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Abstract

Non-renewable resources are an obstacle for positive long run growth if they

are essential for production, households solve an intertemporal Ramsey prob-

lem and population is growing. Modern growth models predict that growth is

positively related to growth in production factors. Hence, there are opposing

forces at work if labor as one factor is growing and the use of the non-renewable

resource as another factor is shrinking. The paper develops a semi-endogenous

growth model with one labor and one resource using sector and derives condi-

tions for stable positive long run growth in per capita production and consump-

tion.
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1 Introduction

Non-renewable resources necessary for production are a problem if consumers max-

imize intertemporal utility over an infinite time horizon and the rate of time pref-

erence is positive. This is true as long as there is no technological progress which

augments production factors. Due to the impatience of the consumers capital ac-

cumulation is too low and the resource usage is too high so that consumption per

capita declines over time. Capital can not substitute for the non-renewable resource

in the long run even if one abstracts from depreciation of capital (Growth 2007).

Another problem in the context of non-renewable resources is population growth.

A growing population has, ceteris paribus, a growing need for using the resource.

If one defines a sustainable long run growth path to yield at least a constant per

capita consumption profile then it becomes clear that in the light of the preceding

paragraph a growing population adds to the problem.

In general technological progress is a possible solution to this problem. By aug-

menting the production factors, an ongoing reduction in the use of the resource is

possible without reducing per capita consumption. This is true e.g. for the case of

purely exogenous technological progress which yields a constant growth rate in the

factor augmenting technology. However, technology is certainly not exogenous, but

is from a macroeconomic perspective driven by incentives that are determined by

market forces .

Groth (2007) gives an excellent overview over the literature on (semi-)endogenous

growth theory in the context of non-renewable resources. 1. The models in this

literature generally have a two sector structure where an R&D sector is involved in

innovation and thereby supplying a final goods sector with new technologies. Groth

(2007) groups these model according to the assumptions made in order to set up

the growth mechanism, i.e. the R&D sector. If this sector does not use the non-

renewable resource, then positive growth in per capita figures as consumption is

feasible in the long run. If the resource is used in the growth producing process of

1Contributions that are relevant in this area are Suzuki (1976), Jones and Manuelli (1997),
Aghion and Howitt (1998, chap. 5), Scholz and Ziemes (1999), Schou (2000, 2002), Grimaud and
Rougé (2003) and Groth and Schou (2007).
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innovating the conclusions are more pessimistic, i.e. a strong “standing on shoulders

of giants” effect is needed to yield long run positive growth.

Because the above mentioned studies are using endogenous growth models to moti-

vate technical change, some thoughts about endogenous growth theory are in order.

As Jones (1999) points out, there exist endogenous growth models of the first and

the second generation. First generation growth models yield the doubtful result that

the growth rate of e.g. per capita production is positively related to the size of the

economy measured by e.g. the labor force. Models of this type are e.g. the ones

in Romer (1990), Grossman and Helpman (1991) and Aghion and Howitt (1992).

Jones (1995) shows that this is not in accordance with empirical observations. This

has led the profession to develop growth models of the second generation type with

results that the above mentioned growth rate does not have this “strong” scale effect,

as it was termed by Jones (1999), at least on the balanced growth path. However,

what these models of the second generation type have in common is a “weak” scale

effect. This scale effect shows up in per capita terms like per capita production. A

larger economy should have, ceteris paribus, a higher per capita production. Jones

(2005) summarizes the empirical literature on growth theory which at least partially

analyzes the relationship between per capita production and the size of economies.

He concludes that there is some support for this “weak” scale effect, but it must be

noted that the studies cited in Jones (2005) were not originally targeted to test the

hypothesis of “weak” scale effects.

