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Abstract. A minimization problem for a functional on a convex subset 
C of a normed linear space is considered. Under certain hypotheses, 
optimality in a certain subset of C implies the validity of first-order 
necessary optimality conditions for the problem in C. The result is 
applied to a problem in optimal periodic control of neutral functional 
differential equations. 
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1. Introduction 

This note is motivated by optimal periodic control problems. Here, a 
fundamental  problem is to discern optimal steady-state solutions which are 
merely optimal among steady states from those which are also optimal 
among periodic solutions (see e.g. Ref. 1 and Section 3 below). For systems 
governed by ordinary differential equations, it is well known that first-order 
necessary optimality conditions for optimality in the (restricted) class of  
steady states coincide with the corresponding conditions for optimality in 
the larger class of  periodic solutions. This excited interest in higher-order 
optimality conditions (see, e.g., Refs. 1-3). 

In Ref. 4, it was shown that a similar result holds for optimal periodic 
control of  retarded functional differential equations by deriving the concrete 
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form of the optimality conditions. This, however, required a lot more effort 
and induced the question of which particular features of the underlying 
optimization problem(s) are responsible for this phenomenon. 

Section 2 gives a simple characterization of two nested optimization 
problems leading to identical first-order optimality conditions. Section 3, 
illustrates that this abstract result captures in fact the relevant features of 
optimal periodic control problems. Here, we deal with neutral functional 
differential equations (including, in particular, the standard optimal periodic 
control problem for ordinary differential equations). Functional differential 
equations are of interest in this context, since, in control problems for 
chemical reactions, delays occur frequently (e.g., due to recycle loops). 
These problems, besides flight performance optimization, are a major field 
of applications for optimal periodic control. 

2. Nested Optimization Problems 

Consider the following optimization problem: 

(P) minimize g(y), s.t. y c C c y ;  

here, ~ is an open subset of the normed linear space Y, g : O ~ R  has a 
Gateaux derivative g'(Yo, Y) at Yo ~ C in direction y ~ Y, and C is a closed 
and convex subset of Y. A first-order necessary optimality condition for a 
local minimum y0~ ~ has the form 

g,(y0, y _yO) >_ 0 ' (1) 

for all y ~ C. As is well known, there are many problems where this condition 
is not only satisfied by local minima, but by other points yO, too. Most 
frequently, this occurs when g,(yO,.)= 0. In such a case, one has to seek 
recourse to either higher-order necessary optimality conditions or to 
sufficient optimality conditions (see Ref. 5). 

Below, we describe a situation, where points yO which are only optimal 
with respect to a certain subset C of C satisfy condition (1) not only for 
elements y in t~, but for all elements y in C. 

Thus, we consider, in addition to the problem (P) formulated above, 
the following minimization problem, sitting inside (P): 

(P) minimize g(y), s.t. y ~ (~, 

where C is a subset of C. We have the following result. 

Proposition 2.1. Let yO e t~ satisfy the first-order optimality condition 
for (P); i.e., suppose that (1) holds for all y ~ C. Assume that there exists 
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a linear projection ~ : Y ~  Y, where y c  y is a linear subspace containing 
such that 

(i) g,(yO, y) = g,(yO, ~y) ,  for all y E Y; 
(ii) f P C c  C. 

Then, yO satisfies the first-order optimality condition for a local 
minimum of problem (P), i.e., (1) holds for all y ~  C. 

Proof. By assumption, 

g'(y° , .~-y°)>-O,  for all 37~ C. (2) 

Now, let y ~ C. By assumptions (i) and (ii), the inequality (2) implies 
g,(yO, y _ yO) = g,(yO, ~ ( y  _ yO) ) = g,(yO, ~ y  _ yO) >_ O, 

since ~ is linear. [] 

Remark 2.1. Suppose that C is closed and convex. Then, every locally 
optimal solution yO of (P) satisfies (1) for all y c  C. 

