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1. INTRODUCTION

This paper is concerned with periodic solutions x  of period —10 and 
periodic controls u of the same period for functional differential systems

= t ^ t 0  (1.1)

such that the “average cost”

g(x(s), u(s)) ds (1.2)

is minimal; here x t(s) := x(t + s), i e [ - r , 0 ] ,  r> 0 . The periodicity con
dition can be formalized by the requirement

x,0 = x„. (1.3)

Then minimization may be performed on the interval [ t0 , only, where it 
is understood that x  and u are periodically extended to [ i0 , co). These 
periodic extensions satisfy the system equation (1.1), since x, is a complete 
state for this functional differential system. Hence it is sufficient to consider 
the optimal periodic control problem (1.1), (1.2) on [ i0 , ] with “mixed” 
boundary condition (1.3).

Optimal periodic control problems for systems governed by ordinary dif
ferential equations have been studied since the 1960s where the original 
motivation came from chemical engineering (in particular, control of con
tinuous stirred tank reactors). Most of the applications lie in this area and
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in aircraft performance optimization (cf. [1, 21, 34, 40, 47]; for other 
applications see, e.g., [16, 28, 32, 48, 50]).

From the vast literature on optimal periodic control theory (cf. also [22, 
24, 33]) we only cite the following small collection: A complete theory of 
first order necessary optimality conditions has been given in [20], The 
most general treatment of second order necessary optimality conditions 
appears in [4] and sufficient optimality conditions are proven in [30, 54]. 
In [39], methods from nonlinear analysis are used to show the existence of 
periodic trajectories x  and of optimal periodic solutions; see also [36, 45].

Except for [36] this work is concerned with systems governed by 
ordinary differential equations. Furthermore, there exists a well developed 
theory for discrete time systems (see, e.g., [8, 42, 49]). However, [46] is 
(as far as we know) the only paper, where optimality conditions for delay 
systems are treated. Its contribution will be discussed below.

It is the purpose of the present paper, to develop first and second order 
optimality conditions for optimal periodic control of functional differential 
systems. Our hope that this may contribute to applications of this theory is 
enhanced by the fact that functional differential equations frequently occur 
in mathematical models of chemical engineering [17, 44], which—as men
tioned above—also is a major field of applications of periodic control. 
Other areas, as biological modelling [14, 50], appear promising, too.

Compared to the theory for ordinary differential equations, the proof of 
optimality conditions for periodic control of functional differential 
equations is complicated by two facts:

(a) The equality constraint corresponding to the periodicity 
requirement is infinite dimensional. This prohibits the use of Neustadt’s 
theory of extremals for first order optimality conditions [38] and its 
generalization to higher order conditions in [5]. Observe that the proofs in 
[20] and [4] of optimality conditions for periodic control are based on 
[38, 5]. This point leads us to a use of mathematical programming theory 
in general Banach spaces where Frechet-differentiability is a necessary 
prerequisite. Hence we are restricted to weak variations of the control (in 
L r x ), instead of strong variations (in L 2) (alternatively, one might try to 
use methods from convex analysis: see [3 ]) .1

(b) Duality theory of functional differential equations is rather 
involved, since the “adjoint equation” is not the functional analytic adjoint. 
In [13], this problem is dealt with using “structural operators” and their 
adjoints. Some results which are relevant here are cited in Section 2.

Note added in proof: Using Ekeland’s Variational Principle, a global maximum principle 
(based on strong variations) for optimal periodic control of functional differential systems is 
proven in F. Colonius, Optimal Periodic Control, Habilitationsschrift, Universität Bremen, 
1986.
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Section 3 contains first order necessary optimality conditions. The result 
shows that for the considered class of systems the optimal periodic control 
problem is much more well-behaved than the fixed final state problem: 
Having struggled with the latter problem for some time, I was surprised to 
see that for optimal periodic control an approximate controllability 
property (or much less: see Theorem 3.2 and Proposition 3.1) is sufficient 
to get adjoint variables satisfying an adjoint equation, while for fixed final 
state problems approximate controllability without control constraint is 
useless and—even worse—characterizes the untreatable case (cf. [29, 10]).

The restriction to weak variations being a consequence of the con
siderations above is particularly important for a fundamental problem in 
optimal periodic control theory: When does time-dependent periodic con
trol produce better performance than constant steady-state control? An 
optimum in the class of constant steady states is called proper if the 
average cost can be lowered (locally) by allowing periodic control. For 
systems governed by ordinary differential equations it is well known that 
first order optimality conditions based on weak variations are useless in 
ascertaining proper. The reason is that these conditions for periodic control 
coincide with the (static) optimality conditions for constant steady state 
solutions. In Section 4, we show that this generalizes to functional differen
tial systems. This section also contains a discussion of the normality con
ditions which have to be assumed in the periodic and the static 
optimization problems. The papers [23, 7] pioneered a way to decide the 
question of properness on the basis of weak control variations: proper 
solutions do not satisfy second order necessary optimality conditions for 
optimal periodic solutions. Then a Fourier series expansions of the second 
order condition leads to the so-called 77-Criterion, which can more easily 
be applied. In Section 5, we prove second order optimality conditions for 
general optimal periodic solutions of functional differential systems.

In Section 6, a specialization to steady states and a Fourier series expan
sion lead to a generalized 77-Criterion for functional differential systems 
involving the characteristic matrix of the linearized system. This 
77-Criterion coincides with the criterion given in [46] for the common 
range of applications (in [46] finitely many discrete delays are allowed 
which may depend on state and control). However, the arguments leading 
to the result in [46] are only heuristic. The critics of [6] on the arguments 
of [7] apply equally well to [46]: Since it is not clarified which variations 
are permissible, there may be collisions with abnormality. This is one of 
L. C. Young’s “sad facts of life” (see [51, p. 218]; we remain silent about 
the others). Hence Section 6 contains the first rigorous proof of a 
77-Criterion for delay systems.
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Notation
The transpose of an element x eR " is denoted by xT ; similarly for 

matrices. For a map F  between Banach spaces, 2 F  denotes its Frechet 
derivative, and 2 t F denotes its partial Frechet-derivative with respect to 
the ith argument. Frequently, we denote the value x*(x) of a continuous 
linear functional x* in the dual X* of a Banach space X  at x e X  by 
<x*, x ) .

NBV(i0 , ij; R”) is the space of normalized functions <A of bounded 
variation on [ i0 , G], i-e -> <A is left continuous on (i0 ,G ) and iA(ti) =  O; 
furthermore FKV’f/o, tj; R") is the Hilbert space of absolutely continuous 
function x  on [r0 , endowed with the norm ||x|| := |(x(t0 ), ULOI-

2. PRELIMINARIES

We consider the following optimal periodic control problem:

(P l) Minimize l/(r t — ?o) g(x(x), w(s), 5) ds s.t.

x(t) = f(x „  u(t), t) for a.a. r e [ t 0 , t , ] ,  (2.1)
x,0 = x i | , (2.2)

u(i) ei2(z) c  R"1, a.a. te  [ t0 , Gli (2-3)

here x ,( j) := x ( i +  f ) e R ”, s e [ - r ,  0], u(t) e Rm, f :  C( — r, 0; R") x Rm x 
R" -> R", g: R” x Rm x R -> R and i2(t) is assumed to be closed and convex 
with measurable.

