





exists T > 0 such that ¢(T.z.u) € int O (z) with respect to the constraint trajectories (2.5). The

Here 0**""(:1:) denotes the forward orbit of z for the
range U’ ,

reist>0and u € UP )

OtP () = da_ the
(@) ={ve R, with y = ¢(t. z,u)

For a discussion of control sets, chain control sets, and
inner pairs see [3]. While condition (I) is not needed
for all of the following results, it is convenient to as-
sume it throughout this section, as it simplifies the
formulation of results.

We start with the study of the deterministic uncer-
tain system (2.1), (2.3). All the information about
this system is contained in the family of control flows

RxU’xL—-UP XL,
(u(t-L- '): ";L(t,l', u))

QP
@p(t9 u(-), I)

Since we are interested in the behavior of the svstem in
L C R%, we will only introduce concepts with respect
to the state space R alone. But the reader should
keep in mind that most of the proofs require working
with the (skew product) flow ®*.

Our philosophy is to start from the analysis of the
nominal system (2.2) and study the behavior of the
perturbed system for increasing g > 0. The limit sets
{more precisely, the Morse decompositions) of the vec-
tor field Xy together with the order between them
gives a picture of the global behavior of (2.2) in the
set L. For simplicity of notation we assume that the
flow of Xg has a (unique) finest Morse decomposition
with Morse sets E?, i = 1,...,1, in int L, i.e., Xo has
only finitely many attractors. Then the Morse sets
coincide with the chain recurrent components. The
order on the Morse sets is induced by

if there exists z € R? with w=(0,z) C E?
E < Ef and w(0,2) C E?
where w*(u,z) and w(u,z) denote the limit sets of
@(-,x,u) for t — —co and for t — oo, respectively.
For varying perturbation range U”, p > 0, the fol-
lowing maps are well defined (under Assumptions (H)
and (I)) fori = 1, ...,1:

E; [0,00) — C(L), (2.6)
E? is the closure of a controlset D;(p) with
E} < int Dy(p)

Here C(L) denotes the compact subsets of L (with the
Hausdorfl topology) and the control sets are formed

maps F; defined above are right continuous and
strictly increasing. For p small, the reachability or-
der of the control sets D;(p) agrees with the order on
the Morse sets Ef, i = 1,...,I. In particular, maxi-
meal (i.e. invariant or closed) control sets correspond
to maximal attractors, while minimal (i.e. open) con-
trol sets correspond to minimal repellers of Xg. At the
continuity points of the maps E;, the control sets (and
the collection of limit sets) vary continuously in p, i.e.
at these points there is no bifurcation of control sets.
So we direct our attention to the discontinuity points
for which there may exist limit sets of the perturbed
system (2.1), (2.3) outside of the closures of control
sets with nonvoid interior.

The discontinuities in (2.6) can be induced either by
the global time varying dynamics of the system (see
[5] or Section 5. below), for which one needs a case
by case study of the system. Or they result from the
bifurcation behavior of the family Xo + 3 72, X of
vector fields with © € R™ as a bifurcation parameter.
The following theorem gives a result in this direction.
which will be useful in Section 4 .

Theorem 1. Assume that there exist two Morse sets
EP+ED of the vector field Xy and a continuous path
a: [0,1] — intU with «(0) = 0. afl) = 7 such
that {Ej(a(s)), s € [0.1]}, 7 = 1.2. are continu-
ous families of Morse sets of X + Z::l o:{$)X; with
Ej(a(0)) = E?. If Ex(a(l)) = Ea(a(l)) then there
exists p* € (0,1) which is a discontinuity point of the
maps Ey and E; defined in (2.6).

Proof.

(idea) For s € [0,1] denote p(s) = min{p >
0, a(v) € U? for all ¢ € [0,s]}. Then there
exist, for all s € [0,1], control sets D;(s) for the
control range U?(*) such that Ej;(a(s)) < int D;{s).
In particular, we have D;(1) = D,(l} with range
p(1). On the other hand, since EY#EJ. there exists
p > 0 such that E;(p)#E2(p) for all p £ [0.5). where
E; are the maps defined in (2.6). Since the family
{Ej{a(s)), s € [0,1]} is continuous, we have for all
s € [0,1] that E;(a(t)) C int D;(s) for t < s. Conti-
nuity of a implies that p(s) is continuous in s. Hence
there exists a discontinuity point p° € {5. p(1}) of the
maps £y and E,. I

The second important concept, besides the control
sets described in (2.6), is the set of multistable points
(see [?] ). Since we are working with the constraint set
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Remark 1. Recall the maps E; defined in (2.6).
These maps are right continuous and strictly increas-
ing. Hence for any attractor E° C intL of (2.2) the
invariance radius 7;,,(E°, L) is strictly positive.

