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Abstract. W e  investigate the differentiability of  the composit ion operator  
and apply the result to equations with state-dependent delays. 

1. Introduction 

In this note we show how to linearize delay equations of  the form 

g( t )  = f ( t ,  x(r(t ,  x( t)))) ,  (1) 

t ~ [a, b] c R, where the velocity g( t )  at time t depends on the "instantaneous 
state" xO') at time z = r(t, x( t)) .  More specifically, we consider the operator  Ty,,, 
which maps a function x to the function defined by the right-hand side of (1), 
and we prove that Ty, r: W~'~[a, b]--> LP[a, b], 1 -<p < ~ ,  is eontinuously Fr6chet- 
differentiable at functions x whose associated "de lay"  r(t, x( t))  is strictly increas- 
ing. Such a result is of  interest, if we want to apply general optimization theory 
in Banach spaces in order to prove the existence of Lagrange multipliers for 
control systems of  the form 

:~( t) = f ( u (  t), x(r(  t, x( t) ))), 

here Fr6chet-differentiability of  the function at the right-hand side with respect 
to the function x often is an indispensable prerequisite (see, e.g., [3], [7], [10], 
[2] and [6]). For examples of  such control systems with state dependent  delay 
see, e.g., [5]. Since the delay property r(t, x( t ) )  <- t has no bearing on the question 
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of  whether Ty,, is differentiable or not, we do not assume this property here. 
Furthermore,  we want to include the situation where f ( t ,  x)  is discontinuous in 
t (since f may depend on the discontinuous control u( t ) ) ,  so we cannot assume 
that the solution of (1) is more regular than W ~'~. 

It is natural to consider Ty, r as the composit ion of  three operators F, K, R 
in the form 

( Ty, rx)(  t) = F(  K ( x ,  g x )  )( t), (2) 

where 

( F x ) ( t ) = f ( t , x ( t ) ) ,  

K ( x ,  y ) ( t )  = x ( y ( t ) ) ,  

( R x ) (  t) = r( t, x(  t) ). 

The operators F and R, which are called superposition or Nemitskij operators, 
have been studied by many authors (we refer to [1] for a recent extensive survey), 
and their differentiability properties relevant for this paper  are known. We 
therefore concentrate on the differentiability of  the composit ion operator 

K ( x , y ) = x o y .  

The arguments of  this paper  may presumably also be used for computing second 
derivatives. This would be useful in optimal periodic control in order to give a 
rigorous proof  of  a so-called H-test for equations with state-dependent delays 
(see [9] and [2]). 

Notations. Throughout  this paper  the norm of x ~ L p for 1 -< p-< oo is denoted 
by Ilxllp. 

2. Assumptions and Results 

To simplify the exposition, we a s s u m e f  and x to be scalar valued; generalizations 
to the vector case and to the case where finitely many ri are involved in the 
right-hand side of (1), are immediate. 

Assumption A. Let f, r: [a, b] x R-> R. We assume that: 

(i) f ( . ,  x) is measurable for all x, f ( t ,  • ) is continuously differentiable for 
almost all t, and f and fx are bounded for bounded arguments. 

(ii) Function r is twice continuously differentiable. 
(iii) r ( t , x ) c [ a , b ]  for all t ~ [ a , b ] , x ~ R .  

We formulate the main result of  this paper. 

Theorem 2.1. Let Assumption A hold, and let x° ~ wl'°°[a, b] with 

d r ( t , x ° ( t ) ) > - e o > O  a.e. in [a,b].  
dt 
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Then T r, r: Wl'°°[ a, b ] ~ LP[ a, b ], 1 - < p < o  G defined by 

(Ty, r x ) ( t ) = f ( t , x ( r ( t , x ( t ) ) ) ) ,  t ~ [ a , b ] ,  

is continuously Frdchet-differentiable at x ° with derivative 

[ DTf, r(x °)x]( t) =f~(t,  x°(r(  t, x°( t) ) ) )x(r(  t, x°( t) ) ) 

+ fx(  t, x°(r( t, x°( t ) ) ) )Yc°(r( t, x°( t ) ) )rx( t, x°( t ) )x( t ). 

The proof  is given at the end of this section. 

Remark 2.2. This result shows that the linearization of equation (1) at x ° is a 
nonautonomous delay equation (with t ime- -bu t  not s ta te - -dependent  delay) for 
x with ~(t)  given by the formula in Theorem 2.1. 

We decompose Tj:~, as mentioned above, in the form 

Tj:,x = F(  K (x, Rx)  ) 

and consider F, R, and K separately. 