It is convenient to reformulate our problem as a minimization problem 
in Banach spaces. Hence we introduce the closed and convex set

Q := { u e L J t 0 , t x \ Rm ): u(t)eQ (t) a.e.}
and the maps

G: C(i0 , / ,;R " )x  L J j 0 ,

G(x, u) := l/(rj -  t0 ) i g(Mi), u(s), 5) ds,
J ’o

F: C(t0 — r, t,; R " )-* C (-r , 0; R”),

Fx := x ( | .
Throughout this paper the following assumptions are made:

(Al) For every e C( — r, 0; R") and ue L x (t0 , G ; Rm ) there exists a 
unique solution x=  u) of the initial value problem (2.1), (2.2) and the 
solution operator

S: C( — r,0; G ; Rm ) -> C(t0 - r ,  r,; R")
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is continuously Frechet-differentiable with derivative 

u°).

(A2) G is continuously Frechet-differentiable.

In view of (Al), we get the following equivalent problem formulation:

(P2) M inimize^ G(S(</>, M), U) s.t.

RS($, u) = ^, ueQ .

The following assumptions are introduced to get necessary optimality 
conditions in normal form for optimal periodic solutions (^°, u°) (resp. 
optimal steady states (x1, w’)e R " x  Rm ).

(A3) — R & S ^ ,  M)| U = a(v — u°), a^O , veQ , </>e
C( — r, 0;R")} = C (- r ,  0; R”).

The following condition (A4) applies to the case, where f  and Q are 
independent of t, i .e .,/is  as in (1.1) and Q(t) = G.

(A4) { ^ / ( x 1, u 1) x |x e  R"} + {^2 / ( x ‘, M1) M | = a(r — M)1), a > 0 , 
t>6i2} =  R”,

here x ', x  e C( — r, 0; R") are defined by 

x '( i)  = x 1, x (s ) := x  for 5, e [  — r, 0].

Remark 2.1. For simplicity, the differentiability hypotheses (Al) and 
(A2) have been formulated on an abstract level in terms of S and G. One 
can easily give conditions in terms of /  and g which ensure that (A l) and 
(A2) are satisfied (cf, e.g„ [12, 25]).

Next, we collect some material on linear time-varying retarded functional 
differential equations in the state space C( — r, 0; R") which will be needed 
in the sequel. In particular, we cite some results on duality and structure 
theory from [13] (cf. also [25, 2, 26, 15]).

Consider the equation

x(t) = L(t) x t , t ^ t 0 , (2.4)

where L(z): C( —r, 0; R")-> R" is bounded and linear with 
measurable and essentially bounded. Then L(t) admits a representation in 
the form

L(t)</>= f° d ^ t ,  6) x (t + 0), (2.5)
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where is an n x n  matrix function, measurable and essentially
bounded with respect to t and of bounded variation with respect to s, 
normalized such that s ^ r ¡ ( t ,s )  is left continuous on ( — r, 0) with 
t](t, 0) = 0. Then t] is measurable on the rectangle [ t0 , x [ — r, 0].

In presence of the initial condition

x to = </>eC(—r,O;W ), (2.6)

eq. (2.4) is equivalent to

x(t) = ^ (O )+ f Í d0 tf(s, 0) x(s + 9) ds. 
-»•

The evolution of the solution segment x t in C( —r, 0; R") is described by 
the family of operators 4>(t, 5), t ^ s ,  associating with ^ e C ( - r ,0 ;  R") the 
solution segment x, of (2.4) with initial condition x s = </>.

Define the “forcing term operator” F(t0 ),

F(t0 ): C( — r, 0; R ")-» C(0, r; R")

by

[F(t0 ) / ] ( a ) : = ^ 0 ) +  de ij(s, 9 ) / ( s  + 9 —10 ) ds,

ote [0, r].

Then F(t0 )</> describes the “effect” of the initial condition (2.6) on the 
velocity and F (t)x ,0 may be viewed as the “effective state” of (2.4) at 
time t0 .

Define G(t0 ): C(0, r; R") -► C( — r, 0; R”) as the operator associating with 
the “forcing term” I(Í 6C(0, r; R”) the solution segment x lo + r of

x (z )= [ f dg r¡(s, 9) x(s + 9) ds + - 10 ), re  [ t0 , fo +  d ,
J l 0 - r

X <0 = °-

By definition

&(t0 + r, t0 ) = G(t0 )F (t0 ).

The formal adjoint equation of (2.4) is the “backwards” equation

d ( p n + r 1
+ r i(a ,s -a ) T y(ix)d<x\=f(s). (2.7)ds Jx J
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Define for i 1(

^e>={r+<”’ o^e< h
e = h. (2.8)

A final condition for (2.7) is given by

= iAeNBV(0, r;R").

The evolution o fy ' in NBV(0, r; R") is described by a family $ T(t, s), s ^ t ,  
of operators on NBV(0, r; R”), and the solution y s of (2.7) with final con
dition (2.8) is given by

y '= d>T(ij, s) <A + 1 ^ T (a, s) To /(or) do, (2.9)

where Yo f(o )  is the following function in NBV(0, r; R"):

!
—j  f M d t ,  a = 0

0, 0 < a r.

Consider the integrated version of the homogeneous equation (2.7), 

j y ) - X C ) =  - j  ' O(a, J - a ) T ->?(a, / i - a ) T ] y(a)da,

(2.10)

and define the corresponding “forcing term” operator

FT(i) =  NBV(0, r; R") -> N B V (-r, 0; R") 

by

c ^ ( r )  lA 1(0) := ^(0) -  r  M h  + a , 6 -  a)T 
Jo

—1/(̂ 1 + a, — a)T ] <A(a) da, 0 e [  — r, 0).

Then

F \ t l ) = F(tM . (2.11)

Thus the adjoint of the forcing term operator of the original equation is the 
forcing term operator of the formal adjoint equation. The relation between
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the formal adjoint equation and the functional analytic adjoint of <P(t, s) is 
elucidated by the following intertwining relation

^ * (t,5 )F T (/) = FT (5 )^ T(i,5). (2.12)

3. F IRST ORDER OPTIMALITY CONDITIONS FOR PERIODIC CONTROL

In this section we begin the analysis of optimal periodic control. We 
prove first order necessary optimality conditions and analyze their concrete 
form using the structural theory of Section 2. We note the following:

LEMMA 3.1. Let x be defined by

x — S\S(</>0,u 0 )</> + &2 S ( f ,u ° ) u .  (3.1)

Then x is the unique solution o f the initial value problem

(3.2)
x(t) = 3> if(xf u°(t), t) x, + 2 2 f(x ° , u°(t), t) u(t), a.e. te  [ l0 , Cl-

Proof. Clear by the chain rule. |

THEOREM 3.1. Let i f f ,  M°) be an optimal solution o f (P2), or equiva
lently, o f  (Pl). Then there exist nontrivial Lagrange multipliers (/0 , / ) e  
R + x C( — r, 0; R")* such that with x° :=S(</>°, u°)

l o ^  G(x°, u°) u°) + l ^  G(x°, u°) 2 2 S ( f ,  u°) u

+ /0 ®2 G(X°, u°) U + </, </> -  S ( f ,  u°) -  R ^ 2 S(</>°, U° ) U)

^ 0  (3.3)

for all 0 eC ( — r, 0; R") and u = a(v — u°), a^O , veQ . If, additionally, the 
normality assumption (A3) is satisfied, we may choose 1̂  = 1.