At this point another strand of the economic literature gains importance. Acemoglu

(1998), Kiley (1999), Acemoglu (2001) and Acemoglu und Zilibotti (2001) are using

the argument of directed technical change to explain the behavior of wage inequality

between high and low skilled workers. The key argument in these studies is that the

rise in the supply of high skilled workers has enlarged the market for technologies

directed to them. This gives rise to higher incentive to develop new technologies

favoring high skilled workers which can lead under certain circumstances to rising

relative wages for the high skilled. Although the economic problem behind these

studies is different from the present one, they are giving an analytical framework
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which is directly relevant to the topic of this paper. In a recent contribution Di Maria

and Valente (2006) are using the theory of directed technical change to elaborate on

the endogenous bias of capital and resource saving technical change.

The discussion up to this point is relevant in the present context because the theory

of directed technical change heavily made use of endogenous growth models of the

first generation type. The driving force behind the results is the scale effect in

the growth rates. The question that must be answered is, can the argument of

directed technical change still be used if one switches to second generation growth

models as the literature demands. Antony (2007) shows that the “weak” scale effect

can substitute for the “strong” scale effect in explaining the above mentioned wage

inequality without changing the major results. Empirical evidence for the existence

of such scale effects in an open economy context is also found.

This gives the framework for the analysis in this paper. A two sector semi-endogenous

growth model of the second generation type is developed with one sector using labor

and the other using the non-renewable resource. Capital is used to build differ-

entiated intermediate input factors specific to each sector and is accumulated by

foregone consumption of the households. The change in the degree of differentiation

of input factors gives the change in technology and is endogenously determined by

profit maximizing firms. There are two R&D sectors, one innovating for the labor

using and one for the resource using sector, the resource is an essential input for

the latter R&D sector. The “weak” scale effect gives rise to the following oppos-

ing forces. A growing population and work force leads the market to design more

and more differentiated input factors devoted to the labor using sector, i.e. labor

augmenting technical change. The limited supply of the non-renewable resource de-

mands an ever decreasing usage of the resource giving rise to a negative “weak” scale

effect. Population now has an ambiguous impact. On the one hand it creates new

technologies through a scale effect, on the other hands it implies, ceteris paribus, a

higher usage of the resource to meet people’s needs. Through a decreasing use of

the resource the resource augmenting technology is negatively affected. The major

result of the theoretical analysis below is that as long the non-renewable resource is
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not to important, in terms of an output elasticity, there exists a saddle path stable

balanced growth path on which per capita production grows at a positive constant

rate.

2 The Model

A model is developed containing the main arguments of the preceding section. The

model economy consists of two sectors, on producing with the non-renewable re-

source and one with labor. Production technologies in both sectors are given by

the standard Romer technology with differentiated input factors. The degree of

differentiation is interpreted as the level of technology for the specific sector and

is endogenous. Final output in the economy is given by a Cobb-Douglas aggregate

of the production of the two sectors, hence the resource is a necessary production

factor. Households are assumed to optimize an intertemporal utility function over

an infinite time horizon, time is continuous. A representative household can save a

part of its income, consisting of wages, interest payments and revenues from holding

the non-renewable resource. Savings are transformed into a capital stock which is

used to form differentiated input factors for the two sectors of the economy. Capital

can depreciate at a constant rate.

The main findings of the model are as follows. Households optimality conditions

are well known to be the Keynes-Ramsey and the Hotelling rule. Technology, or

the degree of differentiation in the two sectors, is determined by the extend of the

market, i.e. it is directly proportionate to the usage of the resource and labor.

This result is due to a zero profit condition in the market for differentiated input

factors. Due to a Cobb-Douglas aggregation the capital stocks in both sectors of

the economy are directly proportionate to each other, i.e. they grow with the same

rate. An important point is the existence of a stable steady state in the economy

with possibly a positive growth rate of the economy. It turns out that this depends

on the output share of the resource sector which is given due to the Cobb-Douglas

specification as a constant. This constant has in any event to be smaller than 1
2 ,

the higher the population growth rate is, the closer to this threshold the share can
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be. If this is the case, there exists a locally saddle path stable equilibrium where

per capita production and consumption grow with positive constant rates. This

rate is positively related to the population growth rate. The usage of the resource

shrinks in equilibrium at a rate equal to the time preference rate of the representative

household.

