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46.1 In t r o d u c t i o n

We  understand ‘automatic speech processing’ (ASP) to mean word recognition (automatic
speech recognition (ASR)), processing of higher linguistic components (syntax, semantics,
and pragmatics), and processing of computational paralinguistics (CP). This chapter
attempts to describe the role of prosody in ASP from the word level up to the level of CP,
where the focus was initially on emotion recognition and later expanded to the recognition
of health conditions, social signals such as back-channelling, and speaker states and traits
(Schuller and Batliner 2014).

‘Automatic processing’ of prosody means that at least part of the processing is done by
the computer. The automatic part can be small, for example pertaining only to pitch extrac­
tion, followed by manual correction of the fundamental frequency (fO) values with subse­
quent automatic computation of characteristic values such as mean, minimum, or
maximum. This is typically done in basic, possibly exploratory, research on prosody and in
studies aiming to evaluate certain models and theories. A fully automatic processing of
prosody, on the other hand, is necessary when we employ prosody in conjunction with
other information in a larger context, such as developing a prosody module in a complete
speech-to-speech dialogue system, or improving the speech of pathological speakers or
foreign language learners via screening, monitoring, and feedback on the learning pro­
gress in a stand-alone tool.

Apart from the phenomena to be investigated—such as prosodic parameters, emotions
and affects, speaker states and traits, and social signals (for details see §46.2.2)—and the
speech data to be recorded, the basic ingredients of automatic processing of prosody are (i)
the units of analysis, suited to both the phenomenon and the type of features we employ; (ii)
the features to be extracted; and (iii) machine learning (ML) procedures that tell us how
good we are (i.e. which classification performance we obtain) and, if relevant, which features
are most important, and for which units.

The units of analysis in the processing of prosody may be implicit (e.g. an entire speech
file), be temporally defined (e.g. segments of five seconds or one tenth of the entire speech
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file), or be obtained via pre-processing, such as voice activity detection (e.g. using silence as
an indicator for major prosodic/syntactic boundaries), ASR yielding word boundaries, syn ­
tactic parsing that generates phrase and sentence boundaries, or a combination of these
strategies.

Regarding ML procedures, many have been employed for the processing of prosody in
ASP. Generally speaking, traditional, well-established procedures, such as linear classifiers
and decision trees, tend to yield somewhat lower but more interpretable performance th a n
the more recently developed procedures, such as deep neural networks, which tend to yield
better results on larger data sets. Additionally, more controlled data, such as read speech, is
likely to yield a better performance than spontaneous speech. This point may seem triv ial
but is worth stressing, since comparisons across different types of speech data are n o t
uncommon. Strictly speaking, a comparison of performance obtained by, for example, d if­
ferent ML procedures can only be done for the very same data used in the same way, includ­
ing, for instance, identical partitioning into train, development, and test sets.

Evaluating the role of prosody in ASP has focused on two issues: performance and im port­
ance. Performance can be measured: typically, the result is a numerical value between o an d
1.0 (the higher, the better) or can be mapped onto such a value (Schuller and Batliner 2014).
Importance is not as easy to define: it can mean importance for a model or theory, o r
importance for specific applications, therapies, or treatments. Nowadays, performance is
the preferred measure in ASP. However, an equally important issue, often mentioned in
introductory or concluding remarks, is to identify salient parameters (pitch, intensity, duration,
voice quality) or features characterizing these parameters (see more on this in §46.3).

In this chapter, we first present a short history of the field (§46.2), including a timeline in
§46.2.1 and an overview of the phenomena addressed in the field and performance obtained
in §46.2.2. We then describe the main aspects of prosodic features and feature types used in
ASP in §46.3, introducing two concepts: ‘power features’ in §46.3.1 and ‘leverage features’ in
§46.3.2. We then illustrate these concepts in §46.3.3, which is followed by concluding
remarks in §46.4.

46 .2  A SHORT HISTORY OF PROSODY
IN AUTOMATIC SPEECH PROCESSING

46.2.1 Timeline

The history of prosody in ASP started with pioneering studies on the prerequisites for auto­
matic processing of prosody, such as Lieberman (i960: 451) on a simple binary automatic
stress recognition program’1 and Mermelstein (1975) on ‘automatic segmentation of speech
into syllabic units’. The speech material analysed in these studies consisted of prosodic m in­
imal pairs and elicited carefully read speech. This was (and quite often still is) the usual

1 Lieberman already pointed out the incompleteness of the set of prosodic features used, and that
prosody is characterized both by the presence of redundant information and by trading relations between
different features.
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procedure used to exclude the multifarious confounding factors encountered in real-life
situations. This approach, typical of basic research, was adopted by early attempts at incorp­
orating prosodic knowledge in ASP.