Proof In the normal case where (A3) holds, the theorem is an easy 
consequence of [52, Theorem 1] and the chain rule. Suppose (A3) is 
violated. Observe that by Lemma 3.1 (cf. Sect. 2)

R&l S ^ , u ° )  = <P(tl , t a ). (3.4)

There exists m 1 such that (r , — t0 )m r, and by periodicity of x°, u®,
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But 0 (i] , z0 )m is compact. Hence the range of

id -  t0 )m = [id  -  , z0 ) ] [ id + 0 (1 ,, to) + • • • + 0 ( G , t . r - 1 ]

has finite codimension. Then this is true also for

Id -  0 ( i j , i0 ) = Id -  R ° u°),

and clearly also for Id — R ° @S(</>°, u°). Using this and the Hahn Banach 
theorem one can show that there exists 0 / / e  C( — r, 0; R")* such that (3.1) 
holds. |

Let x  be given by (3.2). Then (3.3) is equivalent to

/0 ^ i G(x°, u°) x  + l0 ^ 2 G(x°, U^ U + ^ - R X ^ G .  (3.5)

Remark 3.1. The optimality condition proved above holds for local 
optimal solutions. The same is true for all optimality conditions in this 
paper without further notion.

Remark 3.2. f  admits the representation

(-0

^ /(x ? ,M ° ( i) ,i ) ^ =  (3.6)
d —  r

with i; as in (2.5).

Remark 3.3. In the following, the variational equation (3.2) is 
periodically extended to [Zo , oo) by setting for ¿ e N , ze[0 , Zj —z0 ], 
x°(z + k( t { — z0 ) + z0 ) := x°(t + z0 ) and similar extensions for the other 
terms.

The following lemma can be proven easily.

LEMMA 3.2. For any x e C ( t0 , R") and ue  L ^ t ^ ,  t { ', Rm )

G(x°, M°) X = 1/(Z j — Zo ) i ^1 g(x°(Z), t) x(t) dt, 
J 'o

@2 G(x°, U° ) U = 1/(Z] — Zo ) f 0 2 g(x°(t), u°(t), t) u(t) dt.

Now Lemmas 3.1 and 3.2 show that (3.5) is equivalent to

loKh -  'o) i ' ^1 #(x°(0, z)[^(z, Zo ) ](0) dt

+ < / , ^ - ^ ( / 1,z 0 ) ^ > = 0  for all ^ e C ( - r , 0 ; r )  (3.7)

409/120/1-9



128 F. COLONIUS

and

4 /( ? l - i o )  g(*°(<), u°(t), t)

X i <P(t, s) X 0 S>2 f(x ° , u°(s), s) u(s) ds 
A

(0)

+ O>2 g(x°(t), u°(t), t) u(J) > dt

I , Z) X ^ ^ f i x f  t) u(t) d l f ^ O  
fo /

(3.8)

for all u = a(v — u°), a 0, v 6 Q.

LEMMA 3.3. Suppose that t, —t0 ^ r .  Then le lm  F T{tl ), i.e., there exists 
^eNBV (0, r;R ") with 1 ^ ( 1 ^ .

Proof. By (3.7), we have for any ^ e C ( - r ,0 ;  R"),

< U > = < ^ ( Z 1,Z0 )* /,^ >

-  Zo/(G -  z0 ) i '1 g (x \ t ) ,  u \ t \  O [0(L  io) ¿ ](0 ) dt.
J 'o

But
0 (L , z0 )* /=  M h ,  t0 + r)<P(t0 + r, Z0 )]*Z

= F(to r  G(to r  ^ ( t i ,  io +  r)* / e l m F ^ i , )

since F T(t l ) = F f^ *  = F(t0 )*, by (2.11) and periodicity. Furthermore 
observe that we can write

i ^ ig U ° ( i) ,  w°(i), i ) [0 ( i ,  io )^ ](O )d z =  i ‘ (g(t), <P(t, to )# ) dt
J<0 ->10+,

for some bounded linear functional g(t):C( — r, 0; R”)^ R " . Then we get 
for this expression

i <g(i), $(i> io +  r) ^(io  +  L io)
Jm + r

= i '1 <F(i0 )*G(Z0 ) * ^ ( i , r 0 +  r ) * g ( i ) ,^ > d i
J lo + r

= ( F (t0 )* i G(Z0 )* 0(Z, Zo +  r)* g(t) dt, </>\.
\  J <o /

This proves Lemma 3.3. |
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The lemma above will enable us to interpret Eq. (3.7) as a periodicity 
condition for a solution of the formal adjoint equation.

We now formulate the main result of this section.

THEOREM 3.2. Suppose that t l — t0 '^-r and let (^°, u°) be an optimal 
solution o f  (P l)  (or, equivalently o f  (P2)) with corresponding trajectory x°. 
Then fo r  some l0 e R + , the form al adjoint o f the linearized system equation

d  i pn + r 1
»/(a, i - a ) T y (a )d a )  

CIS [ J

=  W i  - 10 ) ^1 g(x°(s), u°(s), s), (3.9)

has a solution y, which is (G — to)-periodic fo r  s - ^ t } y  r-. the periodic exten
sions o f  x°, u°, f  g , Q ( f  and y  to R satisfy the maximum condition

y f Y  ^ f ( x f  u°(t), t )u

+ loKh -  to) g ( x \ t ) ,  u \ t ) ,  t ) u ^  (3.10)

fo r  all u = a(v — u°(t)), a ^ O , ve Q (t), and a.a. re R . Furthermore, the non
triviality condition (l0 , FT (tO  / ' )  /  (0, 0) holds, where F f t } ) is the struc
tural operator o f  (3.9). I f  additionally, (A3) is satisfied, one may choose 
l0 = l.