2.1 Households

The economy is populated by Lt consumers at time t, Lt grows with a constant

rate L̇t
Lt

= n at every instant of time. The representative consumer maximizes

intertemporal utility given by

U =
∫ ∞

0
ln(ct)e−ρtdt,

subject to the relevant budget constraint.

This leads to the two optimality conditions

ċt

ct
= rt − ρ− n,

q̇t

qt
= rt,

where qt denotes the price of the resource and rt is the net interest rate in the

economy. These conditions are of course known as the Keynes-Ramsey and the

Hotelling rule.

2.2 Production

It is assumed that the economy consists of two sectors, one employing labor and

one employing the non-renewable resource. Both combine their specific production

factors with differentiated additional input factors. The degree of differentiation

gives the state of technology in the economy which will be endogenized later on. The

production technology in each sector is thus identical to the one in Romer (1987).

It has constant returns to scale with respect to the rivalrous input factors. The

environment for each firm active in one of the two sectors is assumed to be perfectly
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competitive. The analysis below is therefore conducted for a representative firm

element of a unit mass of firms. The time subscript is suppressed in the following,

all figures correspond to the current time t.

Production in two sectors is given by

YL = (Lp)α

∫ NL

0
x1−α

i di, (1)

YR = Rα
p

∫ NR

0
x1−α

j dj, (2)

where Lp and Rp denote labor and the non-renewable resource employed by the two

sectors. NL is the set of differentiated input factors that can be used together with

labor, NR is analogously defined for the sector using the non-renewable resource, xi

and xj are the used quantities associated with these factors. NL and NR give the

state of technology in the two sectors of the economy.

The final good in the economy is produced from YL and YR according to

Y = Y β
R Y 1−β

L ,

and pR and pL will denote the prices associated with YL and YR.

Demand for the differentiated input factors comes from the optimality condition

that the marginal product equals the price of the these input factors. The demand

functions are given by

xi = (1− α)
1
α

(
ξL

pL

)− 1
α

Lp, (3)

xj = (1− α)
1
α

(
ξR

pR

)− 1
α

Rp, (4)

(5)

where ξL and ξR are the prices for the respective variants of differentiated input

factors.

Differentiated input factors are produced by the inventors of these factors. In order

to enter the market for these factors with a specific variant, the producer has to incur
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a fixed cost f at every instance in time2. These fixed costs are in terms of the primary

production factor of the sector for which he provides differentiated input factors, i.e.

either labor of the non-renewable resource. Production of the differentiated input

factors is then accomplished by use of capital goods which are produced linearly

from investment goods created from foregone consumption of the final goods by the

household sector. The rental price for these capital goods is therefore given by the

gross interest rate, rg = r + δ, where δ is the rate of capital good’s depreciation.

It is assumed that the original developer of one variant of the differentiated input

factor has a comparative advantage in marginal cost. A potential competitor can

provide the market with the same variant without incurring the fixed cost at a higher

marginal cost in terms of capital goods usage. Let the relative difference between

these marginal costs be γ, then the original developer is assumed to set a limit price

of ξR = ξL = γrg. Instantaneous profits for the developers of differentiated input

factors are thus given by

πi = (γ − 1)rgγ
− 1

α (1− α)
1
α

(
rg

pL

)− 1
α

Lp,

πj = (γ − 1)rgγ
− 1

α (1− α)
1
α

(
rg

pR

)− 1
α

Rp.

Since there are no intertemporal effects in the production structure of intermediate

input factors, profit maximization implies that entry in the market for differentiated

input factors occurs as long profits exceed the fixed cost of entry. In equilibrium net

profits are zero

πi = fw,

πj = fq.

These zero net profit conditions give the set of differentiated input factors available

2Of course, these fixed costs have to be infinitesimally small since there is a continuum of firms
and instances in time (see e.g. Grossman and Helpman 2002 on this point).

