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OPTIMAL PERIODIC CONTROL:
A SCENARIO FOR LOCAL PROPERNESS*

FRITZ COLONIUS"

Abstract. A fundamental problem in optimal periodic control is to decide whether proper periodic
controls and trajectories yield better average performance than constant steady-state solutions. The present
paper describes a situation where this holds true, because "nearby" the linearized system equation has a
pair of eigenvalues on the imaginary axis. An example involving a retarded Li6nard equation is discussed
in detail.
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1. Introduction. In optimal periodic control theory, one looks for periodic controls
and corresponding periodic trajectories of a control system described, for example,
by a functional differential equation such that a certain average performance criterion
is minimized. Suppose that a constant control u and a corresponding steady state x
of the system are given, which are optimal among all such pairs (x, u). If it is possible
to obtain better average performance in every neighborhood of (x, u) by allowing
proper periodic controls and corresponding periodic trajectories x, then the pair (x, u)
is called locally proper. It is the purpose of the present paper to explore a situation
where one may expect local properness because of structural properties of the system
equation. In particular these properties are related to those of a Hopf bifurcation. The
guiding idea is that local properness will occur, if the considered system has "nearby"
a "natural" periodic motion giving better performance.

A connection between Hopf bifurcation and optimal periodic control theory has
already been observed by Russell [20]. He was interested in coupled nonlinear oscil-
lators, where a Hopf bifurcation causes periodic motions which he wanted to dampen.
Since this was not possible by linear regulator theory, he considered this problem as
an optimal periodic control problem where the performance criterion is constructed
in such a way as to minimize the amplitude of the oscillations.

Observe, however, that the spirit of the present paper is quite different: Instead
of trying to dampen periodic motions we are willing to introduce them in order to get
better performance. This is motivated by problems from chemical engineering (output
maximization of chemical reactors [19], [24], [25]) and aircraft flight performance
optimization (fuel optimal flight [22], [23]). Further references are given in [8], [17],
[18].

In 2 the optimal periodic control problem is formally defined for systems
described by retarded functional differential equations. Furthermore, among other
preliminaries, relevant information on necessary optimality conditions is cited from [8].

Section 3 exhibits a scenario for local properness. Theorem 3.6 contains the main
result of this paper, in conclusion, 4 discusses an example which, in fact, was the
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starting point of the present analysis. The importance of the result in 3 is twofold:
(i) It explains a mechanism by which local properness may occur and thus gives some
insight into this phenomenon. (ii) It gives a hint, where to look for local properness,
namely near equilibria, where the linearized system equation has a pair of eigenvalues
on the imaginary axis.

It is worthwhile emphasizing that these results, which may be viewed as a contribu-
tion to the qualitative theory of optimal control, are also new for the special case of
systems governed by ordinary differential equations.

Notation. The transpose of an element xE" is denoted by x T’, similarly for
matrices. For a map F between Banach spaces X and Y, F(x) denotes its FrOchet-
derivative at x e X. For maps between finite dimensional space we also use a subscript
x in order to denote the partial derivative with respect to x. The second Fr6chet-
derivative at xe X is denoted by F(x). For an element x e E ", denotes the
constant function (s)--x (in various function spaces).

2. Problem formulation and optimality conditions. In this section, a parameter
dependent optimal periodic control problem (OPC) and the corresponding optimal
steady-state problem (OSS) are formulated. Furthermore optimality conditions and
results on smooth dependence of optimal solutions are cited, slightly modified for our
purposes, from [8].

Consider the following optimal periodic control problem.