Table 46.1 gives an overview of research on prosody in ASP over the past 40 years. Most
of the studies conducted in the earlier period can be characterized by the components in
the left column and most of the studies from the later period by the components in the
right column. The entries under ‘integration in Table 46.1 denote a sliding transition from
studies where prosody is processed alone (stand-alone) and as sole topic (intrinsic), by
that being visible, to studies where prosody is used jointly with other parameters in an
integrated way, towards some extrinsic goal (i.e. targeting some application), and leading
to prosody becoming invisible as a contributing factor. Early studies that laid the founda­
tions for prosody in ASP in the 1980s include Lea (1980), Vaissière (1988, 1989), and
Batliner and Noth (1989). The year 2000 can be viewed as a turning point away from these
classical approaches, culminating in a functional prosody module in an end-to-end system
(Batliner et al. 2000a) and moving towards new approaches with a focus on the processing
of paralinguistics, starting with emotion recognition (Batliner et al. 2000b). Approaches
from the earlier years nevertheless continued to be pursued after 2000, but to a lesser
extent,

Table 46.1 can be seen as a set of building blocks: any component’ in the chain of process­
ing (alone or in combination with some other component) from one of the cells (1-6) can
be combined. Normally, only cells from the left or cells from the right are combined with
each other unless a comparison of methodologies is aimed at (see, for instance, Batliner
et al. 2000c).

46.2.2 Phenomena and performance

In this section we take a closer look at the phenomena addressed in past studies on prosody
in ASP (Table 46.1) and performance obtained for them in ASP. This is intended as a com­
pact narrative overview instead of a systematic meta-review.

In the second phase (after the year 2000), prosodic features were mainly used together
with other features, especially spectral (cepstral) ones. It is therefore important to keep in
mind that performance measures are usually not obtained by using prosodic features alone.
In the 1990s, speech processing focused narrowly on the role of word and phrase prosody
(accents and boundaries), intonation models,2 syntax (parsing) based on prosodic models,
semantics (salience), and segmentation and classification of dialogue acts. This trend went
in tandem with the general development of automatic speech and language processing sys­
tems, moving from read speech to less controlled speech in more natural situations and
leading to conversational speech and dialogue act modelling. In the first phase (before
2000), most of the time, only prosodic features—sometimes enriched with features from
higher linguistic levels—were used; see reviews of state-of-the-art systems in Shriberg and
Stolcke (2001) and Batliner et al. (2001), as well as Price et al. (1991), Wang and Hirschberg

2 We use ‘intonation’ in a narrower sense, comprising only pitch plus delimiters of pitch configur­
ations (boundaries), and ‘prosody’ in a wider sense, comprising pitch and duration (rhythm), loudness,
and voice quality, too.
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Table 46.1 Prototypical approaches in research on prosody in automatic
speech processing over the past 40 years (1980-2020), with the year 2000 as
a turning point from traditional topics to a new focus on paralinguistics

1980 1990 2000 2010 2020

1. Motivation
Getting wiser; basic knowledge; deciding Getting better; successful performance/
between theoretical constructs; models/ intervention; applications
theories

2,
Phonetics/linguistics (speech): accents,
boundaries, dialogue acts; parsing, dialogue
systems; speaker adaptation/verification/
identification;... ± intermediate levels such
as tone representation

Controlled, constructed; ‘interesting’
phenomena; prompted/acted; lab
recordings; one (a few) speaker(s); small
segments (units of analysis trivially given)

Phenomena
Paralinguistics (speaker): states (emotion, pain,
etc.) and traits (personality, ethnicity, etc.);
diagnostics/teaching/therapy; towards ‘direct’
representation (raw audio in-classes out)

3. Data
Less restricted data (more speakers, noisy
environment); more spontaneous; from lab to real
life; big data; segmentation/chunking into units of
analysis necessary

A few theoretically and/or empirically
motivated; only intonational (tunes, pitch
patterns, e.g. ToBI); only prosodic (pitch/
loudness/duration plus/minus voice quality);
syntactic features; speech only (uni-modal)