Lemma 2.3. Let, in addition to Assumption A, f and fx be bounded on [a, b] x R. 
Then f defines a continuously Fr~chet-differentiable superposition operator 
F: LP[a, b] + Lq[a, b] for all 1 <- q < p  <~ 0o with derivative 

[ DF(x° )x] (  t) =f~(t,  x°( t) )x( t). 

Proof This is a special case of Theorem 20.2 in [4], if we recall the basic theorem 
on superposition operators in L r spaces, namely that the growth condition 

[ f ( t ,x ) l<-at ( t )+a2lx l  p/q, a l ~ L  q, a2~R,  

is necessary and sufficient for F being a continuous operator  from L" to L q. 
[] 

Proposition 2.4. Let Assumption A hold. Then r defines a continuously Frdchet- 
differentiable superposition operator R: W~" ~[ a, b] ~ W~' ~[ a, b] with derivative 

[ D R ( x ° ) x ] (  t) = G( t, x°( t) )x( t). 

Proof 
L~[a, b] (resp. C[a, b]) if we note that the chain rule yields 

This is a tedious but straightforward extension of the standard proof  in 

+ rx( t, x°( t) )Yc( t). [] 

d 
dt  [rx(t' x°( t ) )x( t )]  = [r,x(t, x° ( t ) )+ rxx( t, x° ( t ) )x° ( t ) ]x ( t )  
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We now state the result concerning the composition operator K. 

Proposition 2.5. Let I be a compact interval and let Yo be the open subset of 
Wl"°°[ a, b] defined by 

Yo = (Y c W1'°~[ a, b]: ess inf)~(t) > 0, range y c in t ( I ) / -  ( t~[a,b] J 

Then the composition operator K, K ( x , y ) = x o y ,  maps bounded subsets of  
W~'°~[ I] x Yo into bounded subsets o f  wl"p[ a, b], 1 <_ p <_ oo. As  an operator 

K: W~'°°[I] x Yo ~ LP[a, b], 

K is continuously Fr6chet-differentiable for 1 <- p < oo with derivative 

[ D g  (x °, y°)(x, y)] ( t )  = x(y°( t) ) + Yc°(y°( t) )y( t). 

Proof. The proof  is given in Section 3. [] 

Remark 2.6, For continuous differentiability we need ess inf ~ > 0 for y near yO. 
This entails the choice of  W 1'°° as space for yO, as observed by Manitius [6]. A 
first look at the formula for D K  shows that some restriction on yO is needed in 
order that 2 ° o yO makes sense if ~o is not well defined on sets of measure zero. 

Remark 2.7. The formula for D K ( x ° , y  °) involves the expression ~°(y°(t)), 
which does not depend continuously in L °° on yO in Yo c W ~,°°. Hence, contrary 
to the proposal in [6], (continuous) Fr6chet-ditierentiability of K (and hence of 
Ty.r) cannot be achieved if the range space of K is taken as L °~ instead of L p, 
l_<p<oo.  

Proof of  Theorem 2.1. Theorem 2.1 is a direct consequence of  Propositions 2.4 
and 2.5 and the chain rule if we note that, by Propositions 2.4 and 2.5, 

IlK(x, R x ) l l ~ -  < C 

in a neighborhood of x °, and we can therefore assume f and f i  are globally 
bounded. [] 

3. The Composition Operator 

The aim of  this section is to prove Proposition 2.5. For y ~ Yo, we have 

K ( x , y )  = [yc(y(t))¢(t)lPdt<_ 11 fljp-i [2(y(t))lP¢(t) dt 
p 

---II~llU' I I~(s)l~ ds = II~ll~-lll~ll ~' 
1 



Linearizing Equations with State-Dependent Delays 49 

so K maps bounded subsets of  WLP(I) × Yo into bounded subsets of  W~'P[a, b]. 
It is now sufficient to show that the partial derivatives 

DxK(x o, yO): Wl,P(i) _~ LP[a, b], 

DyK(x  o, yO): yo_ ~ LP[a, b] 

exist, are continuous with respect to (x °, yO), and have the form 

[ DxK (x °, y°)x]( t) = x(y°( t) ), 

[ DyK (x °, y°)y]( t) = ~°(y°( t) )y( t). 

We need the following lemma. 

Lemma 3.1. Let g c: LP(I), y ~ Yo, and set 

e(y) = ess inf )~(t). 
t~[a,b] 

Then 

< 1 f lg(y(t))l p d t - - ~ y )  [Igll p. 

Moreover, if yn ~ y in Yo in the norm of W 1"~, then j.b 
lira Ig(yn(t))-g(y(t)) lP dt=O. 
n - ~ : ~  a 

Proof. We have 

[g(y(t))lPdt = Ig (y ( t ) ) lPY( t )~ -~d t<- -~ l lgH~.  