Remark 2.2. Suppose that Y is a Hilbe~ space, I7" is a closed linear 
subspace of  Y, the set C is given by C := C ~ Y, and g is Fr6chet differenti- 
able at y ° c  C. Thus, g,(yO) is a continuous linear functional on Y. Hence, 
by the Riesz representation theorem, g,(yO) can be identified with an element 
of Y. Take 3 ~ as the orthogonal projection of Y onto Y. Then, conditions 
(i) and (ii) above are equivalent to 

g,(y O) ~ fz and ~ C c C .  

Remark 2.3. Impose in problems (P) and (P) the additional constraint 
F(y)  = O, 

where F :  Y ~ Z  is continuously Fr6chet differentiable at z ° and Y, Z are 
Banach spaces. Under an appropriate regularity condition (Ref. 5), 
necessary optimality conditions for the modified problems (P) and (F') have 
the following form: There exist A0 e R+ and a continuous linear functional 
z* on Z (i.e., z e Z * ) ,  with (Ao, z*) # (0,0), such that 

Aog,( zO)(y _ yO) + z , (  F,(yO)(y _ yO) ) > O, (3) 

for all y ~ C [resp., all y e (~]. Suppose that, in Proposition 2.1, the condition 
(1) is replaced by (3) for some pair (Ao, z*)e  R × Z* and, additionally, the 
following condition is satisfied: 

(iii) z * ( F ' ( y ° ) y ) = z * ( F ' ( y ° ) ~ y ) ,  f o r a t l y e  Y. 

Then, the assertion of  the proposition remains valid. 
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3. Optimal Periodic Control for Neutral Functional Differential Equations 

Consider a neutral functional differential equation of the form 

( d / d t ) D x ,  = f ( x t ,  u( t ) ) ,  t > 0, (4) 

where r > 0 denotes the length of  the delay, xt (s) := x( t + s) c ~", s e [ -  r, 0], 
u( t )  ~ ~'~, and f :  C ( - r ,  0; R") × R m --> R". The map D :  C ( - r ,  0; R") --> R" is 
supposed to be linear, continuous, and represented by a Riemann-Stieltjes 
integral 

I_ D e  = ¢ ( 0 ) -  [dtz(O)]6(O),  
t "  

where /~(0) is a n x n matrix of  functions /z~(O), which have bounded 
variation var[_r,0]/.e~j and are left continuous on ( - r ,  O) with /~ij(O)=0. 
Furthermore, we assume that 

vart_s,o]/~ij --> O, s --> O. 

If/~ = O, then we obtain functional differential equations o f  retarded type, 

)~( t) = f ( x t ,  u(t)),  

which reduce to ordinary differential equations for r = O. I f  p, is piecewise 
constant, e.g., 

~ ( - r ) = A _ l e R  "×n, 

~(t)=0, t~(-r,0], 
and 

f ( ¢ ,  u) := Ao¢(O)+ A l ¢ ( - r ) ,  

we get a neutral functional differential equation of the form 

Yc( t ) = Aox(  t ) + A l x (  t - r) + A_ jc (  t - r). 

For the fundamental  theory of these equations, we refer to Ref. 6. 
We assume here that, for every initial function Xo = ¢ c C ( - r ,  0; •") 

and every admissible control u in 

°//,d = {u ~ L~(0, ~-, Rm): u( t )  c Ut a.e.}, 

where 12 c R '~ is closed and convex, there exists a unique absolutely con- 
tinuous solution x of (4). 
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A corresponding optimal periodic control problem (OPC) has the 
following form: 

minimize ( l / z )  h(x(t), u(t)) dt, 

subject to (4) and 

Xo=X,,  (5) 

u ~ °gaa ; (6)  

here, h : ~ n x  R ' ~  ~ is subject to the usual smoothness and boundedness 
assumptions. Clearly, (OPC) may be formulated as a minimization problem 
over (6, u) ~ C(-r, 0; E") x Lo~(0, r; R"),  under the constraints u e 0//ad and 
x~ = ~b, where x is the unique solution of (4) with initial condition xo = ~b 
(see Ref. 4 for the retarded case). 