Remark 2. There are two possible scenarios for the
system behavior around 7;,,,(E°, L), according to the
characterization above. One is that the invariant con-
trol set D? with E® C int D? crosses the boundary
0L, i.e., for all p < Tiny(E®,L) we have DP C intL,
while D? NOL # 0 for all p > riyn,(E°,L). In this
case it is possible that the invariance radius of E° is
strictly smaller than the first discontinuity point of the
corresponding map from (2.6).

Remark 3. In the second scenario we have E° C
OVvP(MS2) if and only if p > ripo(E°, L), which
means that the invariance radius is greater or equal
than the first discontinuity point of the corresponding
map from (2.6). Hence the discontinuity of the maps
(2.6) are not directly related to the invariance radius
with respect to the constraint set L, but they (and
hence the bifurcation behavior of the control sets) give
a first important impression of the behavior of the sys-
tem.

We now turn to the stochastic system (2.1), (2.4)
and draw some consequences for its behavior in the
constraint set L from the results above. In addition
to the Assumptions (H) and (I) for the deterministic
systems, we need a condition on the interplay between
the vector fields of (2.1) and of the background noise
(2.4):

to po (ergodic theorem). For the multistable points
x € MS; (compare Theorem 3), we have: There ex-
ist po > 0 such that > p, = 1 and the solution of
(2.1), (2.4) converges in distribution to the measure
Y- Dalia. Here p, is the probability of reaching C,
from z, i.e. pa > 0 if and only if there exist u € U?
and t > 0 with o(t,z,u) € C,. In particular, we have
P{p(t,z,w) € L for somet > 0} > 0 if and only if
x € int L satisfies Theorem 3(ii).

With these observations we obtain interpretations
of the discontimiity points of the maps E; in (2.6),
and of the invariance radius in Definition 6.

Remark 4. Let E° C int L be a maximal Morse set
(attractor) of the nominal system (2.2). Consider the
corresponding map E(p) defined in (2.6). For small
p, E(p) is an invariant control set of (2.1), (2.3) and
hence N x E(p) carries a unique invariant measure y
of (2.1), (2.4), which is the distribution of the unique
stationary and ergodic Markov solution in N x E{p).
Furthermore supp p = N x E(p). At the first disconti-
nuity point p* of E(p) the support changes abruptly.
If for p > p* the control set in E{(p) is not invari-
ant, then the ergodic solution ’disappears’ and the
solution starting from E° leaves the set E(p) w. p.
1. Their long term behavior then depends on wether
E° C O+P(MS,), as described above.

Remark 5. Let E® C int L be a maximal Morse set
of the nominal system (2.2), and let rin,(E®, L) be its
invariance radius with respect to the constraint set L.
Then we have by the results above: p > rin,(E°, L) if
and only if P{p(t,z,w) € 3L for somet > 0} > 0 for
allz € E°, where the stochastic excitation is given by

dim LA{Xo + Y12, w: X + Yo, Yh,..., Ya,u € UPH(Z, y)u(t,w) = fP(n(t,w)). Hence the stochastic and the

=dimN +4d
()
for all (z,y) € N x M(L), where M(L) in an open
neighborhood of L ¢ R%. Note that this condition
implies (H). It allows us to use the support theorem
for the pair process (n(t),z(t)) as a Markov diffusion
solution of the equations (2.1), (24). We continue to
use the notation (2.5) for the stopped process at the
boundary 8L of the constraint set.

The pair process (7(t), z(t)} has a unique invariant
measure U, i.e., unique stationary, ergodic Markov
solutions on each set N x C,, where C, is an in-
variant control set of (2.1), (2.3) in int L, compare
Definition 2. For each p, the marginal on N is the in-
variant measure v on IN. Hence for each z € A*(C,),
the strict domain of attraction of C,, compare (2.7),
the solution of (2.1), (2.4) converges in distribution

deterministic invariance radii agree, if we define the
stochastic radius as the infimum of the p’s such that
the boundary 8L can be reached with positive prob-
ability from E°® under the excitation f?(n) of size p.
At this point, further statistical characterizations of
the exit behavior of (2.1}, {(2.4) from the operating re-
gion become important, namely the exit probability,
the exit time, and the exit location. For the general
class of systems that is considered here one cannot ex-
pect to obtain explicit expressions for these quantities.
Numerical and statistical studies in this direction are
under way and will be presented elsewhere.