4. Features
Many (brute forcing) low-level descriptors and
functionals; together with other types (spectral
(cepstral)); all kind of linguistic features;
multi-modal (together with facial and body
gestures)

‘Traditional’ (k-nearest-neighbour, linear
classifiers, decision trees, artificial neural
networks); feature selection/reduction

Within theory: interpretability, deciding
between alternatives, explicit modelling;
within applications: employed for
syntactic/semantic ‘pre-processing’

Stand-alone, intrinsic, visible

5. Procedures
‘Modern ones (support vector machines,
ensemble classifiers (random forests)); all
varieties of deep neural networks; feature
selection/reduction not necessary

6. Utilization
Performance; applications: e.g. semantic salience,
states and traits; big data, data mining; (towards)
implicit modelling of prosody

7. Integration
-* Integrated, extrinsic, not visible

(i992 )> and Ostendorf et al. (1993)- This line of inquiry continued to be pursued after the
turn of the century but was complemented and essentially replaced by a strong focus on
paralinguistics, starting with emotion recognition (Daellert et al. 1996) and eventually
extending to all kinds of speaker states and traits, including long-term traits, such as age,
gender, group membership, and personality; medium-term traits, such as sleepiness and
health state; short-term states, such as emotion and affect (e.g. stress, uncertainty, frustra­
tion); and interactional/social signals.

The successful incorporation of a prosody module into the end-to-end translation sys­
tem VERBMOBIL (Batliner et al. 2000a; Noth et al. 2000) has highlighted the impact that
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prosody can have for ASP.3 However, such an integration comes at a cost, as described in
Spilker et al. (2001) for speech repairs and in Streit et al. (2006) for modelling emotion. The
interaction of the prosody module with other modules is highly complex and to some
extent unstable. In general, the modular and partly knowledge-based design of such sys­
tems gave way to an integrated ML approach, which proved to be successful in subsequent
years: in a state-of-the-art paper (Xiong et al. 2017) on conversational speech recognition,
prosody is not even mentioned. This might be the main reason why the focus of prosody
research in ASP, and concomitantly the visibility of prosody in ASP, has shifted to the
domain of paralinguistics, whereas ASP (and especially ASR) systems today employ pros­
odic information, if at all, in a rather implicit way, for instance by using prosodic features in
combination with all kinds of other features in a large, brute-force feature vector. Yet, there
are many studies concerned with the assessment of non-nativeness or specific speech
pathologies that address the impact of prosodic features, aiming at identifying the (most)
important features; see §46.3.4

3 Syntactic-prosodic boundary detection reduced the search space for parsing considerably, yielding
tolerable response times. This was a limited yet pivotal contribution.

4 Shriberg (2.007) gives an overview of higher-level (including prosodic) features in the field of auto­
matic speaker recognition. Schuller and Batliner (2014: chs. 4, 5) survey studies on CP, again including
prosodic ones.

5 For WAR, chance level is the frequency in per cent of the most frequent class. UAR reports the mean
of the diagonal in a confusion matrix in per cent; chance level is always 50% for two classes, 33.3% for
three classes, and so on. UAR was introduced in the VERBMOBIL project as the ‘average of the class­
wise recognition rates’ (Batliner et al. 1998: 216), to facilitate a comparison of performance across results
with different numbers of syntactic-prosodic boundary classes (skewed class distributions, up to 25

The implementation of the Tones and Break Indices (ToBI) model (Silverman et al.
1992) in ASP nicely illustrates how a genuinely phonological-prosodic approach was har­
nessed but eventually abandoned by ASP. One of the aims of ToBI was to foster a close
collaboration between prosody researchers and engineers (Silverman et al. 1992).
Especially during the 1990s, researchers tried to employ ToBI categories in mainstream
ASP. However, using tonal categories as features in ML procedures introduces a quantiza­
tion error by reducing detailed prosodic information to only a few parameters (Batliner
and Möbius 2005). A reduced set of ToBI labels—that is, a light version proposed by
Wightman (2002), which was based on results from perception experiments and would
recognize classes of tones and breaks instead of the full set of ToBI labels—actually cor­
responded closely to the labels used in the VERBMOBIL project (Batliner et al, 1998), In
other words, afunctional model based on the annotation and classification of perceived
accents and syntactic-prosodic boundaries should be preferred to a formal model relying
on the annotation and classification of intonational forms—that is, pitch configurations
with delimiters (break indices as quantized pauses), without a clear-cut relationship of
these forms to functions.