The pertinent optimal steady-state problem (OSS) has the following 
form: 

minimize h(x, u), over x e [~", u c Era, 

s.t. O=f(g ,  u), (7) 

u~ft ,  (8) 

where, for x c g~", the function Y c C(-r, 0; ~") is the constant g(s)-= x. 
Suppose that (x °, u °) c R" x R"  is a locally optimal solution of (OSS). 

We assume that Eq. (4) can be linearized around (go, ao), yielding 

(d/dt)Dxt =f~(go, uO)x,+L(xo, u)u(t), t>0 .  (9) 

Suppose that (9) has, for every z-periodic control, a unique z-periodic 
solution x, that there is a neighborhood Vx ~ of (xo, ~io) in C(0, z ; R " ) x  
L~(0, r;t~ '~) such that, for every u e ~ ,  there exists a unique z-periodic 
solution x of (4) in V, and u~x(u)  has a continuous Frrchet derivative. 
Now, we can fit these problems into the general framework of Section 2. 

Define, for u ~ ~, 

g(u) = ( l / z )  fo h(x(t), u(t)) dt, 

where x is the unique z-periodic solution of (3) in V corresponding to u, 
and let 

Y:=Lo~(O,z;Rm), Y:={u~  Y: u(t)=constanta.e.}, 
C:= %~, ~:= C ~  Y. 
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We identify Y with R m. The assumptions above guarantee that, for 
every u c R m, there exists a unique constant solution x of (9). Hence, by 
the implicit function theorem, there exists a neighbourhood of (x °, u °) in 
~ " x R  m, such that (7) has a unique solution x for every u with (x, u) in 
this neighbourhood. This x will also solve (4). Hence, we can consider 
(OSS) locally around u°~ R" as the problem to minimize g(u) over u ~ C. 

Define the map ~ : Y--> Y by 

fo ~u := ( l / r )  u(t) dt. 

Then, condition (ii) of Proposition 2.1 is satisfied since l~ is convex. 
Furthermore, the periodic solution x ° of (4) corresponding to u ° is constant, 
and the derivative g'(u°)u is given by 

Io g'(u°)u = ( l / r )  [hx(x °, u°)x(t)+hu(x °, u°)u(t)] dr, (10) 

where x is the unique r-periodic solution of (9) corresponding to u. Since 
x ° and u ° are constant, we get 

fo g'(u°)u = hx(x °, u°)(1/r) x(t) dt+ hu(x °, u°)(1/r) u(t) dt. 

Clearly, ( I / r )  Jo x(t) dt is the r-periodic solution of (9) corresponding to 

Io eu=(1/r) u(t) at. 

Hence, 
g'(u°)u = g'(u°)~u, 

and we have verified assumption (i) in Proposition 2.1. This proves the 
following result. 

Proposition 3.1. Assume that the assumptions imposed above on 
(OPC) and (OSS) are satisfied, and let (x °, u °) c ~" × R m be a local optimal 
solution of (OSS). Then, (x °, u °) satisfies the first-order necessary optimality 
conditions for a solution of (OPC). 

The analysis above was based on the assumption that, for every r- 
periodic control u c q/, there exists a unique r-periodic solution x of (9). 
For ordinary differential equations, this rules out the case that the matrix 
fx(x °, u °) is singular. This strong assumption was introduced in order to 
reduce the optimal periodic control problem (OPC) to an optimization 
problem over u, without implicit constraints, so that Proposition 2.1 applies. 
We indicate briefly how, for ordinary differential equations. 

Yc(t) =f(x(1), u(t)), (11) 
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one can omit this undesirable assumption. Consider (OPC) as a minimiza- 
tion problem over pairs (x, u) ~ Y:= C(0, ~,; R") x L~(0, r; R")  under the 
constraints u ~ ~ad and 

x(t) -x(O) - f(x(s), u(s)) ds = O, t ~ [0, ~'], (12) 

x ( O ) - x ( ~ ) = o .  (13) 
The constraints (12)-(13) can be rewritten as 

[( ) ] F(x, u)= x( t ) -x (O)-  f(x(s), u(s)) ds, tc [0, r] , (x(0)-x(~'))  

= [0 ,  0] ,  

when F :  Y~Z:=  C(O, ~-; R") xR". 
Let 

Y:= {(x, u) ~ Y: x(t) = const, u(t) = const, a.e.}, 

C:=C(-r,T,[~n)×°'~lad, C :=- C n Y.. 