(OPC) Minimize 1/z g(x(s), u(s)) ds

over (x, u) C(-r, r; E") x L(O, ; E")
subject to

(2.1) (t) =f(x,, u(t), a) a.e. [0, "r],
(2.2)
(2.3)
(2.4)

X0
h(u(t))E’_ a.e. t[O,r],

k(X(t), u(t)) 0;dt

here x,(s) x(t + s) E", s [-r, 0], r> 0 is the length ofthe delay, a A is a parameter,
AcE open,f= (fi) C(-r, 0; E") xE" xa E", g’E" xE"R, h (h)’ RI, k=
(ki)." X[ -- nl.The period length ->0 is considered fixed here (we also allow ’<r). The
requirement (2.2) is imposed in order to allow periodic extensions of x and u to
periodic solutions of (2.1) on E+ := [0, ).

Abbreviate

(2.5) 12 := {u E"" h(u)
0ad {U L(0, a’; [")" u(t) 6l a.e. t[0, r]}.

The corresponding steady-state problem has the following form:
(OSS) Minimize g(x, u) over (x, u)E" xE

subject to
(2.6) O=f(,u,a),
(2.7) h(u) I,
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(2.8) O=k(x,u);
here f, g, h and k are as in (OPC)%

We are interested in the behavior of (OPC)"" of (OSS)% (i.e., near the constant pair (o, o) C(-r, r;") L(O, r; 1")).
DZFNITION. A local solution (x, u) of problem (OSS)" is called locally proper,

if for all e > 0 there exist (x, u) C(-r, r; ") L(0, r; ’) with sup,to, Ix- x(t) <
e satisfying (2.1)-(2.4) and

1/’r g(x( t), u( t)) dt < g(x ’, u’).
As is well known, first order necessary optimality conditions (based on weak variations)
do not allow one to decide the question of local properness. Hence we will give below
second order necessary optimality conditions for (OPC)L

Let the Pontryagin function H" C(-r, 0; ")x" xI "+", xA- for (OPC) be

(2.9) H(q, u, y, a):= g(q(O) u)+ yr( f(q’ u’ a)
k(q(O),u)]

and let the Lagrange function "" "+", xt A- for (OSS) be

(2.10) (x, u, y, z, a):= g(x, u)+yW(f(g’ U,
\ k(x, u) +Zrh(U)"

The following hypotheses will be used.
Hypothesis 2.1. The functions f g, h and k are twice continuously Fr6chet

differentiable in a neighborhood of (o, u o, ao) (respectively, (x, u), u, (x, u)); the
function f and its first and second derivatives are bounded for bounded arguments;
the set 1 is convex.

Hypothesis 2.2. There exist (yO, zo) Rtl+tll X [! such that
(2.11) zh(u) -0,
(2.12) ,2(xo, u o, yO, zo, ao) 0,
(2.13) ,,2@,,(xo, u o, yO, zo, ao)((x, u), (x, u)) > 0
for all (x, u) " m with 1,2f(30, u 0, Oo)(3,/,/) 0, kx,u(xO, u)(x, u) 0, hiu(bl)U < 0
if h’(u)=0, i{1,..., 1}.

Hypothesis 2.3. The gradients in
,2fi(ig, U, Ceo) i= 1,’’’, n,

(2.14) (0, h(u)) with h(u) -0, i {1,..., 1},
k,,(x, u), i= 1,’’’, n,

are linearly independent and the multiplier z= (z’) from Hypothesis 2.2 satisfies
z’>0ifh(u)=0, i{1,...,1}.

Hypothesis 2.4. For all a a in a neighborhood of ao, the linearized equation
(2.15) :(t)= f(g", u, a)x,, >-O

neehas only the trivial r-periodic solution; here (x are elements in x to be
determined in Theorem 2.7, below.

Next we comment on these hypotheses.
Remark 2.5. Hypothesis 2.4 is equivalent to

(2.16) rankA(jw, a)=n forw=2kcr/r, k7/,
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where A(z, a) is the characteristic function of (2.15),
A(z,a)=zI-f(,u,a)(eZ’I), zC.