In Table 46.2, we report performance obtained for a selection of representative phenom­
ena that have been addressed, ordered vertically from linguistic features to paralinguistic
features, and from the more basic ones to the more complex ones, largely corresponding to
the entries listed under phenomena’ in Table 46.1. Performance depends on a plethora of
factors, such as type of data and features employed. Moreover, it makes a big difference
whether ‘weighted average recognition (WAR) or ‘unweighted average recognition (UAR)
is used.5 Instead of presenting exact figures, we map the figures onto ranges of performance,
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Table 46.2 Phenomena and performance: a rough overview (qualitative
performance terms appear in italics)

Word recognition: prosody contributes little (low performance)
Lexicon (word accent, stress): roughly the same performance as for accents
Accents: phrase (primary, sentence) accent: medium to good; secondary accents markedly worse
Boundaries: major and minor boundaries, purely prosodic and/or syntactic; major boundaries
good, sometimes excellent; minor boundaries worse; boundaries can be better classified than
accents—they display a more categorical distribution
Syntactic parsing: based on accent and boundary detection; successful
Sentence mood: mainly statement vs. question but others as well (imperative, subjunctive, etc.);
depends on type of sentence mood: questions vs, statements medium to good
Semantic salience (topic spotting): cf. accents above: islands of reliability, salient topics; closely
related to phrase accent processing
Dialogue acts: cf. above, sentence mood; sometimes good if pronounced, e.g. back-channelling
with duration (here, duration is not really a prosodic feature but simply reflects the fact that
back-channellings normally consist of very short words)
Agrammatical phenomena: filled/unfilled pauses, false starts, hesitations: low to good
Biological and cultural traits: sex/gender (pitch register): good to very good
Personality traits: big five or single traits; depends on the trait to be modelled: good for those tha t
display clear acoustic correlates such as loudness (extraversion), low for others
Emotional/affective states: same as for personality; arousal good, valence rather low (especially if
only acoustic features are used); emotions that display pronounced acoustic characteristics can be
classified better, cf. anger vs. sadness; yet, anger with high arousal can be confused with happiness
with high arousal

Typical vs. atypical speech: pathological speech, non-native speech, temporary deviant speech
(duration (non-natives), rhythm, loudness (Parkinson’s condition)); good, almost on par with
single human expert annotators for assessment of intelligibility/naturalness
Discrepant speech: irony/sarcasm, deceptive speech (lying): medium for controlled speech, but
very low for un-controlled speech; off-talk (speaking aside): medium to good

EntrainmentZ(phonetic) convergence: mutual adaptation of speakers in conversational settings,
employing many of the above-mentioned phenomena

Social/behavioural signals: modelling of speakers in interactional/conversational settings,
employing many of the above-mentioned phenomena

following Coe (2002); UAR for a two-class problem  with 50% chance level is given in  p e r
cent, followed by Pearsons r in parentheses: excellent; >90% ( >.80); good; 80-90%  (0.63-0.80);
medium; 70-80%  (0.46-0.63); low; 0.63-0.80 (0.24-0.46); very low; <60% (<.24).

Note that all o f the phenom ena in Table 46.2 fare better in read speech than  in  sp o n ta n ­
eous speech. The qualitative perform ance term s refer to the range o f perform ance levels
that we may expect.* * * * * 6 Because the role of prosody was m ore easily identifiable in the  first

classes); it has been used as a standard measure in the Interspeech Computational Paralinguistics
Challenge since 2009 (Schuller et al. 2009; Rosenberg 2012a).

6 Phonetic convergence and social signals are complex (‘bags of’) phenomena and related to each
other: when speakers converge, this can be seen as a social signal, indicated by one or more of the param­
eters listed in Table 46.2.
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phase than in the second phase, when non-prosodic features were included, the contribu­
tion of prosody to performance cannot easily be disentangled from the contribution of
those other features. Additionally the databases employed in CP today are much smaller
than those used for ASR, and, unsurprisingly, larger databases will yield better performance.
Nevertheless, it is wise to adopt a conservative stance when it comes to expectations from
‘big’ data, since so far we usually only have a gold standard to measure performance, as
established by human assessment or labelling with moderate inter-rater agreement, rather
than aground truth (i.e. an objective set of crsiteria).7 Moreover, it is as yet unclear whether
modern approaches towards enlarging databases (such as crowdsourcing, transfer-learning,
and zero-shot learning8 9) will really result in big data whose size can be compared to the
corpora available for ASR.