3. SINGULARLY PERTURBED SYSTEMS UNDER
STATE SPACE CONSTRAINTS
The theory developed in Section 2. depends on the
fact that the Morse sets of the nominal system (2.2)
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that the Lie algebra rank condition (Hy,) holds for
the induced system on the projective space P41, In
this case we obtain for the Lyapunov exponents of the
linearized system that they are constant with proba-
bility one, i.e., for each p > 0 there exists A(p) € R
such that

Aw,y) = A(p) as. for all y € R?\ {0}

Obviously, we have A(p) < «(p), and A(p) depends on
the dynamics (2.4) of the noise process 7(t) and on
the maps f? : N — U?, which map the background
noise 7(t) onto the perturbation ranges U*.

The maximal Lyapunov exponent x(p) can be re-
covered for any nondegenerate noise process (2.4) sat-
isfying (H’) and (Hy;n) as the limit of the p-th moment
Lyapunov exponents (p, p) — ¥(p) = &(p) as p — oo.
We define the almost sure stability radius of the lin-
earization (3.1) with respect to n(t) and f? as

ris(n, f) = inf{p 2 0, A(p) 2 0}
The observations above imply that

Tls(n, f) ._>. Tlin

(3.5)

and
Tin = inf {p 20, v(p) > 0}
for any 7, f* as above.
Hence we have

e for p < ri,: The deterministic system (3.1),
(2.3) is exponentially stable; the stochastic sys-
tem (3.1), (2.4) is a.s. and p-th moment stable
for all p > 0 and for all n, f*.

for riin < p < Ti,(n, f): there exists a u € U*
such that the deterministic system y = [4p +
S ui(t)Aily is not stable; the stochastic sys-
tem is a.s. stable, but there exists p > 0 such
that the p-th moment of the system is not stable.

for p > 715(n, f): There exists v € U* such that
the deterministic system with this perturbation is
not stable; the stochastic system is a.s. unstable
and all its p-th moments are unstable for p > 0.

As in the deterministic case one can use stochastic
stable manifold theorems to investigate the stability
radius of the nonlinear system (2.1), (2.4) at the sin-
gular point z* € int L. We define

rstoch.(z' s, f)
the system (2.1), (2.4) isnot
inf{p > 0, asymptoticallystable
at z* under f?(n(t))

A result of Pinsky [7] implies that

Tls(n)f) S ratodl(x.)na f)

and equality holds if A(p) is strictly increas-
ing at ri(n,f) But for p in the interval
(r(z7), stocn (Z°, 1, f)) the stochastic stable manifolds
W?4(z*,w) are not uniform in w € ). This means
that there exists a measurable subset ' C Q with
P((Y) = 1 such that for all w € ' the system
(2.1), (2.4) admits a stable manifold M*(z",w) with
z" € int M*(z",w), but for every neighborhood N(z~)
there are z € N(z*) and 2, C ' with P(Q2;) > 0 and
z ¢ M*(z",w) for w € §,. This fact makes simula-
tions of the system (2.1), (2.4) with these uncertainty
ranges difficult around z”. Of course, the stable man-
ifolds are uniform in w € 2 for p < r(z”).

The invariance radius 7in,(z”,L) of the singular
fixed point = with respect to the constraint set L.
as defined in (3.4), has a similar interpretation for
stochastic excitations as in the regular case, compare
Remark 5. In particular, we have:

P > Tiny(z”, L) if and only if for every neighborhood
N(z”) there exists z € N(z") such that P{p(t,z,w) €
8L for somet>0}>0.

While it holds that r(z*) < 7ip(z", L), there may
exist a background noise 7(t) and a family of maps
fP:N — U? such that

Tinv(-'r':L) < rstodl(z'yn1 f)

compare the example in Section 5. This fact reflects
again the non-uniform stable manifolds of the stochas-
tic system for p > r(z*).

A MobDEL FOR SHiP RoLL MOTION UNDER
ADDITIVE PERTURBATION

Capsizing of vessels can be modelled by a one
degree of freedom system which is limited to the
roll motion, compare Falzanaro/Shaw/Troesch
[4], Hsieh/Troesch/Shaw [6], and Thomp-
son/Rainey/Scoliman [8]. The nominal model in
non-dimensionalized form is

4.