We prove the second assertion at first if g is the characteristic function of an 
interval E = [a,/~],  i.e., g(x)  = Xe(X) = 1 if x c E and 0 otherwise. Obviously, 
Xe(y , ( t ) )~Xe (y ( t ) )  implies that either l y ( t ) - a l < l l y ~ - y l l ~  or l y ( t ) -~[  < - 
Ilyn-yllo~, therefore we have 

4 
meas{t: Xe(y , ( t ) )~  Xe(y( t ) )}<-~y)  HYn -Yllo~. 

This proves the assertion for the case g = Xe. The triangle inequality yields the 
result if g is a step function. Now if g ~ LP(I), for any step function s c LP(I) 
we know from the first part  of  the lemma that 

f ~  Ig(y( t ) ) -s (y( t ) ) 'P  dt<- e-~y) ' lg - s"  p , 

f b [g(y,( t) ) -  s(y,(  t) )l p t[g - s l i p  p. dt <_ l---~ 
a e(y,) 
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This proves the lemma, since the step functions are dense in LP(I) and since 
e ( y n ) ~  e(y) .  [] 

We now consider the partial derivatives separately. 

3.1. The Partial Derivative DxK 

Since the mapping x ~ x o yO obviously defines a linear continuous operator from 
C ( I )  to C[a,  b], only the continuity of D~K remains to be shown. Let (x,,  y , ) ~  
(x o, yO) in WI"P( I ) x  Yo, then we have, for all x c WI 'P(I) ,  

IIDxK (x . ,  y,,)x - DxK (x °, y°)xllP 

= I x ( y . ( t ) ) - x ( y ° ( t ) ) l ~ d t  

= 2 ( y ° ( t ) + u ( y . ( t ) - y ° ( t ) ) )  • ( y n ( t ) - y ° ( t ) )  dt 

Io'I  <--[[y. - y ° l lP  l Y c ( y ° ( t ) + u ( y , ( t ) - y ° ( t ) ) ) l P d t d u  

111511; <- Ily. - y ° l l ~  • t o  

by Lemma 3.1, if e o = m i n { e ( y ° ) , m i n ~ N e ( y . ) } ,  which we may assume to be 
positive since y .  ~ yO in the norm of W 1"~. This implies 

i l o x g  (x.  ' y . )  _ DxK (xO ' yO)ll <_1 [[y. _ yOll~ ' 
60 

therefore DxK is continuous. 

3.2. The Partial Derivative DvK 

We define A: W~'~[a, b ] ~  Ln[a, b] by 

( a h  )( t) = :~°(y°( t) )h(  t). 

By Lemma 3.1, we have ~ ° o y ° c L P [ a , b ] ,  so A is well defined, linear, and 
continuous. We estimate the remainder as follows: 

][ K (x °, yO + h ) - K (x °, yO) _ Ah ]1 p 

= I x ° ( y ° ( t ) + h ( t ) ) - x ° ( y ° ( t ) ) - 2 ° ( y ° ( t ) ) h ( t ) l P d t  

-- Ih(t)l p" [ 2 ° ( y ° ( t ) + u h ( t ) ) - : ~ ° ( y ° ( t ) ) ]  dt 

Io;  <_ Ilhll~ lYc°(Y°( t )+uh( t ) ) -~c°(Y°( t ) ) lPdtdu.  
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By L e m m a  3.1, the  i n n e r  in tegra l  

Ih(u)= [~°(y°(t)+uh(t))-~°(y°(t))[P dt 

converges  to 0 p o i n t w i s e  in  u, if  h -~ 0 in  Wl"°~[a, b],  a n d  

1 1 0 

so Ih ~ 0 in  L~[O, 1], i f  h ~ 0 in  W~'~[a, b]. This  p roves  tha t  A = DvK(x °, yO). For  
the  c o n t i n u i t y  o f  DvK, we observe  tha t  

IlOyg (x., y.)h - Oyg (x °, y°)h IIg 

-- I ~  I~. (y .  ( t ) )  - 2 ° (y° ( t ) ) l  Plh( t ) l  p dt 

-< Ilhll& lyc.(y.(t))-yc°(y.(t))l p dt+ [~°(y.(t))-~°(y°(t))lP dt 
a a 

- I l h [ [ ~  112. -~o11~ + I~°(y.(t))-~c°(y°(t))l p dt 

b y  L e m m a  3.1, a n d  i f  (x . ,  yn) ~ (x °, yO) in  WI"P(I) × Yo, t h e n  the  b r a c k e t e d  t e r m  
conve rges  to zero aga in  by  L e m m a  3.1. H e n c e  DyK is c o n t i n u o u s .  
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