Identify R" × R"  with Y in the natural way. Then, (OPC) and (OSS) are 
equivalent to the corresponding problems (P) and (['), respectively. Defining 
the projection ~ : Y ~  Y by 

~(x, u):=((1/'r) I ;  x(s) ds, (1/,) f ;  u(s) ds ) , 

one sees easily that conditions (i) and (ii) of Proposition 2.1 are satisfied. 
Concerning condition (iii) formulated in Remark 2.3, we start with a 

pair (Ao, z) ~ R+ × ff~n satisfying the optimality condition for (OSS), 

[)toh'(x °, u °) + zTf'(x °, U0)](X, U -- U °) --> 0, (14) 

for all x e R", u e O.. Define a continuous linear functional z* on Z by 

z*(4,, ,~) = (zT/~')[4,(~ ") + ,~], 
for (~b, a)  E Z = C(0, r; R") x R". Then, one computes 

z*(F ' (~  °, a°)(x, u)) = z*(F'(~ °, a°)~(x, u)), 
for all (x, u)¢  Y, thus establishing condition (iii). We conclude that also, 
in the case where fx(x °, u °) is a singular matrix, every pair (x °, u °) ~ R" × ~ "  
satisfying the optimality condition (14) for (OSS) satisfies the optimality 
condition for (OPC). Observe that these arguments apparently do not go 
through for the general system (4). 
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The results given above can be considered from a different point of 
view. As is well known (Ref. 8), Pontryagin's maximum principle allows 
one, in certain cases, to discern steady-state solutions which are merely 
optimal among steady states from those which are also optimal among 
periodic solutions. The maximum principle is based on strong variations 
around an optimal control u°( • ) having the form (~ ~ ~,  ~'~ [0, ~'))), 

{/~, for t~[t ,  t+h],  
u~,a,h(t)= uO(t), elsewhere. 

Denoting the corresponding trajectories of (11) by x(ut, a,h), one sees that 
the corresponding limits 

limo E x( u t, a,h ) - x( u °) J/ h 

are not Gateaux derivatives of x with respect to u. Hence, the assumptions 
of Proposition 2.1 are not met. 

4. Conclusions 

We have proved an abstract result on nested optimization problems, 
with an application to optimal periodic control. It follows, in particular, 
that first-order necessary optimality conditions do not allow one to discern 
steady states which are merely optimal among steady states from those 
which are optimal among periodic solutions. This assertion, well known 
for ordinary differential equations, has been established for a cl~tss of neutral 
functional-differential equations. Alternatively, one might have tried to 
verify this result by analyzing the concrete form of the optimality conditions. 
However, this concrete form is unknown; in fact, its determination will 
require some nontrivial mathematical work taking into account the compli- 
cated duality theory of neutral functional differential equations (see Ref. 7 
for the special case of autonomous equations). Hence, the approach taken 
here appears to be justified. Since the result of Section 2 is very general, it 
(or some variant of it) is likely to apply also to other classes of infinite- 
dimensional systems. 

The result of this paper (in some sense, negative) indicates that higher- 
order optimality conditions are likely to play an at least as important role 
for infinite-dimensional optimal periodic control problems as they do for 
finite-dimensional ones. 

Furthermore, the result gives an explanation of why the Pontryagin 
maximum principle allows one to discern, in certain cases, optimal steady- 
state solutions which are merely optimal among steady states from those 
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which are also optimal among periodic solutions. The maximum principle 
is based on strong variations, and the required differentiability assumption 
in Proposition 2.1 is not satisfied. 
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