M), the corresponding �ow �t has the non-linear Iwasawa
decomposition �t = �t � �t. Then, the trajectory kt in O(M) induced by �t
satis�es

kt := [D� (k)]
? = [D�t �D�t(k)]? = D�t(k):

We recall that
d

dt
(D�t(k)) jt=0 = (�X)?(k): (21)

For any �xed k 2 GL(M), the linear map : X ! TkGL(M) given by
X 7! �X(k) is surjective because it concerns only the local behavior of X
on M . Hence, the projection of its image by ?: TkGL(M) ! Tk?O(M) is
also surjective. In other words, for k 2 O(M), the map X 7! (�X)?(k) is
surjective. If there exists the decomposition, equality (21) shows that the
dimension of I(M) equals d(d + 1)=2 which implies that M has constant
curvature (see, e.g. Klingenberg [8], Ratcli¤e [14] or Kobayashi and Nomizu
[9, Thm. VI.3.3]).

�
As a particular case of the theorem above, we have the following condi-

tions on M which guarantee that every system on it will have a �ow which
factorizes into the three components stated in Corollary 4.3.
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Corollary 5.2 If M is �at, simply connected (or its quotient by discrete
groups) then for every control system (4) and every orthonormal frame k 2
O(M), the associated �ow 't has a unique decomposition ' = �t �	t � �t as
described in Corollary 4.3. Conversely, if every �ow 't has this decomposition
then M is �at.

Proof: If M is �at and simply connected, then a direct check shows that
the dimensions of the groups i(M) and A(M) are d(d + 1)=2 and d(d + 1)
respectively. This implies that the injective maps i1 and i2 are bijective,
hence hypotheses (H1) and (H2) are satis�ed for any set of vector �elds on
M .
Conversely, assume that for all vector �elds X and for every orthonormal

frame k 2 O(M) the corresponding �ow �t has the decomposition �t =
�t �	t � �t with the properties asserted. Then, the trajectory kt in GL(M)
induced by �t satis�es

kt = D	
0
t(k);

where 	0t = �t �	t. We recall that

d

dt
(D	0t(k)) jt=0 = �X(k): (22)

As before, for a �xed k 2 GL(M), the linear map X 7! �X(k) is surjective
because it concerns only the local structure of X on M . Hence, equality
(22) implies that the dimension of the group of a¢ ne transformationsA(M)
equals d(d + 1), which implies that M is �at (see, e.g. Klingenberg [8] or
Kobayashi and Nomizu [9, Thm. VI.2.3]).

�

6 Examples

Liao in [13] illustrates the isometric decomposition by working out one ex-
ample in the sphere Sn. The results in the above section enlarge the class of
examples to many well known manifolds including projective spaces, hyper-
bolic manifolds, �at torus and many non-compact manifolds. In this section
we shall describe calculations on all the three possible simply-connected cases.
We shall concentrate mainly on the isometric part �t since this is the com-
ponent which carries more intuitive motivation. Note that (for stochastic
�ows) this is the component which presents the angular behavior (matrix of
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rotation, see e.g. [17], [2]), while 	t presents the stability behavior (see [13]
or [12]).
The control system �t in the group of isometries presented in Theorem

4.2 becomes well de�ned by equation (19). In this section we shall give a
description of the calculation of the vector �elds X i involved in this equation
in each one of the three possibilities of simply connected manifolds with
constant curvature. In the case of �at spaces, the coe¢ cientsXa of equation
(16) for the system 	0t = �t �	t (Theorem 4.1) will also be described.

6.1 Flat spaces

We recall that the group A(Rd) of a¢ ne transformations inRd (or any of
its quotient space by discrete subgroup) can be represented as a subgroup of
Gl(d+ 1;R):

A(Rd) =
��

1 0
v g

�
with g 2 Gl(d;R) and v is a column vector

�
:

It acts on the left in Rd through its natural embedding on Rd+1 given by x 7!
(1; x). The group of isometries is the subgroup of A(M) where g 2 O(n;R).
Given a vector �eld X, assume that the initial condition x0 is the origin and
that k is an orthonormal frame in the tangent space at x0. One can easily
compute the vector �elds Xa 2 a(Rd) and X i 2 i(Rd) using the properties
established in equations (15) and (18):

Xa(x) = X(0) + (D0X)x

and
X i(x) = X(0) + (D0X(k))

?x:

We shall �x k to be the canonical basis fe1; : : : ; edg of Rd. Then the matrix
(D0X(k))

? is simply the skew-symmetric component (D0X)K.
In terms of the Lie algebra action of a(Rd), the vector �elds Xa and X i

are given by the action of the elements

Xa =

�
1 0
X D0X

�
and X i =

�
1 0
X (D0X)K

�
:

Let 't be the �ow associated with the vector �eld X. One checks by inspec-
tion and by uniqueness that the component 	0t = �t � 	t in the group of
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a¢ ne transformations (Theorem 4.1) and the component�t (Theorem 4.2)
which solve equations (16) and (19), respectively, are given by

	0t =

�
1 0
't (D0't)

�
; �t =

�
1 0
't (D0't)

?

�
(23)

and

	t =

�
1 0
0 (D0't)

k

�
; (24)

where D0't = (D0't)
? � (D0't)

k is the classical Iwasawa decomposition of
the derivative D0't.
We are representing both the isometries and the a¢ ne transformations as

subgroups of the Lie group of matrices Gl(n+1;R). Recall that in the group
of matrices the di¤erential of left or right action coincides with the product
of matrices itself, i.e., DLgh = gh for g; h 2 Gl(n + 1;R). Hence one sees
that equation (16) is given simply by:

_	0t =

�
1 0
X D0X

�
:

Note that, in general, though the Xa corresponds to the �rst two elements
of the Taylor series of a vector �eld X, the factor 	t presents a strong non-
linear behavior (in time) due to the fact that the coe¢ cients of equation (16)
are non-autonomous.