This hypothesis will guarantee that all Lagrange multipliers for (OPC) can be obtained
from Lagrange multipliers for (OSS)L

Remark 2.6. Hypotheses 2.3 and 2.2 are a constraint qualification and a second
order sufficient optimality condition, respectively, for the steady-state problem (OSS)o.
Note that in (2.14) f(., u, ao) is considered as a map W’ ", x--f(, u, ao).

First we analyze the steady-state problem (OSS) s.
THEOREM 2.7. Suppose that (x, u)"x satisfy Hypotheses 2.1-2.3. Then
(i) The pair (x, u) is an isolated local minimum of Problem (OSS)o, and the

Lagrange multipliers (yO, zo) ,+,, x are uniquely determined by (2.11) and (2.12).
(ii) There exists a continuously differentiable function a->(xS, u,yS, zS)6

nxmxn+n’xl defined on a neighborhood of ao such that (x, u s) is an isolated
minimum of (OSS), (x", u, yo, zo) (x, u, yO, zo) and (x, u, yS, z satisfy con-
ditions (2.11)-(2.13) with ao replaced by a.

Proof This follows from a result in Fiacco [9, 3.2].
Next we state second order necessary optimality conditions for (OPC) s.
THEOREM 2.8. Let (x, u) E" xn satisfy Hypotheses 2.1-2.3 and suppose that

(x s, u s) determined by Theorem 2.7 satisfy Hypothesis 2.4. There exists a neighborhood
Ao of ao with the following property. Let a Ao, a ao and assume that the constant
functions (s, as) C(-r, r; n) L(O, z; m) are a local minimum of (OPC) s.

Then for all (x, u) C(-r, z;) x L(O, r; m) with

(2.17) [g(x s, uS)x(t) + g.(x s, uS)u( t)] dt 0

and
Xo=X, :(t)=,f(:fs,us,a)xt+f(gs,u s,a)u(t) a.e. t6[0,(2.18) _u+ u int

it follows that

[, lH(:gs, u s, yS, a)(x,, x,)+2l2H(:g s, u s, yS, a)(x,, u(t))
(2.19) +/4(x, u, yL =)(u(t), u(t))] dt >-0.

Sketch ofproof By continuity Hypotheses 2.1-2.3 hold for a in a neighborhood
of ao. Problem (OPC) can be reformulated as an optimization problem over (o, u)
C(-r, 0; [") L(0, r;) (with o :- Xo) using the implicit function theorem near
(x C(-r, r; L(0, z; ") (cf. [8, Chap. 5]). Application of optimization
theory in Banach spaces (cf. [8, Chap. 2] or [16]) yields second order necessary
optimality conditions for (qs, s) with qs := s, involving Lagrange multipliers
(ls, yS, zS) C(-r, 0; ")* x "+", X[] 1. Since by assumption a+u int 0ad the term
with z vanishes. Hypothesis 2.4 yields that the Lagrange multipliers for (OPC) can
be obtained from Lagrange multipliers for (OSS) (cf. [8, Prop. VII.2.7]); these,
however, are unique by Theorem 2.7.

For more details see Theorem VII.3.1 of [8].
Theorem 2.8 furnishes a test for local properness" If there are (x, u) satisfying

(2.17) and (2.18) but violating (2.19), then (s, tTs) cannot be a local optimal solution
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of (OPC) s. Using Hypothesis 2.4 it is advantageous to consider special (sinusoidal)
test functions (x, u). First we introduce the following abbreviations (to R/, a Ao):

P(to, a):= 1H(2s, u ’, yS, a)(e,O.i, e-,o.i),
(2.20) Q(to, a):= 2H(2", u s, yS, a)(ej,o.I),

R(a) := 2N2H( s, u s, y’, a),
B(a) := 2f(: s, u s, a)

and for later purposes
L(o) :-- llf(.s u s, o).

