Stability for parameter estimation
in two point boundary value problems

By F. Colonius*)**) at Bremen and K. Kunisch**) at Graz

1. Introduction

In recent years, the use of mathematical models not only in physical or technical
sciences, but also for processes in the life sciences like physiology has become a general
practice. Often the process of interest can be described by a differential equation the
structure of which is determined by general principles, however, the numerical values of
certain parameters are unknown [4], [9]. The parameter estimation problem consists of
determining these unknown parameters from known observations (data) of the process
that is being modelled. In recent years there were many contributions devoted to the
numerical aspects of parameter estimation problems (see [3]-[5], [7], [9], [11]-[13]
and the references given there, et al.) and to the problem of parameter identifiability; i.e.
the injectivity of the map from the parameters to the observations. Furthermore it is
wellknown that the parameter-to-observation map is often not continuously invertible
and, more generally, the solutions of parameter estimation problems in their output-
least-squares formulation do not depend continuously on the observations. However,
beyond this general observation that such inverse problems are often illposed, this
question received comparatively little attention. The main goal of our paper is to study
these stability problems.

Let us describe the situation in a more formal way. By % we denote the
(topological) space of parameters and %,, =% is the set of admissible parameters.

The observations are taken in a (normed) space Z. For example, & could be a
Euclidean space in case of point observations or a function space in case of distributed
observations. By & : % — & we denote the mapping from the parameter to the output
space. Hence & is determined by the specific model equation and the specific
observation operator. Finally let ¥ :={®(c): c € %} be the set of attainable observa-
tions and let z € Z be the actual observation. Note that typically ¥~ is not convex for
identification problems.
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2 Colonius and Kunisch, Stability for parameter estimation

If no modelling or observation error were present, then one could assume z € ¥".
In general, this is not realistic and one must admit the case z¢ ¥ or “z close to ¥”.
Even if z € ¥, the inverse problem may be illposed (in the sense of Hadamard), since the
preimage of z under ¢ may not be unique or may not depend continuously on the
observation z.

One of the most relevant approaches to the parameter identification problem is
the output least squares formulation:

.1 ;
(OLS) Mmlmlzef |@(c)—z|* over ceX,,.

Again the questions of existence, uniqueness, and continuous dependence of a minimizer
¢® on z must be studied. The answers to these questions will depend on the constraint
set %,q4. Since in practical problems, the definition of %,, is—to a certain extent—
arbitrary, we add the study of continuous dependence of c® on the constraints
characterizing %,4 to our list of important questions.

Let us describe two contributions from the literature which are of particular
importance in the present context. In [8], G. Chavent defines the concept of output least
squares identifiability (OLSI): A parameter identification problem (OLS) is called OLSI
if there exists a neighborhood ¥ of ¥~ such that for every ze ¥ there exists a unique
solution of (OLS) and this solution depends continuously on z. Sufficient conditions for
OLSI involve the diameter of %,; and conditions on the first and second Fréchet
derivatives of @; they appear to be suited primarily for the case where # is finite
dimensional and for specific hyperbolic equations [3], [18]. Observe that uniqueness of
a solution of (OLS) requires uniqueness of the projection z,, of z on ¥ as well as
uniqueness of the inverse of @ at z,,. Since injectivity of @ itself is difficult to verify, it is
not unexpected that OLSI is difficult to obtain.

Recently, C. Kravaris and J. H. Seinfeld [11], [12] used for treatment of
identification problems involving partial differential equations the theory of Tikhonov
regularization, first suggested for inverse problems involving integral operators. In this
case (OLS) is changed to the following regularized output least squares problem:

(ROLS) Minimize —;— 1B(c) = 2I* + Blclaremy OVET Xag N Ueomp

where B>0, %, is closed and convex and %y, is compactly embedded in %. The
assumption is made that z is uniquely attainable, i.e. there exists a unique
€® € Uy O\ U comp such that ¢(c®)=z. Then under appropriate additional conditions, all
solutions c#(2) of