Proof. By Theorem 3.1, there exist nontrivial Lagrange multipliers 
(lo, I). The function y  defined by

/  = ^ ( t „  s)tl> - ^ ( t ,  5) YoloKh -  to)

x  g(x°(t), u°(t), t) dt, s e [ / 0 , t i ]  (3-H)

satisfies the formal adjoint (3.9) (remember Lemma 3.3 for the definition of 
iA). Using the intertwining relation (2.12), we find from (3.7) and (3.11),

0 =  M h  ~  t0 ) i '1 < Y o ^  g(x°(t), u°(t), t), <I>(t, to) dt

+ </, r0 )^ >

=  f" <^(r, to r  F(t)* YoloKh -  to) g ( x f t ) ,  u°(t), t), j>y dt 
J 'a

+ <F(t1)T j j ^ - Q ^ t o W y
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= ( F(t0 )* T  0 T (i, t0 ) Y M A  -  i0 ) g(x°(t), A t ) ,  t) dt, 
\ J to
+ ^F (t1)T ^ , A - < F ( t A A ( t i , t 0 )^,</>)

= <FT (t l ) y ' ' - F T (t0 ) y ‘° ,A -

Thus

Hence the effective state FT (t) y ' of (3.9) is (ij — t0 )-periodic, and j/(i) ¡s 
periodic for t < t j .

We still have to prove the maximum condition (3.10). From (3.8) we find

o J" Y M ( h  -  io) g ^ t ) ,  A t ) ,  t),

F{t) i d>)t, 5) X 0 ^ 2 f (x ° , u°(s), s) u(s) d s \ dt
\  /

+ M G  -  io) i @2 g(x°(t), u°(t), t) u(t) dt 
J 'o

-  f 1 <&(h, t)* F(tx)* 1//, X 0 &2 f (x ° , A t ) ,  t )u ( t) )  dt

= f" [" <0(1, 5)* F (ty  Yo lo/ ( t l -  i0 ) g(x°(t), U°(t), t),
J /0
^o^2f(x°,, u°(s), s) u(s)) dt ds

+ M il  ~  io) [ '  ^2 g(x°(t), A t ) ,  t) u(t) dt

-  i 1 <FT (ij) A ( t r ,s )  1A, Xo® 2/W , A s ) ,  5) M )>  ds 
J 'o

= I '1 0 T (i, 5) Y A A ,  -  lo) g (x A ), A t ) ,  t) dt,

Y 0 ^2 f(x°s , A s ), s ) A ) ^  ds

+ M il  -  io) i ^2 g(x°(t), A t ) ,  t) u(t) dt 
J lo

-  i 1 < 0 T (ij, 5)1//, X 0 ^ 2 f(x ° , u°(s), s)u(s)> ds
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= i 1 <.ys, Xo&’fix®, -s) u(s)) ds

+ Z0/(G -  io) P  ^2 t) u(t) dt,
*%

by definition of y. Hence, by standard arguments, (3.10) follows for 
te  [io, Z j.

If necessary, y  is redefined in [z15 t t + r ]  such that y ' ! = y"'. This does 
not change y(s) for s ^ F ,  because of the periodicity condition for F(s) y s. 
Then the periodic extensions satisfy the maximum condition (3.10) for a.a. 
Ze R. The normality assertion is a direct consequence of Theorem 3.1. |

Assumption (A3) is not only important as a normality condition for first 
order optimality conditions in the theorem above, but it will be crucial for 
the proof of second order optimality conditions in Section 5. The following 
proposition gives sufficient conditions for (A3) (cf. also the discussion in 
Sect. 4).

PROPOSITION 3.1. Each o f the following conditions is sufficient for (A3):

(i) For every m e  M the equation

x(t) = & if(x ° , u°f), t) x,, t^ Q

has only the trivial m (tx — tfyperiodic solution.
(ii) The linearized system

x(t) = @ if(x°, u°(t), t) x, + S>2 f ( x n  t) u(t), te  [z0 , Z j,

=  °>

where u e L m (t0 , t t ; Rm ) satisfies the positivity constraint

u(t) = a(v(z) — u°(t)) a.e., where a 0 and

v(t)e£2(t) a.e.,

is approximately controllable to C( — r, 0; R"), i.e., the set o f all x ,{, x  a tra
jectory o f the system above, contains a dense subspace o f this space.

Proof. Sufficiency of (i) follows from the fact that [ R e f y S t f 0, u°)]m is 
a compact operator arguing similarly as in the proof of Theorem 3.1. Con
cerning condition (ii), observe that

4> -  R o u°)(^, u ) = t U - R °  u0 )] -  R o 2!2 S (^0, U°) U.
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The image of Id — R ° S(^°, u°) has a finite dimensional complement; the
controllability assumption (ii) guarantees that the image set under R ° 2 2 S 
(0°, u°) contains a dense subspace, since ®2 S(^°> u°) U is the solution of

x(t) = ^ 1/(x ° , t) x t + &2 f (x ° , u°(t), t) u(t), 

%,„ = 0.

The sum of a space with finite dimensional complement and a dense sub
space coincides with the whole space. Hence (A3) holds. |

Remark 3.4. Conditions which ensure approximate controllability of 
delay systems to C( — r, 0; R") have been given, e.g., in [41].

Remark 3.5. Theorem 3.2 and Proposition 3.1 show that for functional 
differential systems the optimal periodic control problem is much more 
well-behaved than the fixed final state problem: For the latter problem, a 
very strong regularity condition is needed, even to get optimality con
ditions in Fritz-John form, where /0 is allowed to be zero (cf. [10]). For 
optimal periodic control, as we have seen, no additional regularity con
dition is necessary to get the Fritz-John-type condition, and the normality 
condition (A3) is, e.g., satisfied, if an approximate controllability condition 
is satisfied. Contrarily, for the fixed final state problem, an exact con
trollability condition has to be satisfied [29, 10],

The following proposition shows that the requirement ty — t ^ r  in 
Theorem 3.2 is not very restrictive, since “nothing is lost by considering 
large periods.” More precisely, the proposition says that the infimal value 
of Problem (P l) does not increase for multiples of t r —10 .

PROPOSITION 3.2. Define for T = t , - t u

1 r'i 
J ( r ) := in f -  g(x(t), u(t)) dt, 

T J /o
where the infimum is taken over all pairs (x, u) satisfying (2.1)—(2.3), where 
g, f  and Q are independent o f t. Then

J(T ) ^  J(kr) for all 4 eN .

Proof The proof of this proposition is an easy consequence of the fact 
that r-periodic solutions are also H-periodic.

We have reformulated the original optimal control problem (P l) as the 
optimization problem (P2) in Banach spaces. One of the numerous alter
natives to this reformulation will turn out to be particularly convenient in
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Section 5 for the derivation of 2nd order optimality conditions. Hence we 
will briefly sketch this alternative.

Define F: C(t0 , G ; R") x L x (t0 , ij ; Rm ) x C (- r ,  0; R") -> C(t0 , f  ; R") by

[F(x, u, ^ )](t) := ^ (0 )+  i f ( x „  u(s), s)ds, t e [ t 0 , t j ,
J 'o

where it is understood that x,0 : = ^ and the right-hand side is well defined. 
Then (P l) is equivalent to

(P3) Minimize,, G(x, u) s.t.

x  — F(x, u, </>), 

Rx = </>, ueQ .