Identify P(to, a), Q(to, a) and R (a) with elements in C"", C and Rmxm, respec-
tively. Define

H(to, a)= B(a)TA(-jto, a)TP(to, a)A(jto, a)B(a)
(2.21) + Q(-to, a)rA(jto, a)B(a)

+ B(a)7"A(-jto, a)TQ(to, a)+ R(a).
COROLLARY 2.9 (H-Test). Let the assumptions of Theorem 2.8 be satisfied. Then

(x s, u s) is locally proper, if there exist Vo, vl C with (to 27r/’)
[gx(x s, uS)A(O, a)B(a)+ g,,(x s, uS)] Vo

(2.22) + [gx(X s, uS)A(jto, a)B(a)+g,,(x s, uS)] v, -< 0,
h(uS+vo+Re(v e’’))eint t_ for all re[0, r],

(2.23) n(o, ,)o+ 2 ,n(,o, ), < 0.
Sketch ofproof Choose u(t) := Vo+ Re (v e’’), [0, r]. Then (2.22) ensures that

(2.17) and (2.18) are satisfied. Computation of the expression in (2.19) yields the one
in (2.23) (cf. [8, Thm. VII.3.3]).

3. A scenario for local properness. Now we will relate local properness to structural
changes in the system equation. The analysis is motivated by the following consider-
ation. Suppose a Hopf bifurcation occurs at a =ao. See Hale [12] or Hassard,
Kazarinoff and Wang [13] for an exposition of Hopf bifurcation theory of functional
differential equations. Ifthe generated periodic solution is "better" than the steady-state
solution, one will expect local properness at a ao. It turns out that under a controlla-
bility condition this is true for all a close to ao. The controllability condition guarantees
that the free periodic motion can be approximated by forced periodic motions for
a ao. In fact it is not necessary that a Hopf bifurcation actually occur; instead some
weaker properties stated below are sufficient.

Throughout this section we assume that Hypotheses 2.1-2.4 hold and hence the
assertions of Theorems 2.7, 2.8, and Corollary 2.9 hold. Recall that the characteristic
function of the linearized equation (with L(a):= f(2 s, u s, a))
(3.1) (t)=L(a)x,, t>---O
is given by
(3.2) A(z, a) zI- L(a)(eZ’I), z C.

(3.3)

LEMMA 3.1. Suppose that for a pair (tOo, ao) (0, oo) x A
rank A(jtoo, ao) n 1,
rank A(jto, a)= n for all (to, a) (tOo, ao) close to (tOo, ao).
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Then for all a in a neighborhood of ao, (3.1) has a simple eigenvalue z(a) and z(a) has
a continuous derivative z’(ao)at ce ao.

Proof. By Theorem 2.7, the map a--) L(a) is continuously Fr6chet differentiable,
and Hale [12, Lemma 2.2, p. 171] implies the assertion.

Remark 3.2. Condition (3.3) does not require that an eigenvalue actually cross
the imaginary axis at a- Co.

LEMMA 3.3. Condition (3.3) implies that there exists a nontrivial z-periodic solution
of (3.1) with a=Oo, ’:=27r/too; furthermore, there existspC such that for every
such z-periodic solution p
(3.4) p(t) 23, Re(eJ’tp), t>-_O,
for some , R.

Proof. By assumption the eigenspace corresponding to z =jtoo is one-dimensional
and the assertion follows (cf. Hale [12]).

LEMMA 3.4. Suppose that condition (3.3) is satisfied. Then the following two condi-
tions are equivalent:
(3.5) There exists , C with Pl [Adj A(jtoo, ao)]B(ao)q
where p is given by Lemma 3.3 and Adj denotes the adjunct;
(3.6) [Adj A(jtoo, Co)]B(ao) 0.