7 More challenges for the integration of prosody into speech technologies are discussed in Rosenberg
(2018).

8 In crowdsourcing, annotation is done by a large, paid group of internet users; in transfer-learning,
knowledge is transferred from one domain to another domain; and in zero-shot learning, no labelled
data are needed.

9 Phonological, categorical features such as ToBI tones and breaks are, in fact, simply two-step fea­
tures when used in automatic processing and created by tools such as AuToBI (Rosenberg 2009): LLDs
and functionals are used in a first step as features to create phonological categories, and these are then
employed in the same way as the other feature types in the second step. The first step reduces variability,
which is unfavourable for ML modelling (cf. Parada-Cabaleiro et al. 2019).

46.3 Fe a t u r e s  a n d  t h e i r  im p o r t a n c e

Various types of prosodic features are used as independent (predictor) variables; in ASP,
predictor variables are simply referred to as ‘features’, and a set of features constitutes a
‘feature vector’ in ML processing. Features can be (i) low-level descriptors (LLDs), such as
frame-wise fO; (ii) functionals, such as the first and second derivatives (delta and delta­
delta) or maximum, minimum, skewness, and other values characterizing a distribution
of LLDs; or (iii) structured features, which are LLDs and/or functionals, computed for
units such as syllables, words, sentences, or paragraphs (Schuller and Batliner 2014).
Employing (some of) these three types of features, we can obtain (iv) categorical features,
such as ToBI tones and breaks (Silverman et al. 1992)? A feature set (feature vector) con­
sisting of prosodic and other types of feature can contain a few to several thousand fea­
tures. The phenomena to be modelled—such as accents and boundaries, focal structure
in syntax, and paralinguistic categories (emotions such as anger or happiness) or dimen­
sions (such as arousal or valence in emotion modelling)—which traditionally need to be
established and annotated manually, are learned initially from annotated data and subse­
quently detected, classified, or evaluated via regression and correlation procedures. In the
future, the effort of time-consuming annotations m aybe reduced by means of automatic
and semi-supervised or unsupervised learning and by end-to-end processing that takes a
speech signal (sample values) as input and output (e.g. conversational speech in an auto­
matic dialogue system).

The central question to be asked in prosody research may be this: What is (are) the most
important feature(s) for which phenomenon? To address this question, automatic process-
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ing has some advantages: it can handle larger data and feature sets and is therefore m ore
objective than an approach in which the relevance of features is assumed a priori. However,
the advantages of automatic processing come at a price: it is more cumbersome to handle
because of the sheer number of features—and results are often less than clear-cut. We can
circumvent this issue by simply relying on a large, brute-force feature vector (Schuller an d
Batliner 2014:232-234). For example, the ComParE feature vector used since the Interspeech
Computational Paralinguistics Challenge (ComParE) 2013 consists of 6,373 acoustic
features—mostly spectral (cepstral) and prosodic ones (Schuller et al. 2013). This m eans
that, most likely, the most important features are indeed captured, although implicitly and
along with many other features.10

10 In comparison, the main drawback of the traditional approach to feature relevance is expressed by
the rule ‘what you are looking for is what you get’ (WYALFIWYG) (Batliner 1989). In intonation models
such as ToBl, just a few (accent and boundary) tones are modelled explicitly. Only when other types o f
feature were eventually modelled explicitly together with pitch was it revealed that duration is indeed
more important for phrase accent in German and English (Batliner et al, 1999-, Kochanski et al. 2005); cf.
similar results on the word level (e.g. Dogil 1999b).

11 Wrappers are computationally costly because a model is tested for each subset of features, but they
normally yield highly competitive performance. Other methods are, for example, based on correlation or
information gain (Schuller and Batliner 2014: 235-238).

12 To speculate about the reasons why: generic feature vectors may be better at modelling global char­
acteristics (such as high/low arousal modulated onto speech) than at modelling time-dependent, struc­
tured relationships such as consonant-vowel transitions or rhythm, which can be characteristic of
non-native or pathological speech.