T |
minimize - |®(c) — 2] + Blclz.om, OVET Uog O Ueomp

converge to c® as £— z and f— 0 in an appropriate way. The key tool of the proofs
in [11], [12] is the use of (a variant of) Tikhonov’s classical lemma, which states that
continuity and injectivity of ¢ when restricted to a compact subset %, of % imply
continuity of the inverse ®~! on ®(%,).
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In this paper, we drop the requirement that the solution c® of (OLS) is unique and
concentrate on the question whether local solutions of (OLS) depend continuously on
the observation ze 2 and on the constraints that characterize %,;. We call this
property Output-Least-Squares Stability (OLS-stability). In order to guarantee OLS-
stability, we do not need any assumption on uniqueness of the projection z,, of z onto
¥ or on the injectivity of @. We also investigate the advantages of regularization for
obtaining continuous dependence of the optimal solutions on the problem data. This
property will be called ROLS-stability. However, we add a term of the form B|cf3 to the
fit-to-data criteria, instead of Blc|3.,  as in [11], [12].

The proofs of OLS-stability are based on perturbation theory of infinite
dimensional optimization problems as initiated by S. M. Robinson [15]. Specifically, we
use recent results by W. Alt [1] on the stability of local solutions under perturbations of
the problem data. The applicability of this approach will be demonstrated by analysing
a class of two point boundary value problems. First order necessary optimality
conditions allow to study the structure of the minimizers. A result in [13] on a
smoothing effect for the minimizers is refined and a sufficient condition is given for the
alternative that either z€ ¥~ or “c® is on the boundary of %,,”.

Lower bounds on the second Fréchet derivative of the Lagrangian are the
essential tool in establishing OLS-stability. These bounds can be obtained by assuming
finite dimensionality of the parameter space, by exploiting the fact that a norm bound
on the set of admissible parameters guarantees non-triviality of certain Lagrange
multipliers or by adding a regularization term.

Notation. The notation used is rather standard and we only make a few
comments. We use the common notation for Sobolev spaces and we drop the domain if
it is the interval (0, 1), for example H* = H'(0, 1). A subscript is used to denote the norm
of a certain space, as | - |1, for instance, except with H°, where we use | - | for the norm
and (-,-) for the inner product. The positive, respectively negative cone in a Banach
lattice is denoted by a subscript “+”, resp. “—”. The domain and range of an operator
A are denoted by 2(A) and #(A). A superscript “c” denotes the complement of a set,
and a superscript “x” denotes the topological dual of a Banach space. The Fréchet
derivative of a map with respect to a variable x is denoted by a subscript x.

2. Preliminaries from two-point boundary value problems

Let us consider the equation
(2.1) —(auy),+cu=fon (0,1), Rju=0, i=1,2,

where fe H°, aeC', a(x)2a>0, Ru=o;u(0)+o,u (0)+o;u(l)+a,uw(l), o;eR,
and the unknown parameter c is considered as an element of H® Let 4 be the differential
operator in H® associated with (2. 1), i.e.

2.2) DA)={peH:peH? Ri¢p=0, i=1,2}, Ap=—(ag,),+co.

If the dependence of A on c is relevant we write A(c). Throughout we make the
following assumption:

(H1) There exist constants « =0 and k>0 such that (A(c) ¢, ¢) 2 k|d|%:, for all
¢eP(4) and ce Q:={ce H':c(x)2aa.e}.
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For example, in the case of homogeneous Dirichlet conditions in (2. 1) one can
take k=a and a=0. Or, in the case of homogeneous Neumann conditions in (2. 1) if
a>0 is given, then k>0 can be found so that (H1) holds, ([2], pg. 31).

We also assume:

(H2) The boundary conditions R;, i=1,2 in (2.1) are such that A(c) is
selfadjoint.