It is an easy exercise in the chain rule to see that Lagrange multipliers 
( /o ,/ j ,/2 )e  R + x C(t0 , t t , R")* x C( — r, 0; R")* for an optimal solution 
(x°, «°, <̂ °) of (P3) must satisfy

/, = ^ F (x ° , u°, 0°)* I, + /0 ^ i G(x°, u°) -  R*l, (3.12)

/0 ^ 2 G(X°, M° ) -  </,, &2 F(x°, U°, < )  »> > 0  (3.13)

for all u = a(v — M°), a ^ 0 ,v e Q .

l2 = - ^ F ^ x ^ u 0, ^ 0 )* G. (3.14)

Lagrange multipliers for (P2) and (P3) are nicely related, as it should be. 
This is the content of:

PROPOSITION 3.3. Let (w°, ^°) with trajectory x° be an optimal solution 
o f i m

(i ) Suppose that (l0 ,1) are Lagrange multipliers for (P2), i.e., satisfy 
(3.3). Define G as the unique solution o f

/, = ^ F (x ° ,  u°, «¿°)* /, + 1 ^  G(x°, M0 )* -  R*l. (3.15)

Then (/0 , /1; /) are Lagrange multipliers for (P3), i.e., satisfy (3.12)-(3.14).
(ii) Conversely, suppose that (l0 , l t , l 2 ) are Lagrange multipliers for 

(P3), i.e., satisfy (3.12)-(3.14). Then (/0 , /2 ) are Lagrange multipliers for 
(P2), i.e., satisfy (3.3).

(iii) Suppose that y is a solution o f (3.9). Then y  satisfies Eq. (3.15) 
with l = FT (tj) y '1, where F ( t f  is the structural operator o f the linearized 
system equation. I f  y is ( t ^ t f - p e r  iodic, also (3.14) holds with (/,, /2 ) as 
in (i).
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Proof. Using the chain rule, we compute

= u°, f ) ] - 1 ®3F(X°, U°, (3.16)

u°)u

= [ I d - ^ F ^ 0, u°, ^ ° ) ] - ‘ @2F(X°, U°, u. (3.17)

For (i) observe that (3.12) is satisfied by definition. Insertion of (3.16) and 
(3.17) into (3.3) yields

l0 ^ G (x ° ,  u°)[Id -  ^ F i x 0, u°, 0°)] -* {@3F(x°, U°, </>

+ 3>2 F(X°, U°, ^°) u} + 10 &2 G(X°, W°) U

+ </, </> -  À [Id -  F(x°, u°, ^°)] 1

x {% F(x’\ U°, </>°)</> + &2 F (x \ U°,</>°)U} )

^ 0  for all u = a(v — w°), where 0 0 ,  veQ .

Collecting terms with (resp. u) we get

<3>3F(X°, U°, [ I d - ^ F U 0, w0 , ^ 0 ) * ] - 1

x { l ^ G i x 0, u ° ) -R * l} + l,  <¿> = 0 

and

< [Id -  F(x°, u°, (¿°)*] - 1 {/0 ®, G(x°, u°) — R*l}, 

x &2F(X°, U° ,^ ° ) U)  + IO2 2 G(x°, M°) u 0.

Then, with defined by (3.15), conditions (3.13) and (3.14) are satisfied.
Assertion (ii) follows in the same way. Assertion (iii) is proven by com

puting the adjoint operators appearing in Eq. (3.15). In particular one has 
for se  [ t0 — r, i j ,

[* * /]( .)=  tR *F ( t l F  / '] (* )

( [ iV i) T / ‘K - r ) .  5e [r0 - r ,  i i - r ]

( [^V i)T y iC s - G ) ,  s e t c - r ,  t j .  |

Remark 3.6. There is no essential difficulty in allowing for additional 
isoperimetric constraints of the form

i h^s(t), u(t), t) dt ^ 0 , Z=l,.„, r.
J'o
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Using standard devices in optimal control theory one obtains terms with 
additional Lagrange multipliers 2 ,> 0 , i= l,...,r , in the adjoint equation 
and the maximum condition. Such additional constraints are often imposed 
in optimal periodic control problems.

4. FIRST ORDER OPTIMALITY CONDITIONS FOR STEADY STATES

In the rest of this paper, we restrict our analysis to autonomous 
problems, where the system equation has the form (1.1) and g as well as £2 
does not depend explicitly on time t.

This section is concerned with steady states which are optimal among 
steady states. More precisely, we consider the following problem:

(P4) Minimize(v,„| e  M„x g(x, u) s.t.

0 = /(x ,n ) ,  (4.1)

u e f i c r ,  (4.2)

where x(s) :=x, s e  [ —r, 0], and f ,  g are as in Section 1.

THEOREM 4.1. Let (x 1, w1) be an optimal solution o f (P4). Then there 
exist nontrivial Lagrange multipliers (20 , 2) 6 R +  x R" such that

z 0 ^! g(x ', w1) +  2 = 0, (4.3)

l ^ g t A u f  + f ^ f i f c ^ u 1)] w^O (4.4)

for all u = ot(v — u1), a > 0, v e £2.
I f  additionally, (A4) holds, one may choose

20 = l .

Proof Clear by Lagrange multiplier theorem. |

Along with (P4), consider as dynamic version of this problem the follow
ing optimal periodic control problem (P5), which is a special case of (Pl):

(P5) Minimize 1/r g(x(t), u(t)) dt s.t. (4.5)

X (t)= f(x t , u(t)), re [0 ,T ] , (4.6)

Xo = x t , (4.7)

u(t)e£2. (4.8)

Suppose that the steady state solution (x1, u‘) e R" x £2 of (4.6) is a
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minimizer of (4.5) among all periodic solutions (x, u), i.e., pairs (x, u) 
satisfying (4.6)-(4.8). Then the content of Theorem 3.2 is that there exist 
/o e R +  and a r-periodic solution of the formal adjoint

^ T(a) X s - a j  + fo/r®! g(x‘, u1) (4.9)

satisfying the maximum condition

y(/)T ^ 2 / ( x ',  M1) M + /0/T^2 g(x \  u1) « 0 (4.10)

for all M = a(u — u1), a 0, v e i2.
Now observe that by Theorem 4.1 already optimality in the class of 

steady, states implies the existence of multipliers (Ao , 2) satisfying (4.3) and 
(4.4). Then the pair (Zo , I) = (Ao , AT) satisfies (4.9) and (4.10). Such a 
Lagrange multiplier / will always lie in the range of FT (L). Hence the 
assumption L —10 >  r of Theorem 3.2 can be omitted in this case.

These remarks show that first order optimality conditions do not allow 
to discern optimal periodic solutions, which happen to be steady state, 
from optimal steady states, which are not optimal among periodic 
solutions. This phenomenon already appeared for systems governed by 
ordinary differential equations (cf. [7, 6]). The remedy in our context is 
the same: In the next section, we turn to second order optimality con
ditions.

The rest of this section is concerned with an analysis of the normality 
conditions (A4) and (A3) at a steady state (x1, «'). The linearized system 
equation has the form

x(t) = Lx, + Bo u(t), te [0 , T], (4.11)

where L :=ii>x f ( x l , w1) and Bo w1).
We want to make use of some notions from the theory of autonomous 

linear retarded systems in the state space M 2 = R" x L 2( — r, 0; R") (see, e.g., 
[31]). For Proposition 4.1 we might use as well the state space 
C( — r, 0; R"); however, not for the discussion following that proposition.