To establish the optimal procedure resulting in a feature vector that can be interpreted
and yields good performance, we should model all potentially relevant (types of) features,
deal with a representative data set, and employ the best feature selection or reduction p ro ­
cedure. This, however, is the Holy Grail: impossible to obtain but well worth trying to
approximate. Therefore, we should make sure that a fairly complete feature vector is avail­
able, such as the one provided by the generic toolkit openSMILE (Eyben et al. 2013), and
then employ some state-of-the-art classification and selection or reduction procedure, such
as the tried-and-trusted combination of support vector machines (SVMs) and wrappers11

(e.g. Batliner et al. 2008). Note, however, that such generic feature vectors are not always
competitive and have to be complemented by (types of) features especially suited to the
given task; see Honig et al. (2012), where structured prosodic, especially rhythmic, features
outperformed openSMILE features by a large margin in the assessment of non-native
speech.12 We also have to decide on a limiting (stopping) criterion for the number of most
important features we aim to obtain. Ideally, to find a clear break between important fea­
tures and those that contribute little, it would be helpful to employ the elbow m ethod’
(Thordike 1953), but in practice the curve showing the improvement of incrementally add­
ing another feature is often rather flat. For convenience, an arbitrary but round number (e.g.
10,50,100, or 400) can be chosen for the number of features to be handled and interpreted.
Furthermore, basic functionals such as the minimum, maximum, or range of values o f
some parameter are easy to interpret. By contrast, a brute-force vector often results in some
derivatives of some functional or some LLD, which are difficult to interpret and explain;
moreover, without replications or meta-studies, it is not possible to assess how reliable and
credible a result will be in the long run.
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Aiming at the relative importance of feature groups instead of the single most important
features is a feasible alternative (Batliner et al. 2011), but it does not tell us which single fea­
tures are really important. Yet» (derivatives of) functionals such as higher variability
(expressed in terms of several parameters) and expanded range (lowered minima, raised
maxima, or both) can be employed as the most important features, as the underlying fea­
tures are positively correlated with each other (§46.3.2).

46.3.1 Power features

In this section, we sketch what kind of performance we can expect from feature selection,
for different constellations of feature vector length and classifier adequacy. For a large but
not well-suited feature vector and/or suboptimally adequate classifiers, the curve is (slightly)
rising towards a convex plateau, then (slightly) falling. Of course, we may observe unex­
pected irregularities in the curve shape as well. For a large, well-suited feature vector and
adequate classifiers, the curve is (slightly) rising and then flat or slightly, asymptotically
rising towards a ceiling.13 Given this constellation, we may see a steeper rise, singling out a
small number of features or just one individual feature that is already contributing the lions
share of performance. We illustrate these two constellations in §46.3.3.

A single most important’ feature can be called a ‘power feature’. If there is a small number
of‘most important features’, we can speak of a group of power features’. For instance, speech
tempo and silent pauses (i.e. grammatical and ungrammatical (hesitation) pauses) have
been found to be good predictors of fluency—the faster and the fewer pauses, the more
fluent—and therefore also of language proficiency, for the assessment of non-native speech
(Honig 2016). In the same vein, Black et al. (2015) established a group of knowledge-inspired,
competitive features modelling speaking rate and pauses for the same task. Other examples
of a power feature are maximum or range of pitch and intensity for emotion (arousal) or, to
a lesser extent, for (focal) accent.

Bone et al. (2014) described three power features for the rating of emotional arousal,
namely median pitch, median vocal intensity, and HF500 (i.e. the ratio of high-frequency to
low-frequency energy with a 500 Hz cutoff).

Another nice example of a power feature can be found in Rosenberg (2009:131). For the
Boston Direction Corpus—a well-designed corpus with a few speakers, which means that
performance can be high—using silence (empty pause’) as the only feature for predicting
intonational phrase boundaries yields an accuracy of 95.4% for read and 91.4% for spontan­
eous data. When duration and pitch features are used additionally, only a small gain can be
observed, to 95.6% for read and 93.1% for spontaneous speech data. All features combined
yield the best performance, but one single power feature is almost as good. Thus it depends
on our intentions whether we employ all features or only the single most important feature.

In Honig et al. (2014a), 27 features were selected manually as acoustic correlates of sleepi­
ness according to the pertinent literature, from a large vector encompassing 3,705 features.
Although using all features yielded the best results, the performance of the 27 manually

13 This might look like a ‘post hoc ergo propter hoc’ explanation: vector and classifier are adequate
because they happen to produce the desired result. Of course, we need replication and a detailed com­
parison of the feature vectors and classifiers employed.
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selected features turned out to be on par with that of the same number of automatically
selected features, which are often not easy to interpret: for instance, the 75% quantile o f th e
tenth MFCC (mel frequency cepstral coefficient) on consonantal frames was the second
most important feature obtained in the data-driven feature selection. This approach was
also adopted for the modelling of depressed speech in Honig et al. (2014b).