8



to both sectors of the economy

NL =
γ − 1

γ

1− α

α

1
f

Lp, (6)

NR =
γ − 1

γ

1− α

α

1
f

Rp. (7)

(8)

This result is very important since it implies a scale effect in the reduced form of the

production function in each sector. The pure extent of the set of intermediate input

factors is a non-rivalrous input in these production functions. Because production

has already constant returns to scale in the rivalrous input factors, the reduced forms

exhibit increasing returns to scale, giving rise to growth in per capita terms.

With these results it can be computed how L and R, the total employment of labor

and the resource, split into production and fixed cost

Lp =
γα

γ + α− 1
L,

Rp =
γα

γ + α− 1
R,

Lf =
(γ − 1)(1− α)

γ + α− 1
L,

Rf =
(γ − 1)(1− α)

γ + α− 1
R.

Capital is used in production of differentiated input factors. Denote the capital

stock used in sector L and R by KL and KR, then∫ NL

0
xidi = KL, (9)∫ NR

0
xjdj = KR, (10)

and (11)∫ NL

0
x1−α

i di = Nα
LK1−α

L ,∫ NR

0
x1−α

j dj = Nα
RK1−α

R .
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With this result production in the two sectors can be written as

YL = (NLLp)αK1−α
L ,

YR = (NRRp)αK1−α
R .

Relative prices satisfy, due to the Cobb-Douglas aggregation of sector production,

YR

YL
=

β

1− β

pL

pR
,

pR =
(

q

αNR

)α (
γrg

1− α

)1−α

,

pL =
(

w

αNL

)α (
γrg

1− α

)1−α

.

Substituting the demand functions (3) and (4) and the technology conditions (6)

and (7) into the production functions (1) and (2) yields

YR

YL
=

(
pR

pL

) α
1−α

(
R

L

)2

.

Using (3), (4), (9) and (10) leads to

KR

KL
=

(
pR

pL

) 1
α

(
R

L

)2

.

Using these results it turns out that

KR

KL
=

β

1− β
.

With the constraint K = KR +KL, this implies that KR = βK and KL = (1−β)K.

Aggregate production of final goods can therefore be written as

Y = ηR2αβL2α(1−β)K1−α, (12)

η = ββ(1−α)(1− β)(1−β)(1−α)

(
γ − 1

γ

1− α

α

1
f

)α (
γα

γ + α− 1

)2α

.

where again increasing returns to scale show up due to increasing returns in the

sector production functions. Since these increasing returns to scale have a micro
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foundation each factor earns its marginal product and final good producers earn

zero profits. The surplus due to the increasing returns to scale covers the fixed costs

involved in providing differentiated intermediate input factors.

2.3 Dynamics

The dynamics of the economy are completely characterized by the two variables

x = C
K and rg. Usually in the context of non-renewable resources the variable

z = R
S , the depletion rate, is also considered, where S denotes the stock of the

resource. This of course could be done here as well. However, if z is added to the

system of x and rg it turns out that ż is influenced only by x and neither ẋ nor ṙg

are influenced by z. Therefore it is sufficient to concentrate on x and rg.

Resource prices are given by the marginal product condition

q = αβ
Y

Rp
,

implying a dynamic behavior according to

q̇

q
=

Ẏ

Y
− Ṙp

Rp
,

= 2αβ
Ṙp

Rp
+ 2α(1− β)n + (1− α)

K̇

K
− Ṙp

Rp
,

Capital accumulates according to

K̇

K
=

Y

K
− C

K
− δ,

where C is aggregate consumption spending. Together with the Hotelling rule this

gives

Ṙp

Rp
=

Ṙ

R
= −2α(1− β)

2αβ − 1
n +

1− α

2αβ − 1
x +

1− α

2αβ − 1
δ,
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Then using C = Lc and the Keynes-Ramsey rule

ẋ

x
=

Ċ

C
− K̇

K
,

= − α

1− α
rg + x− ρ. (13)

The gross interest rate rg is determined by the marginal product of capital

rg = (1− α)
Y

K
,

and behaves according to

ṙg

rg
= 2αβ

Ṙ

R
+ 2α(1− β)(n + h)− α

K̇

K
.