It is well known that Eq. (4.11) induces a strongly continuous semigroup 
S(t), t ^ 0 ,  of operators on M 2. For <j>eM2, let <̂ °, (i1 denote its R" and 
¿ 2( —G 0;R ”) components, respectively. Let x(i) be a solution of (4.11) 
corresponding to some initial conditions x(0) = <̂ °, x(0) = < '̂(0),

[ — r, 0), where </>eM2, and to some control M6 L 2(0, T ; Rm ). Then 
z(t) = (x(t), x,) e M 2 is the mild solution of the abstract differential 
equation

z(0) = ^, z(t) = Az(t) + Bu(t\
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where A : ) c  M 2 -> M 2 is the infinitesimal generator of S(t), t ^  0, and
B :R m -* M 2 is the bounded linear operator Bu :=(Bo u, 0); here the 
domain ^ (A )  of A is the image of — r, 0; R”) under the natural
embedding and A<[> = (L̂ >, ^). Let A (A) be the characteristic matrix

A W  = U - L ( e '  ).

We recall that the spectrum of A is a(A) := {Ae C | det A(A) = 0} and 
p(A) :=C\cr(A) is the resolvent set of A. For Aeo(A) let J t2 denote the 
generalized eigenspace of A corresponding to A, that is 
ker(A/— A)k .

DEFINITION 4.1. The generalized eigenspace is called controllable if 
the canonical projection of (4.11) on is completely controllable.

We obtain the following interpretation of (A4) if no control constraint is 
present.

PROPOSITION 4.1. Let i2 =  R/”. Then condition (A4) holds iff A = 0 is in 
the resolvent set p (A ) or the generalized eigenspace is controllable.

Proof. Remember that X i is controllable iff

n = rank[J(A), Bo ] 

= rankfAZ— L(e; ), Bo ],

For A = 0, this means

{L (x )|x6R ', } + Im B0 =  R", i.e., (A4). |

The following remarks are also restricted to the case i2 = Then for 
systems governed by ordinary differential equations, the normality con
ditions which are obtained by a specialization of (A3) and (A4), respec
tively, are equivalent. However, the proof of this result, given in [6, 
Theorem 4.3], breaks down for functional differential systems, as can be 
seen from the following discussion.

One can easily show (cf. [31, p. 531]) that the condition rank 
[d(A), 5 0 ] =n  is equivalent to

Im(A/— A) + Im B — M 2.

Hence (A4) is equivalent to

Im A + Im B = M 2. (4.12)
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Furthermore (cf., e.g., [43, p. 51),

[S(r) — Id w ] z = A i S(o) z do, z e  M 1.
Jo

(4.13)

Hence Im(S(r) — IdM ) d m  A. Let the attainable subspace s i  be defined by

:= {(X(L ), XZ1): there exists w e i  jO , r; Rm ) 

such that x ta = 0, x(t) = L^x^ + Bu(t\ 

t e [0, r ] }.

Then (A3) means (cf. the proof of Proposition (3.1)),

Im [S (r) |r - I d c ] +  j /  = C ( - r ,0 ;  R " )c M 2. (4.14)

Hence (A3) implies by (4.13)

I n d  +  j / => C( —r, 0; R"). (4.15)

But <= HA1 ’( — r, 0; R") c  M 2. Hence J /  n  Im B = 0. Thus there is not way 
to conclude from (4.15) that (4.12) holds. Contrarily, for ordinary differen
tial systems, j /  = Im[B, AB,..., A ” 1 5], Hence (4.15) is equivalent to 
I n d  + Im 5=5?", i.e., (A4).

Conversely observe that by definition of the integral

S(a) z do e closure |J  Im S ĉr). 
0 ire(O.T)

For general delay systems, this is a proper subset of 3>(A). Hence (4.13) 
does not imply Im [S(r) — Id ^ ]  = Im A. Contrarily, for ordinary differen
tial equations, (4.13) implies that Im [S(f) — Id] = I m [ d  — 7] = Im A for 
all but a finite number of values of f  in [0, T]. Then we conclude from 
(4.12) that

R" = Im A + Im B

= Im A + Im[B, AB,..., A n 1B]

= Im [eA i — I] + s i,

i.e., (A3) follows for all but a finite set of values of f  in [0, T],
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5. SECOND ORDER OPTIMALITY CONDITIONS FOR PERIODIC CONTROL

In this section, second order necessary optimality conditions for periodic 
control will be derived. As a basic tool, we cite the following result [35, 
Theorems 3.3 and 5.6]:

Let X  and Y  be Banach spaces, f :  X -> R and g : X  -> Y, and consider the 
problem

Minimize f ( x )  s.t. g(x) = 0.

THEOREM 5.1. Suppose that f  and g are twice continuously Frechet- 
differentiable at x  with ^g (x )  surjective.

(i) I f  x  is optimal, then for any Lagrange multiplier I, i.e., any le Y *  
with 3>f(x) + 1- &g(x) = 0 it follows that

^^g (x )(h , h)+ (J, ^& g(x)(h, h ) j^ O

for any he  X  with ^g (x )  h = 0.
(ii) Conversely, i f  a Lagrange multiplier le Y *  satisfies

& ^f(x)(h , h)+  (J, 3>&g(x)(h, h f)  ^ ¿ ||/z ||2

for some 3 > 0  and all h e X  with ^g (x ) h = 0 then x is a (local) minimum.

We will apply this result to problem (P3) and impose the following 
assumption.

(A5) F and G are twice continuously Frechet-differentiable.

Remark 5.1. Assumption (A5) is satisfied under standard differen
tiability and boundedness conditions for f  and g.

Let I, e C(i0 , t x ; R”)* and /2 e C( — r, 0; R")* and consider the map

(x, u, j>)e-^G(x, u) + </j, x — F(x, u, + ( l 2 , </> — R x j. (5.1)

LEMMA 5.1. Under the assumption (X5 ), the second derivative o f the map 
in (5.1) exists, is continuous, and has the following form'.

^& G(x°, u°)((x, u)(x, u))

— (/[, F(x°, u°, ^°)(x, x) + ^ 2F(x°, m°> u )

+ &3 ^ 3F(x°, U°, f W ,  </>) + 23>2 S>2 F(x°, U°, f ) ( x ,  u)

+ 0 i 0 3F(x°, U°, 0°)(X , 0) + &3&XF(X°, U°, ^°)(^, x)

+ 2 ^ 2 ^ 3F(X° ,U° ,^ 0 )(U, ^ ) )  (5.2)
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Proof. Observe that the first derivative of the map in (5.1) has the 
following form (remember (3.12)—(3.14)):

®G(x°, u°)(x, u) + </[, x  — % Fix'1, u°, ^°) x

-  @2 F(X °, U°, u -  ^ F (x ° , u°, ^°) ¿>

+ <Z2 , — Rx>.