Proof. Recall that
A(jtoo, Co)[Adj A(jtoo, ao)] det A(jtoo, ao)" I

(see, e.g., Kowalsky [15, Kap. 4]). Thus the range of
[Adj A(jtoo, ao)]B(ao)

is contained in the kernel of A(jtoo, ao) which is spanned by Pl.
Condition (3.5) may be viewed as a "controllability condition" for the periodic

solution (3.4).
LEMMA 3.5. Let condition (3.3) be satisfied. Then

pP(coo, ao)p l.2.2H(gO, u o, yO, a)((p,, 0), (p,, 0)) dt

where Pl, P(" are as in Lemma 3.3.
Proof. Obvious from the definitions and Lemma 3.3.
The next theorem establishes the connection to local properness.
THEOREM 3.6. Let (x, u) " x" satisfy the constraints ofProblem (OSS)" and

suppose Hypotheses 2.1-2.4 hold. Furthermore, assume that conditions (3.3) and (3.5)
are satisfied, and that there exists ’o C" such that t,o and z, satisfy (2.22) with a Ceo.
Let po := [Adj A(0, Ceo)]B(ao),o and assume for P given by (2.20)
(3.7) /5oTP(0, Ceo)Po+/lvP(too, Ceo)Pl <0.
Then there exists a neighborhood Jf of (tOo, ao) such that the steady states (x, u being
isolated local minima of (OSS)" are locally proper and (2.22), (2.23) hold for all
(,o,), (,o,) (Oo, o).

Proof. In view of Theorem 2.7 and Corollary 2.9 it only remains to establish (2.22)
and (2.23). By continuity, (2.22) is satisfied for (to, a) near (too, ao) and ’o, ’ replaced
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by some elements v, u, which depend continuously on a. Furthermore B(a),
Adj A(jw, a) and P(w, a) are continuous with respect to (w, a) and

[det A(jw, a)]2> 0
for (w, a) (Wo, ao) in a neighborhood of (Wo, ao). We have
TB(a)TA-I(o, a)rP(O, a)A-l(0, a)B(a)u

+ 9TTB(a)wA-’(--jto, a)rp(to, a)A-’(jto, a)B(a)v
=[det A(0, a)]-2{B(a)W[Adj A(0, a)]n(0, a)[Adj A(0, a)]B(a)u}
+ [det A(jto, a)]-2{ B(a)W[Adj A(-jto, a)W]n(to, a)[Adj A(jto, a)]B(a)v}.

For (w, a)-* (Wo, ao) we have that det A(jw, a) tends to zero, while the second factor
{...} in the second summand converges to firlp(wo, ao)p < O.

Now consider the definition (2.21) of II(w,a)" For (w, a) (tOo, ao) the first
summand tends to minus infinity with [det A(jw, a)] -2, the others tend to infinity with
at most [det A(jw,

Thus the first summand becomes dominant and hence
(3.8) rH(0, a)u+ ’rH(jto,
for all (to, a) # (tOo, ao) in a neighborhood of (tOo, ao).

COROLLARY 3.7. Let (x, u) " m satisfy the constraints ofproblems (OPC)"and (OSS) "o without control constraints (i.e., h O) and assume that Hypotheses 2.1-2.4
hold and conditions (3.3) and (3.5) are satisfied. If
(3.9) p(P(too, ao)p, < 0
where p is given by Lemma 3.3, then there exists a neighborhood of (tOo, ao) such
that the steady states (x, u) being isolated local minima of (OSS) are locally proper
and
(3.10) (II(to, a)v, < 0 for all (to, a) /’, (to, a) (tOo, ao),
where Vl is given by Lemma 3.4.

Proof Follows from Lemma 3.4 and Theorem 3.6.
Remark 3.8. In Corollary 3.7, Condition (3.5) may be replaced by (3.6).
Remark 3.9. The second order sufficient optimality condition for the steady-state

problem (i.e., Hypothesis 2.2) and the "complementary slackness" condition in
Hypothesis 2.3 are needed in order to guarantee smooth dependence of (x, u, y")
on a. If this can be guaranteed by other arguments (e.g., if the steady-state problem
is independent of a as in the example of 4, below) we can replace Hypothesis 2.2
by the assumption that (x ", u ") are a local minimum of (OSS).