Using such smaller sets of power features may well serve to speed up processing. However,
processing speed is increasingly becoming less of a concern and even large, brute-force
feature vectors can now be processed in a very short time, even in less than real time, m ak­
ing reduction of the number of features unnecessary,14 although speed might still be an
issue for certain time-critical, not server-based but embedded, applications.

14 Note that the ‘curse of dimensionality’, i.e. the problem of employing too many features in  condi­
tions of data sparsity (only a few cases), is not relevant if classifiers such as SVMs or random  forests (RFs)
are used: SVMs are robust regarding this problem and RFs circumvent it by fusing many decision trees,
with each of them having only a small number of features.

15 On the conversation level, speaker overlap can be seen as ‘negative pause and thus as a genuine
prosodic phenomenon.

46.3.2 Leverage features

Power features may not always be ideal in the context of human-machine interaction. For
instance, instructing non-native speakers to speed up is not sufficient to reduce the degree
of non-nativeness; in fact, it might be better to advise them to use more pauses (i.e. to slow
down) in order to improve intelligibility. Thus, we also need a different type of features—
which we call leverage features’—that can be conveyed easily in teaching or therapy to
learners or patients and at the same time contribute to making their speech more natural o r
typical. For instance, a foreign language teacher or a speech therapist can elicit higher vari­
ability (corresponding, e.g., to more extreme fO/energy maxima and minima) in their stu­
dents’ speech by telling them ‘Please, do not speak that monotonously, speak in a m ore
lively manner’ and by demonstrating these two different styles. In this section, we will list
possible candidate features and refer to pertinent studies.

An interesting case of both a power and a possible leverage feature, but with cross-
cultural constraints, is speaker overlap (Hilton 2016).15 On its own, it is very good at p re­
dicting conflict: in Grèzes et al. (2013), speaker overlap as a single feature exceeded the
baseline for conflict obtained with 6,373 features by 3% absolute change. Such a feature can
be used for detection and for teaching and coaching. However, sociocultural conventions
prevent this ‘Anglo’ conversation style from being a universally applicable leverage feature.
For instance, in the ‘Latin’ conversation style, overlap is commonplace and indicates interest
rather than conflict, whereas in some Asian cultures (‘Oriental’ style), overlap is associated
with impoliteness and therefore generally avoided, which leads to rather long pauses, irre ­
spective of a possible conflict (Trompenaars and Hampden-Turner 1998; Fitzgerald 2003).

In the clinical context, loudness (energy) would appear to be a leverage feature for
patients with Parkinson’s condition (Villa-Canas et al. 2015), and variability would appear to
be a leverage feature for patients with depression or children diagnosed with autism spec­
trum condition (ASC). These features are good for classification and also good for teaching.
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Chances are that they are highly correlated with other features: loudness is often correlated
with ft) maximum and range and with longer duration, and variability of One specific
parameter will be correlated with the variability of other parameters, too. In order to find
leverage features for children with ASC, March! et al. (2012) compared 15 prosodic fea­
tures—three prosodic LLDs (energy, pitch, and duration) with basic functionals (such as
mean, standard deviation, ist percentile, and 99th percentile), manually pre-selected from
a large feature vector—with 15 features automatically selected from the same large feature
vector, based on information gain. The manually selected prosodic features were, for the
arousal dimension, superior to the same num ber of automatically selected features. In a
similar approach, Corrales-Astorgano et al. (2018) examined the role of prosodic features in
the speech of patients with Down syndrome.

Two of the power features used by Bone et al. (2014)—median pitch and median inten­
sity—are good candidates for leverage features. In Schuller et al. (2019), for classifying
arousal, the third quartile of the 25% spectral roll-off point was the best single feature; it
relates to a large proportion of higher frequencies but is easier to compute and more robust
than fO. It is therefore a power feature for classification but can be substituted by a—
related—pitch feature when we need a leverage feature.

Another option is to consider parameters and their shape used in teaching or treatment
and then identify those features that yield a satisfactory performance while also being easily
conveyed to learners or patients. Yet, we do not know of any study that systematically com­
pares brute-force feature vectors, automatically selected subsets, and features derived from
therapy or teaching, employing the same group of subjects.