Then (5.2) follows similarly, taking into account continuous Frechet- 
differentiability. |

In the following series of lemmas, the concrete form of the derivatives 
appearing in (5.2) will be analyzed. The proofs follow by direct com
putation using the assumptions and are—expect for Lemma 5.3—omitted.

LEMMA 5.2. The second derivative o f G is given by

GFjG(x'}, M°)(X, u) = ---- — i [x(i)T gXfx°(t) , x(t)
G — l 0 Jr0
+ 2x(t)T g xu(x°(t), u°(t))u(t)

+ guu(x°(t), u (0] dt.

LEMMA 5.3. Identify f e C ( t 0 , t t ; R")* with a normalized function y of 
bounded variation. Then

( f ^ ^ F x ' ' ' ,  u°, x) + ^ ^ F ( x ° ,  u°, f ) ( x ,  ¿) 

+ ^ ^ F i x 0, u°, x) + S>3 ^ 3F(x°, U°,

= -  i '1 x ( W M°(r))] <  dt;
J »o

here x(^) is defined by

x(</>) x(^)(t) := x(t), t e [ t 0 , H l  (5.4)

Remark 5.2. Observe that y(t)T /(x°, u°(t)) is scalar. Hence the second 
derivative with respect to x°, denoted by ^ 1^ 1[ j '( t)T / ( x “, w°(t))] is a 
bilinear form on C( — r, 0; R") x C( — r, 0; R").

By an extension of the Riesz representation theorem, such bilinear forms 
can be represented as repeated Riemann-Stieltjes integrals [19]. This 
yields

rO rO
^ ® i[y (O T / ( ^ w o(O)](^>A) = j i W t / J  dx K ( s , z ) ^ ) ,
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where K(s, T) is a n x «-matrix function; each component of K  has a finite 
F-variation on [ — r, 0] x [ — r, 0] (cf. also [37]).

Proof o f Lemma 5.3. We obtain for the considered expression
f <W )T | i  [ ^ i^ i  f { x f  w0^ ) ) ^ ,  x s )

J tQ Uto
+ &l $ l f { x f  u°(s)){xs , z s )

+ S>1Sil f ( x f  u(s))(zs , x s )

+ ^ t f (x ° , u°(s))(z„ z j ]

where z,0 :=< ,̂ z(t) = 0, te  (t0 , t j .  By partial integration, one computes

- T  J(O T [ 0 1 ® lf(x f  u°(t))(x„ x,)
J fo

+ &t & lf ( x f  u°(t))(x„ z,)

+ f(x ° , U0(t))(Zt, X,)

+ ^ f ( x l  u f t ^ z ^ z ^ d t .

Now the assertion follows by definition of x(^). |

LEMMA 5.4. Under the same identification as above

( f ,  &2 ^ 2 F(x°, u°, u ))

= -  [ u f f  ^ 2 ^ [  X^)T f(x ° , n°(t))] u(t) dt. 
J 'o

LEMMA 5.5. Under the same identification as above

{1{ , ^ 2F(X°, U°, ¿°)(X, U) + ®2 ®3F(X°, U°, f ) ( x ,  </>))

= -  i ' u(t)T  ^ i ^ 2[y(!)T f(x ° , u°(z))] x(^>), dt, 
J 'o

where x(<j>) is defined in (5.4).

Define a function

H: C ( - r ,0 ; R n ) x R m x U n

by
u, >1) := |  g(^(0), u) -  ^ f ^ ,  u).
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Then we get the following fundamental result on second order optimality 
conditions for periodic control.

THEOREM 5.2. Suppose that (x°, u°, ^°) is an optimal ^-periodic solution 
(i.e., a solution o f  (P5)), with £2 =  Rm and z ^ r .  Let the assumptions (A3) 
and (A5) be satisfied and suppose that y  is a z-periodic solution o f  the formal 
adjoint

- 7 - f j ( i ) + i  >/(«, s — a )T X «) d<x\ = 1/T g(x°(s), w°(s))> (5-5)
ds ( Js J
satisfying the maximum condition

®2 H (x°,u°(s), y(s)) = 0, s e R  (5.6)

Then the following second order optimality condition holds '.

f { S ^ H l x f  u°(t), y ( tj) (x t ,x ,)
Jo

+ 2 ^ 3 ! 2 H(X °, u°(t), y f  ))(x,, u(tf)

+ 3>2 &2 H (x (l, u°(t), y(t))(u(t), u(f))} d t^ O  (5.7) 

for all z-periodic solutions (x, u) o f  the variational equation

x{t) = &l f ( x ° ,u ° ( t ) ) x l + Qi2 f ( x ° ,u 0(t))u (t), te R . (5.8)

Proof By Theorem 5.1 the values of the map (5.2) are positive for any 
Lagrange multipliers (/,, /2 ) and any triple (x, u, with

x  = @F(x°, u°, </P)(x, u, </>) and <j> = Rx. (5.9)

By definition, (5.9) means that x is a r-periodic solution of the variational 
equation (5.8). The second derivative of (5.1) has been computed in 
Lemmas 5.1-5.5. We get

-  f [x (/)T g ^ l f f t ) ,  u ° ( f)  x (t)
T Jo

+ 2x(t)T g x u ( x \ t ) ,  u°(t))u(t)

+ u f Ÿ  g uu(x°(t), u°(t)) u(t)] dt

-  i x(^)7 & ,^ l [y ( t)T f ( x ° ,  u°(t))] x ( / ) ,d t
Jo

-  2 i u(t)T  ^ 2 [y ( t)T  f ( x f  u°(t)] x(0), dt
Jo

-  i u f j 1 ^ Q i ^ y f Ÿ  f { x f  u°(0 )] u(t) dt 0.
J o
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Taking into account the definition of H  and the fact that a T-periodic 
solution y  of the formal adjoint equation satisfying the maximum condition 
(5.6) defines Lagrange multipliers (Zx, /2 ) the assertion follows. |

Remark 5.3. One can easily prove that for an optimal steady state 
(x 1, u 1), the following necessary optimality condition holds:

Let (A4) be satisfied. Then for any Lagrange multiplier z e  R", satisfying 
(4.3) and (4.4) (with Ao = B o n e  has

^ ^ / / ( x 1, M1, Â)(x, x) + 2®, ^ / / ( x 1, W1, ¿)(x, «) 

+ ®2 ^ 2 / / (x ’, )̂(w» M) 0

for any pair (x, u) e R” x Rm with

0 = ^ / ( x 1, M1) x + ^ / ( x 1, u 1, A) u.

Hence condition (5.7) need not be satisfied for all T-periodic solutions of 
the variational equation (5.8), but only for steady state solutions of (5.8). 
This, clearly, is much weaker. In particular, the test function u employed in 
the proof of the //-criterion (Theorem 6.1) is not allowed for optimal 
steady states.