3 T (4.1)

Ty -z + 01:13 — 6119 — boxg ]Ig]

where §; > 0 and 82 > O represent the linear and
quadratic viscous damping coefficients, respectively.
and o denotes the strength of the nonlinearity. Cap-
sizing occurs in this model when |z,| reaches ;‘;‘;
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Therefore, if we view (5.1) as an equation with bi-
furcation parameter u € R, the system undergoes a
pitchfork bifurcation at u = —1.

The origin (0,0) is a fixed point of (5.1) forallu € R,
and hence this is a singular point. In the rest of the
state space R? \ {(0,0)} the system is regular. Note
that (4.1) is the nominal model for (4.2) and (5.1),
and hence for p = 0 the behavior of the two systems
agrees.

We again consider an operating region of (5.1) given
by |z1] < Js. Since for u < —1 the system with
constant parameter u becomes unstable, it suffices to
consider perturbations of the size p < 2. For this range
there exists a constant B > 0 such that £2(z;,22) <0
for all (z;,z2) € R? with |z,| < 7‘; and z2 = B, and
Zo(x1,x2) > 0 for T3] < ﬂ; and z5 = —B. Hence the
constraint set

L={(z1,22) €R? |;| <

Nz
is appropriate for our purposes, and exits from L occur
on the boundaries |z, | = 7‘;

We first analyze the behavior of (5.1) at the singular
point (0,0), using the theory presented in Section 3.
Linearization of (5.1) at the origin yields

i=( 0 g )vrun( 7 g

-1 -6 -1 o)y (5:2)

which is a linear oscillator with positive damping 8.
The corresponding projected system on the projective
space P! satisfies the Lie algebra rank condition (Hi;p)
for all p > 0, and therefore we can use the results
from Section 3. We compute the maximal Lyapunov
exponent x(p,8;) (depending on the damping §;) nu-
merically (compare {2]) and obtain the linear stabil-
ity radius of (5.2) as the zero-level sets of x(p, §;) for
p, 81 = 0. Figure 4. shows the radius rj;,(6;) for
(5.2). Note that for §; < 85 ~ 0.80 the stability ra-
dius is strictly less than 1, which is the ’bifurcation
radius’ of the system (5.1) with u € R as bifurcation
parameter. This difference is due to the time varying
nature of the perturbation, and differs from the be-
havior of the additive uncertainty model in Section 4.,
where the first discontinuity of the map D?(p) occurs
at the bifurcation value p = A.

We now turn to the nonlinear system (5.1) and con-
sider its behavior around the origin. Since the numeri-
cal calculations show that x(p, 8;) is strictly monotone
in p for each 6; > 0, we obtain from (3.3) for the non-
linear stability radius r((0,0),6;)

Tiin(61) = 7((0,0),8,) for all §; >0

and |32|SB}
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Figure 4: Stability radius of the linearized system de-
pending on §,

Hence there exists for p < ri,(61) a uniform (in u €
UP) stable manifold W*((0,0), p, §;) of the origin. The
precise form of this stable manifold depends, of course,
on the global dynamics of the nonlinear system (5.1).
Choosing the parameter values

o=10, § =05, 6 = L0 (5.3)
the stable manifold W*((0,0),p,6,) for p = 05 is
shown in Figure 5. Note that for individual pertur-
bations u € UP the stable manifold may be larger
than the uniform one, but it cannot exceed the asymp-
totic domain of attraction of (0,0), indicated by the
leftmost and the rightmost boundaries of the shaded
regions in Figure 5.

The invariance properties of the system (5.1) with
respect to the constraint set L depend on the global
behavior of the system in L. Since (5.1) is regular out-
side the origin, we use the theory presented in Section
2. for this analysis.

For p = 0 the phase portrait of the nominal system
is shown in Figure 1. As p increases, variant control
sets D'(p) and D3(p) with their attached multista-
bility regions form around the unstable fixed points
(z1,0) and (z3,0). Figure 5. shows these multistabil-
ity regions for the parameter values (5.3) and p = 0.5.
The set of points in L that are L-invariant for all
u € U’ is given by the uniform stable manifold of
the origin in the center of Figure 5.

For p ~ 0.6 a first (numerically observed) disconti-
nuity of the maps D(p), i = 1, 3, occurs and the two
variant control sets merge into one. Figure 6. shows
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