It seems to be plausible that leverage features are also power features; in the same way,
they will most likely—when used alone—result in some lower performance compared to a
full feature vector. Yet, they can be more generic across databases, languages, and cultures.
Moreover, they can be highly effective, for instance, in therapy and teaching, provided that
the feature is easy to explain and imitate. If this condition is met, the client will (i) under­
stand what to do and (ii) to some extent co-vary other features that contribute to the desired
outcome; for instance, a wider pitch range will co-vary with longer duration. When we
analyse the contribution of features for classification and regression, we should find this
co-variation in a higher correlation between these features and their functionals.

46.3.3 Anillustration

Figure 46.1 illustrates the idea behind power (and leverage) features. By intention, the y -axis
in Figure 46.1 has no concrete values: it depends on the phenomenon whether the ceiling is
at, say, 70% or 90%. The values on the x-axis stand for the number of features, which may
range from a few to several hundred. The dashed line shows a ‘typical’ curve: (slightly) ris­
ing, without a clear-cut elbow that could serve as a criterion to distinguish the most import­
ant from less important features. Note that the goal is not just to identify the best features
for a specific problem and database but to find a small, generic feature set that will work for
similar problems as well. Thus, it may be advisable to include a larger number of features,
even if performance gain is low. The solid line shows a sharp rise caused by one or a few
power features that contribute the bulk of performance and can easily be distinguished
from the remaining features. This performance pattern can be obtained (i) simply from a
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number of features

f ig u r e  46.1 Effect of power features on performance: a few power features contribute strongly to
performance (continuous line), whereas often there is no clear indication of which features contribute
most (dashed line).

large feature vector, in which the power features can be more or (usually) less interpretable;
(ii) from a knowledge-based selection from the large vector; and (iii) from additional
features that are based on expert knowledge or (iv) maybe even from parameters used in
teaching and treatment. In the ideal scenario, the features stemming from (i) and (ii) have
much in common with and can be mapped onto features stemming from (iii) and (iv).
However, we often need to define possible candidate features that are found in our large
vector on the basis of thorough literature research. It can only be hoped that this manually
selected small number of features will yield a performance that matches the one obtained
with the same number of automatically selected features, yielding a high or at least accept­
able performance.

In §46.3.1 and §46.3.2, we referred to a few exemplary studies where these strategies have
been applied. Such studies are still sparse; interdisciplinary collaboration between (applied)
phonetics and linguistics on the one hand and engineering approaches on the other hand
are called for in future research.

46.4 C o n c l u d in g  r e m a r k s

A few words of caution and notes about limitations of the overview given in this chapter
seem appropriate. We have not addressed in detail the phenomena and algorithmic proced­
ures that have been dealt with in the field of automatic processing of prosody. We have also
refrained from presenting exact performance measures across studies, which is often done
in survey articles on paralinguistics but is of doubtful value because strict comparability is
almost never given. Moreover, we have not given a full account of the history and state of
the art. Instead, we have tried to present the most important methodological trends in the
period from the 1980s up to the present day. We have seen that in the first phase prosody
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was very visible, and in the second phase, with the advent of heavy ML in integrated
approaches, prosody has ceased to be visible. This might change again if we explicitly
address power and leverage features and their relationships to linguistic structure, to wit
not only in basic research but also in applications. Another interesting research avenue is
the combination of acoustic-prosodic features and text-based features in applications of
natural language processing such as question answering, sentiment analysis, and the ana­
lysis of referring expressions in discourse and dialogue.

Traditional linguistic treatments of prosody and ASP have an important aspect in com­
mon: they are both eschatological to some degree. In linguistic theory, newly invented
models are assumed to be, and presented as, definitive and necessarily superior to the older
ones. In ASP, new methodological frameworks such as, at this time, deep learning are
assumed to present the solution to every problem. History tells us that none of this is very
likely to be the case in the long run. Although scientific paradigms are persistent (Kuhn 2012),
it is difficult to predict which theories and methods will prevail in the medium-term future.
But it is safe to predict that there will be no big, unified approach embracing both linguistic/
prosodic theories and ML. We may not see much convergence and collaboration between
the two sides or a higher visibility of prosody. Yet, due to the possibility of ubiquitous appli­
cations, which will make it necessary to find links between automatic processing and ana­
lysis, synthesis, andlearning and therapy, we might eventually develop a better understanding
of the intricate relationship between power and leverage features.
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