Linear control systems

Consider the linear control system

_x(t) = Ax(t) + Bu(t);

where A is a d� d-matrix, B is a d�m-matrix, x(t) 2 Rd and the controls
u take values u(t) 2 U � Rm. Let us �x the initial condition x0 = 0 and
the orthonormal frame bundle k0 = (e1; : : : ; ed), the canonical basis. The
a¢ ne transformation decomposition is obvious: the vector �eldsAx and the
columns of B are in the a¢ ne transformation Lie algebra, hence the solution
�ow 't already lives in A(Rd).
For the Iwasawa decomposition, the projection of each vector �eld in the

Lie algebra of isometries provides the equation for the isometric component
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of the �ow, see equation (19). Hence the isometric component is the �ow
(rotations and translations) associated to the control system

_x(t) = A?x(t) + Bu(t);

where A? is the skew-symmetric matrix such that A?k = d(eAtk)?

dt
jt=0.

If A is skew-symmetric, the decomposition is trivial because the original
system already lives in the group of isometries of Rd.

Bilinear control systems

Consider the bilinear control system

_x(t) = A0x(t) +
mX
i=1

ui(t)Aix(t);

where the Ai are d � d-matrices, x(t) 2 Rd and (ui(t)) 2 U � Rm. Again,
the a¢ ne transformation decomposition is obvious: the vector �eldsAix are
in the a¢ ne transformation Lie algebra, hence the solution �ow 't already
lives in A(Rd).
For the Iwasawa decomposition, let us �x the initial condition x0 = 0 and

the orthonormal frame bundle k0 = (e1; : : : ; ed), the canonical basis. Then
the isometric component �t (pure rotations) is the �ow associated to the
system

_x(t) = A?0 x(t) +
mX
i=1

ui(t)A
?
i x(t):

6.2 Spheres Sd

Let X be a vector �eld in the sphere Sd. Assume that the starting point
is the north pole N = (0; 0; : : : ; 1) 2 Sd and that the orthonormal frame is
the canonical basis k = (e1; : : : ; ed). One way to calculate X i is �nding the
element A in the Lie algebra of skew-symmetric matrices so(d + 1) whose
vector �eld eA induced in Sd satis�es equations (18), i.e.

eA(ed+1) = X(N) and d

dt
[ eAtk]t=0 = (rX(k))?k:

Hence

A =

�
(rX(N))K X(N)
X(N)t 0

�
;
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where X(N)t is the transpose of the column vector X(N).
To complement this description of the vector X i, we refer the reader

to the calculations in Liao [13] in terms of the partial derivatives of the
components ofX. In that (rather analytical) description, however, one misses
the geometrical insight which our description (in terms of the action of the
skew-symmetric matrix A) tries to provide.

North-south �ow: Let S2 � fNg be parametrized by the stereographic
projection � from R2 which intersects S2 in the equator. The north-south
�ow is given by the projection on S2 of the linear exponential contraction
on R2, precisely: 't(p) = � � e�t��1(p). It is associated to the vector �eld
X(x) = �x(�e3), where �x is the orthogonal projection into the tangent
space TxSd. For a point (x; y; z) 2 S2, one checks that the �ow is given by

't(x; y; z) =
1

cosh(t)� z sinh(t) (x; y; z cosh(t)� sinh(t)) :

Let x0 = e1 and k = (e2; e3). For these initial conditions we have the decom-
position: 't = �t � �t where

�t =

0@ sech(t) 0 tanh(t)
0 1 0

� tanh(t) 0 sech(t)

1A
and, using the double-angle formulas sinh(2t) = 2 sinh(t) cosh(t) and cosh(2t) =
2 cosh2(t)� 1, we �nd

�t

=

�
2x� 2

cosh(2t)� z sinh(2t) + 1 + 1;
y

cosh(t)� z sinh(t) ;
2(z cosh(t) + (x� 1) sinh(t))
cosh(2t)� z sinh(2t) + 1

�
:

Hence, the derivative of �t at (1; 0; 0) is

D(1;0;0)�t =

0@ sech2(t) 0 0
0 sech(t) 0

tanh(t) 0 sech(t)

1A :
One sees that

D(1;0;0)�t (k) = k st;

where st are the upper triangular matrices

st =

�
sech(t) 0
0 sech(t)

�
:
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6.3 Hyperbolic spaces

In the stochastic context this example has already been worked out in [17],
where we deal with the hyperboloid Hn in Rn+1 with the metric invariant
under the Lorentz group O(1; n). In this case, a global parametrization
centered at N = (1; 0; : : : ; 0) 2 Hn is given by the graph of the map x1 =q
1 +

Pn+1
j=2 (x

j)2. We just recall the following formula for a vector �eld

X(x) = a1(x) @1 + : : : + an+1(x) @n+1 with respect to the coordinates above,
at the point N = (1; 0; : : : ; 0) 2 Hn and for an orthonormal frame k in TNM

X i(k) =

0BB@
0 a2(N) ::: an+1(N)

a2(N)
: [@jai](k)

?

an+1(N)

1CCA
Note that, if k is the canonical basis in TNM , then ([@j ai](k))? is simply
[(@jai)]K.
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