Recall that the operator A(c) is symmetric if and only if

a(l) (g 0y —a35051) = a(0) (og30024 — 014 %23),

Oggyeees O
rank( 1 14)=2,
0(21 gecey 0(24
see [10], pg. 62. If in addition (H1) holds, then A is selfadjoint and a homeomorphism
from 2(A) endowed with the graph norm to H°.

and

We denote the unique solution of (2. 1) in 2(A4) by u, u(c) or u(c, f) as dictated by
the context. Simple perturbation theory implies that an £>0 can be chosen such that

(A(c) o, ¢)g§|¢|§,; for all ¢ € 2(A) and ce {ce H®:dist(c, Q) <&}.

In the optimization problems of Sections 4—35 the unknown parameter ¢ will be
allowed to vary in the set :

Uy={ceH:c(x)2a a.e, |c|Sy}={ceQ:ld <y},

where y is a positive constant with « <y. Let  be the closed set containing %,, defined
by

U={ceH®:|¢t—c|<E for some ¢ €U}

Lemma 2. 1. Let (H1) hold. Then there are constants k,>0 and k,=|a|c. +&+7y
such that

kilplg =|A(c) @l Sk, |Plge
holds for all ce % and ¢ € D(A).

Proof. The estimate from above is obvious. So let us demonstrate the estimate
from below. First note that

2.3 [A(c) | Zalp.e — (oo + 7y +8) [Py for ce.
Moreover

@. 4) M@wggwm forall ce@.
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2K . .
Let K, =|a,|.»+7+ & and choose K, >——k—1. Multiplying (2. 4) by K, and adding (2. 3)
we have

(14 K;) 14(0) §l 2l + (Kz 3= K1> Bl

which implies the first inequality in Lemma 2. 1.
In the following lemma the dependence of u on ¢ and f is studied. By — we
denote weak convergence.
Lemma 2.2. Let (H1), (H2) hold. If f*—fin H° and ¢" — ¢ in H® with ¢" and ¢
in for n=1,2,..., then
u(c", f"y —u(c, f) in H>.

Proof. By Lemma 2.1 the sequence u(c",f") is uniformly bounded in H?2.
Therefore there exist a subsequence n, and an element w € H? such that u(c™, f™) —w
in H? and u(c™, f"™)— w in H'. Let ve C¥. Then

(@u(c™, f™)e, v) + (c™ulc™ f™), v) = (f, v).
Taking the limit in this equation we obtain
(@wy, v) +(cw, v)=(f, v),
and since w e H?
—((@wy)y, V) +(cw,v)=(f,v) forall veCg.

But CY is dense in H° and c € %; therefore w=u(c, f).

Lemma 2.3. Let (H1), (H2) hold. Then
u(cr) —ulel2 ki 2ley —col 1f],
for all ¢, c,eU.
Proof. Let v=u(c,;)—u(c,). Then v satisfies
Alcr) v=(cz —¢y) ulcy).
By Lemma 2.1 we obtain
vl S ki ey —col lufe)lg S ki ey —cal I f1,

and the claim is verified.

Lemma 2.4. Let (H1), (H2) hold. The mapping ¢ — u(c) from % < H® to H? is
continuously Fréchet differentiable with Fréchet derivative u.(c) h=n(h) given as the
unique solution of

2.5) A(c)n(h)= —hu(c).

Proof. This result is a very special case of [7], Theorem 2.2.4. For the sake of
completeness, we include the proof. Let ¢ € #. First we show Gateaux differentiability in
direction h € H®. Let ¢ € R be such that c+¢ehe % and put

Zf=¢ Y (u(c+¢eh)—u(c)).

I3 Journal fiir Mathematik. Band 370
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Then z° satisfies

(2. 6) —(azi),+cz*=—hu(c+eh), R;z*=0, i=1,2,.
From Lemma 2.3 it follows that wu(c+eh)—u(c) in H? and therefore
hu(c+eh) — hu(c) in H® as e —» 0. By Lemma 2.1 and (2. 6) we have that z* converges

in H2. We denote the limit by #(h) or simply 5. Taking the limit as ¢— 0 in (2. 6)
implies

2.7 —(an,),+cn=—hu(c), Rin=0, i=12.
Next observe that by Lemma 2. 1
(2.8) In(M)lg2 < ki |hu(e) < kg2 |hl | f1,
and therefore u,(c) e £ (H®, H?). For ¢ and ¢ € % we put v=u,(c) h—u,() h. Then
A@)v+(c—2)u.c) h=— h(u(c) — u(c)).