The following result is a partial converse of Corollary 3.7.
THEOREM 3.10. Let the assumptions of Corollary 3.7 be satisfied. If there exists a

sequence (to,,, a,) (tOo, ao), (to,, a,) (tOo, ao) with
(3.11) 9TII(w,,, a,) u > 0
where u ul is given by Lemma 3.4, then
(3.12) fiP(wo, ao)p, >-- 0
where Pl is given by Lemma 3.3.
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Proof. Condition (3.12) and (2.21) imply
O< I/(w, a,)v

B(a.)A-’(-jw., a.)P(to., a.)A-’(flo.,

+Q(-., a.)TA-’(jw., a.)B(a.)+R(a.)}.
The first summand equals

[det A-’(-flo,, a,)]-z{vB(a,) [Adj A(-flo,, a,)]TP(w,, a,) Adj A(fio,,

Again [det A(-flo., a.)]2> 0, and the second factor converges to
TB(ao)[Adj A(-flOo, ao)]’P(wo, ao) Adj A(flOo, ao)B(ao)V

=/P(wo, Oo)Pl
Arguing as in the proof of Theorem 3.6, we obtain (3.12).

Remark 3.11. Suppose that a Hopf bifurcation occurs at a Cro (cf. Hale [12,
Thm. 1.1, p. 246]). Then Theorem 3.6 may be interpreted as follows: At a Cro, a
"natural" periodic solution of (t)=f(x,, u", a) bifurcates from the steady state x ",
a ao. By (3.7), this periodic motion shows better average performance than the steady
state. Condition (3.3) is satisfied and the controllability condition (3.5) guarantees (by
continuity) that for all a near Cro the periodic trajectory can be approximated by
trajectories corresponding to a sinusoidal control. Hence, for a near ao, the points
(x are locally proper. Suppose nontrivial periodic trajectories exist for a > ao.
Then, also for a < Cro, where no free periodic trajectory exists, we can generate periodic
trajectories by appropriate sinusoidal controls. Thus it is not surprising that the
assumption can be weakened by requiring only the assumptions of Theorem 3.6: it is
not necessary that the nonlinear equation actually has a free periodic trajectory. In
view of this discussion, it seems feasible to me to use the expression "Controlled Hopf
Bifurcation" if conditions (3.3) and (3.5) are satisfied.

Remark 3.12. The stability properties of the periodically forced equations near
a ao may be very complicated; cf. Gambaudo 10] for a classification in the case of
two-dimensional ordinary differential equations.

4. An example. In this section we consider an optimal periodic control problem
for a retarded Lienard equation where Corollary 3.7 applies. First results for this
problem were obtained in [6]. The problem is the following:

Minimize --1 x(s) ds+ u(s) ds

subject to
(4.1) Y(t)+f(x(t)):(t)+g(x(t-r))=u(t) a.e. t[0, -],
(4.2) Xo=X, ()o= (),
(4.3) u(t) dt 0;
here f and g’R-R; x(t), u(t)6R, and r, r>0. We require that

f,and g are C2-functions in a neighborhood of zero with f(0)= g(0)=0,(4.4) g (0) 1, g"(0) -1, and f(x) 0 for x > 0.
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Writing (4.1) as a system of first order equations and applying the time transformation
:= tr, we get

(t) lx_(t),r(4.5)
g2(t) -[-f(xl t))x2( t) g(x( 1)) + u( t)].

Consider a 1/r> 0 as bifurcation parameter.
The corresponding steady-state problem is

(OSS) Minimize -xl+1/2u 2 subject to
0-" X2,

(4.6) 0 -f(x,)x- g(x) + u,
O--u.

The assumptions in (4.4) guarantee that (x, u) (0, 0) is the unique optimal solution
of (OSS). Observe that (OSS) is independent of c; hence Remark 3.9 applies and we
can omit Hypothesis 2.2.