6. THE //-C RITERION

In this section, we generalize the so-called //-Criterion which was proved 
for systems governed by ordinary differential equations in [6] to functional 
differential systems. The //-Criterion proved below coincides with the 
criterion formulated in [45], for the class of systems to which both criteria 
apply.

Throughout this section, we consider the problem without control con
straint, i.e., Q = R"1. Based on a Fourier series expansion of the optimality 
conditions in Theorem 5.2, the //-Criterion gives a handy means to discern 
optimal periodic and optimal steady state solutions. We impose the 
following assumption for an optimal steady state (x1, w1):

(A6) The characteristic function of x(r) = ^ / ( x 1, u') x, which 
is given by

J(2) : = X I - ^ l f ( x l , u l )(ei  I)

is invertible for all 2 = jka>, k e l ,  where a> := lit/t.

409/120/1-10
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Condition (A6) implies [25, p. 209], that for any r-periodic control w, 
the variational equation

x(t) = f ( x \  u' ) x, + 2 2 f ( x ' ,  u ')u (t)  (6.1 )

has a unique r-periodic solution x. Furthermore (A6) implies (A4) and, by 
arguments similar to those employed during the proof of Theorem 5.1, 
even (A3).

We obtain the following Fourier series expansions (cf. for the following, 
e.g, [9]).

Let u be an element in L^, i.e., an equivalence class of r-periodic 
functions with

||M||2 : = - Î  |u(t)|2 dt < co.
r  Jo

Then u has the expansion

u(t) = f  u ( k ) e ikmt, (6.2)
k = -æ

where

u'(k) := 1/r i u(t) e dt
Jo

and x  has the expansion

x(t) = £  x \ k ) e ikm' (6.4)
k = - x

with

x ‘(k) = A l (ika>) &2 f ( x \ td ) u * ( k \  (6.5)

Since the trajectory x  is absolutely continuous, hence of bounded variation 
and continuous, the convergence in (6.4) is uniform (cf. [18, Remark 2, 
p. 151]).

DEFINITION 6.1. Let (x1, «‘(e K ’ x F b e a  steady state solution of

i.e., let 0 = / ( x 1, u 1). The pair (x 1, id ) is called proper, if it is optimal among
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all steady states (i.e., a solution of (P4)), while the triple (x°, u°, ^°) defined 
by

x°(z):= x ' and M°(i) = w1 for ze [0 , r]
(6.6) 

^ ° ( i) := x 1, Z e [ - r ,  0],

is not optimal among periodic solutions (i.e., not a solution of (P5)).

For a steady state ( x ^ u 1), conditions (5.7) and (5.8) in Theorem 5.2 
have the following form (recall the discussion at the end of Sect. 4):

Let 2 be a Lagrange multiplier satisfying (4.3) and (4.4). For all 
r-periodic solutions (x, u) of

x(t) = ^ l f ( x 1, u') x , + ^ 2 f ( x ' ,  u1) u(t), te R ,  (6.7) 

it follows that

f {3>t H (x l , u', 2/r)(x,, x r)
Jo

+ 2®]3>2 H(x', M1, 2/T)(X,, u(t))

+ 3>23>2 H (x ', u', u(t))} d t^O . (6.8)

Define for co e R +  a m x m-matrix 17(a)) by

I7(w) A

x 2, H(x', u \  2/r)(e'<u', e " “ ' ) d ' ‘(zco) ^ 2 / ( x ',  u')

+ 3>1^ 2 H(x', M1, z/r)(e'“ )zl - '( z c o i^ / fx 1, « ')

+ ^ 2 / ( x ',  u' )T d ' ( -  zco)T H(x', u', ^ e iu>' )

+ 3>2 ^ 2 H (x \ U', 2/r); (6.9)

here we have used the identification

2 } &2 H(X \  U', sft)(e"°', u)

= u' u \  2/r)(e'“ ') for u c R m ;

similarly for ^ ^ / / ( x 1, u', A/t).

THEOREM 6.1 (77-Criterion). Let the assumptions (A5) and (A6) be 
satisfied for an optimal steady state (x 1, u 1) (i.e., a solution o f (P4)). Then 
(x1, zz1) is proper (i.e., no solution o f (P5)), i f  there exists z |eR m such that 
for co = 2TI/T,

pT n(oj) p < 0.



146 F. COLONIUS

Proof. If (x 1, u1) is an optimal solution of (P5), condition (6.8) must 
hold. Take

u(t) = 2rj cos cot, i je R ”

as a test function. Then u has Fourier coefficients

uA(l)  = uA( — 1) = i;, u'(k) = 0, k /  1, — 1.

and

xA(l) = A '(/w) ^ 2 /(x*, u 1) i/, 

xA( — 1) = A ‘( — ico) ^ 2 / ( x ',  u1) i;, 

x*(k) = 0, k /  1, — 1.

We compute, using uniform convergence and orthonomality of {e'k ', k e Z }

1 fT
—- ^ ^ / / ( x 1, wl , Z/T)(XZ, XZ) dt
2T JO

= — i H(x*, w1, Z/T)
2T JO

x( E  xA( fc )e ^ ( i + ) , f  ^ ( ^ ) e / W z + J  
\A = -OG k= /

=±r f2 T  J O k .k^-K

x (e i k u ,, e i k u , ) x \ k ' ) e ik m 'd t

= ^ & 2 f ( x \  A - f - i w Y  u \  Zc)(e“-\ e - ^ f

x A l (i(o) &2 f ( x ' ,  u1) tp

Similar expressions are obtained for the other terms in (6.8). Inserting the 
definition (6.9) of 77, the theorem is proven. |

COROLLARY (Legendre condition). Under the same assumptions as in 
Theorem 6.2, let (x 1, M1) be a steady state, which is optimal among periodic 
solutions o f any period r > 0. Then

3s22 2 H (x {, U', Z/T) 0

(i.e., this matrix is positive semidefinite).

Proof. Optimality implies that inequality (6.8) holds. Taking the same 
test functions as in the proof above one finds that the first two summands
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in (6.8) contain j ' ( ± / w )  as a factor, the other factors being independent 
of a>. Now A - 1 (A) is the Laplace transform of an integrable (wx «-valued) 
function [27, Theorem 5.7 and p. 10].

Hence the Lemma of Riemann-Lebesgue implies A 1 (/.)->() for 
|A| -> oo. Letting r -> oo, we obtain

W1, t?) 0

for all r/ e Rm. This proves the corollary. |

Remark 6.1. Application of the //-Criterion requires computation of 
the Lagrange multiplier A for the static finite dimensional optimization 
problem (P4). Hence the dynamic infinite dimensional optimization 
problem (P5) has not to be solved to recognize properness of an optimal 
steady state.

Remark 6.2. In [11], the //-Criterion above is applied to optimal 
periodic control of retarded Lienard equations and in [46] Bailey and 
Sincic analyzed a problem with a linear delay equation.

Remark 6.3. The continuous bilinear form ^ ^ / / ( x 1, u', A(T )) on 
C( — r, 0; R”) x C( — r, 0; R") appearing in the definition (6.9) of / /  can be 
represented similarly as in Remark 5.2.
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