By Lemma 2.1 this implies
' lolg2 S ki * (I — €1 lu(c) hlgz + [l [u(c) — u(@)ln2).

Using Lemma 2.1 once again, together with (2.8) and Lemma 2.3 we obtain
luc(c) h —u,(€) hlgz = |vlg2 < 2ky *lc — ¢l Al | f].

Therefore ¢ — u,(c) from % to & (H®, H?) is continuous. This together with (2. 8) implies
continuous Fréchet differentiability of ¢ — u(c); (see e.g. [19], pg. 270).

Lemma 2.5. Let (H1), (H2) hold. The mapping c — u(c) from % < H° to H? is
twice continuously Fréchet differentiable and the second Fréchet derivative

ucc(c) (h’ k) = é(ha k) =¢
is the unique solution of
2.9 A(c) &= —ku,(c) (h) — hu(c) (k).

The proof is quite similar to the one of the previous lemma and is therefore not
included here. e

Let V={ve C*:Rv=0, i=1,2}. For ue C® let
|(u, v)|

Ulg-2=Sup ——
| lg 2 veg |v|H2 >

and define H~2 as the completion of C® with respect to the |u|g-. norm. We have
(4, v)| < |ulg-2 |v|g- for all ue H~2 and v € V. For further discussion of this Hilbert space
we refer to [16], for example.

Lemma 2. 6. Let (H1), (H2) hold. Then

2. 11) kilpl < |A(c) dla-2= k2|0
Jor all ce U and ¢ € D(A).
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Proof. The second estimate in (2. 11) is a simple consequence of Lemma 2.1 and
the definition of the norm in H~2 We also observe that
(2.12) lw, )| < |ulg-2 vy forall ue H 2 and ve 2(A).

Next, let ¢ € 2(A) and ve 2(A) with A(c)v=¢. Then by Lemma 2.1 we have
ky |v|g2 = |¢|. Moreover

91> = (¢, A(c) ) =(A(c) $, V) S|A(C) Plg-2 [vlg2
<ki'lA(c) dlg-214l.
Therefore k, |¢p| <|A(c) ¢|g-2, which is the first inequality in (2. 11).

3. Tools from optimization theory

In this section we collect some facts from optimization theory in Banach spaces.
We cite results on necessary and sufficient optimality conditions and on stability under
perturbation of the problem data.

Consider real Banach spaces X and Y, a metric space (W, d), a closed convex cone
K c Y with vertex at the origin, and mappings f:Dx W — R and g: X x W — Y, where
Dc X is open. For each we W we consider the following optimization problem:

Py minimize f(x, w) subject to g(x, w) € K.

Keep w®e W fixed. Then for notational simplicity we often omit the argument w°
in f and g and refer to (P)*° as the original unperturbed problem (P). We always assume
that (for fixed w®), g is continuous, and f and g are continuously Fréchet differentiable
(with respect to x) in a neighborhood of x° € g~*(K).

Throughout this section it is assumed that

(3.1 g ' (K)={xeX:g(x)eK}cD.
The following regularity condition for an element x° € g~*(K) plays a central role:
(3.2 0 € int {g(x%) + #(g,(x°)— K}.

Here # stands for the range of a linear operator. A point x° satisfying (3.2) is called
regular. The following first order necessary condition holds.

Theorem 3. 1 ([20], Theorem 3.1). Let x°e g '(K) be a local solution of (P)
satisfying the regularity condition (3.2). Then there exists a Lagrange multiplier A€ Y*
such that

(3.3) f:(x9) —1g.(x%) =0,
(3.9 Az=0, forall zeK,
(3.5) Ag(x°)=0.