With the results so far this gives

ṙg

rg
= −2α(1− β)

2αβ − 1
n +

α(2β − 1)
2αβ − 1

x− α

1− α
rg −

α

2αβ − 1
δ. (14)

2.4 Steady State

In the steady state both, the interest rate and the consumption capital ratio, are

constant, i.e. ẋ
x = ṙg

rg
= 0. This gives

r∗g = 2(1− β)n− (2β − 1)ρ + δ,

x∗ =
2α(1− β)

1− α
n− 2αβ − 1

1− α
ρ +

α

1− α
δ.

Linearizing the above system (13) and (14) around the steady state gives the Jaco-

bian

J =

 − α
1−αr∗g

α(2β−1)
2αβ−1 r∗g

− α
1−αx∗ x∗


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The eigenvalues of J are given by

ν1 =
1
2

(
ρ +

√
ρ2 − 4

α

2αβ − 1
r∗gx

∗
)

,

ν2 =
1
2

(
ρ−

√
ρ2 − 4

α

2αβ − 1
r∗gx

∗
)

.

For αβ < 1
2 the system has two real eigenvalues, one positive and one negative, and

hence the system is locally saddle path stable. In the case αβ > 1
2 the system is

either generally unstable or oscillating unstable.

On the balanced growth path consumption and wages grow with rates

ċ

c
=

ẇ

w
= (1− 2β)n− 2βρ.

Aggregate output and the capital stock grow with rate

Ẏ

Y
=

K̇

K
= 2(1− β)n− 2βρ.

The usage of the non-renewable resource grows with rate

Ṙ

R
= −ρ

and its price develops according to

q̇

q
= 2(1− β)n− (2β − 1)ρ.

For saddle path stable positive growth in per capita production and consumption

there are two conditions to be satisfied. First αβ < 1
2 and β < 1

2
n

n+ρ . The first

condition is best interpreted when looking at the reduced form of final goods pro-

duction (12). The resource needs not to be too important in terms of its output

elasticity. The second condition refers to the importance of the resource sector in

final goods production. the share of the resource in sector production has to be small

and in any event smaller than 1
2 . The range for possible values for β is increasing in
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the population growth rate n but is bounded from above by 1
2 . If this condition is

fulfilled, the first mentioned stability condition is met automatically.

3 Conclusion

A model has been developed that demonstrates the importance of scale effects in the

process of generating growth in per capita production and consumption. Despite the

presence of population growth, capital depreciation and a non-renewable resource,

stable positive long run growth might be feasible. The condition for this to be true

is that the labor using sector is more important than then the resource using sector

in the economy.

Growth in this model is essentially driven by population growth as in almost all

semi-endogenous growth models. Hence, population growth is good for growth. This

result is not new to the literature concerning non-renewable resources. As Groth

(2007) notes when summarizing the growth literature with respect to scale effects in

production, population growth always increases growth in per capita consumption

when the dynamic system is stable. However, this result stems from an analysis

where rather the social than the private return on capital is used in the Keynes-

Ramsey rule, when increasing returns stem from capital usage. In the present model

increasing returns stem from the production factors labor and the non-renewable

resource and only the private returns to these factors are used in the analysis.

The above model might be criticized because of the Cobb-Douglas aggregation func-

tion which implies an elasticity of substitution of exactly one between labor and re-

source using sectors. However, the Cobb-Douglas assumption is heavily used in the

literature on exhaustible resources. Therefore the results can be more easily com-

pared to the literature. Additionally this case is interesting because the resource is

essential for production in this case and at the same time the average product of the

resource is not bounded from above (Groth 2007).
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