Furthermore Hypothesis 2.3 is satisfied and the corresponding Lagrange multipliers
are

(4.7)
y, -g’(0)-f(0)=0,
Y2 -g’(0)- -1,
Y3 g’(0)= 1.

The linearized system equation is

(4.8) (t) a x(t)+oz -1 )x(t-1)+()u(t)
or
(4.9) 5(t) + ce2x(t 1 u(t).
Thus the characteristic equation is
(4.10) det A(Z, 0l) Z2" ae =0.

LEMMA 4.1. (i) There exists an eigenvalue z of (4.8) on the imaginary axis if and
only ifa a, 1/(2nTr), n 1.

(ii) Ifa a,for some n [, then the eigenvalues z on the imaginary axes are z +j.
(iii) For a--> 0 all eigenvalues in the right half-plane tend to the origin.
(iv) For a close to a,, there exists a C-funetion a --> z(a) such that z(a) is a simple

eigenvalue of (4.8) and z(a,) =j, z’(a,) > 0 and Re z(a) < 0 for a < a,.
Proof The proof follows by an elementary analysis of (4.10).
The lemma shows that for a a,, n 1, a Hopf bifurcation occurs with frequency

(.O0 1.
A nontrivial periodic solution of

(0 ;) (0(t) c,, x(t)+oz, -1
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with period r 27r is given by

p(t)=2 -sin
The Fourier coefficients of p are

Pl P 1)= j /5,=p -1)= _j,
p^(k)=0 fork+l.

The function H: C(-1, 0; 2)xN xN3x (0, oo) - is given by

H(49, u,y, a):=-4l(0)+g +ay -f(ql(0))q2(0)-g(ql(-1))+tt

We compute

thus (3.9) holds.

fiP(wo, ao)p, (1 -j) f’(O) 0 j
=-1 <0;

It only remains to show the controllability condition (3.6) (cf. Remark 3.8). We
easily compute

Adj [A(jw, a)]Bo(a)= -exp (-rio, a) jto jto

FIG. 1. Shows II(to, r), 0=<o9-<4, for different values of between r=0 and r=3 (X=to, Y=r,
Z II(to, r). The function values are cut offfor z < -3.
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FIG. 2. Shows H(w, r), 0<=w 4, for different values of between r=0 and r= 10.

FIG. 3. Shows II(w, r), O<=w<-4, forr=lO.

Clearly

Thus all the assumptions of Corollary 3.7 are verified. It is advantageous to write II
as a function of the delay r and the frequency w. Then a simple computation yields
(4.11) II(o, r)= 1-1/[w4-2w cos (mr)+ 1]
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FIG. 4. Shows Fl(to, r), O<=to<=4, forr=30.

for (w, r) (1, rn), where ro 1, rn := 1/an, n N. Zones of local properness, indicated
by II(w, r)<0 occur for (w, r) close to (1, rn).

An analysis of the function II given by (4.11) yields that for all to, r E+
1- 1/[to2- 112 <_-- II(to, r)--<_ 1- 1/[to2+ 1]2,
II(0, r)=0, lim II(to, r)= 1.

Figures 1-4 show II(to, r) for different values of r (here X to, Y r, Z II(to, r)). A
significant feature of this example is that the zones of properness (i.e., the to-intervals
where II(to, r) < 0) which occur at a Hopf bifurcarion at r rn (indicated by a negative
pole of II(to, r) at to= 1) do not vanish for increasing r. Thus for large r, II(to, r)
becomes very oscillatory (see Fig. 4).

Remark 4.2. It is easy to check that the function II:+ x/ CI {-c} has no
local minima besides (to, r)= (1, rn). This may be interpreted in the following way:
Local properness in this problem occurs only via the mechanism described by Corollary
3.7. Naturally, this may not be true for other problems (e.g., local properness may be
due to nonlinearities in the performance criterion).
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