For ) € Y* satisfying (3.3)—(3.5) the function
(3.6) F(x)=f(x)—Ag(x)

is called a Lagrangian for (P) at x°.
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This theorem as well as the subsequent ones actually differ from the cited results
in the literature in that here f is only defined on a subset D of X. But due to (3. 1) these
minor generalizations can easily be verified.

The following second order optimality conditions can be found in [14], for
example.

Theorem 3. 2 ([14], Theorem 5. 6). Let x° € g~ '(K) be regular. Suppose that f and
g are twice Fréchet differentiable (with respect to x) at x° and that there are constants
y>0 and >0 with

G.7 Foe(x°) (b, By 2y | 112,

for all he g; ' (K+Rg(x) n {h: Ag(x°) h< B||h||}. Then there exist o.>0 and ¢ >0 such
that

F)2f () +afx—x°)?
for all x € g~*(K) with |x—x°|| <Lo.

Remark 3. 1. The estimate for the second derivative F,,(x°) of the Lagrangian is
needed only for those h which violate the first order sufficient optimality condition

fi(x) h=Ag,(x°) hZ B|hl,
see ([14], Theorem 5. 3).
The regularity condition (3. 2) together with the second order sufficiency condition
(3. 6) imply continuous dependence of local solutions on the problem data as is shown

by the following result which is a special case of ([1], Theorem 6); see ([1], Theorem 3
and Remark 3; and Theorem 3.2 above).

Theorem 3.3. Let the assumptions of Theorem 3.2 be satisfied and assume in
addition:

There exists a neighborhood U=U,x U, of (x°% w°) such that for some constant
L,>0

(.8 1fGe, w)—f (', wO) < Ly (llx— x| + 6 (w, w°))
for all (x,w)e U and all x' € U,.

For U as above the mapping g(x, -) is Lipschitz continuous at w° for each x e U,,
i.e. there exists some constant L,>0 such that

(3.9) |g (x, w) — g (x, wo)| = Ly 6(w, wo)
for all (x,w)e U.

Then there exist r>0, d>0 and a neighborhood V of w, such that:
(i) The local extremal value function
[l,.(W) = {inff(x9 W) : g(X, W) € K’ NX - xO” é r}

is Lipschitz continuous at w°.
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For every we V the following additional statements hold:
(i) For any sequence x, with g(x,, w)e K, |x,—x°|| £r and

lim f(x,, w)=p,(w)

it follows that |x,— x| <r for all sufficiently large n.

(i) If there exists x,, with g(x,,w)eK, |x,—x°| <r and u,(w)=f(x,, w), then
[x, —x°| <r and

1
1% = x°l < dd(w, w¥)*.

Remark 3. 2. Suppose that W is a subset of a Banach space and that f and g are
continuously Fréchet differentiable with respect to x and w in a neighborhood of
(x°, w°). Then by the mean value theorem conditions (3. 8) and (3.9) hold.

4. Application of first order optimality conditions

In this section we begin our study of the parameter identification problem
formulated as an output least squares problem. We assume to have available an
observation z € H° and we minimize the quadratic fit-to-data criterion |u(c)—z|? over
c € %,y. In applications, very often, information of the modelled system will only be
available from a certain subset Q < (0, 1); on several occasions we will therefore discuss
the possibility of generalizing our results to this situation. The observation z can also be
thought of as obtained from interpolating point measurements.

In all that follows we assume that the hypotheses (H1) and (H2) of Section 2 are
satisfied.

The precise formulation of the minimization problem is as follows:
(OLS) minimize %Iu(c)—zl2 over ¢ € Uy,
where %,g={ce H®:c(x)=a, |c|<y} and u(c) is the unique solution of (2. 1).

Define the attainable set by
v ={u(c): ceUy}.

If z e ¥ the minimal value of the fit-to-data criterion is zero. We do not impose such an
attainability assumption and instead consider the general case. Let us point out that if
the observation z is constructed by piecewise linear interpolation of point observations,
then such a z cannot be attainable, since u(c) € H? for all c € %,,.

Remark 4. 1. The pointwise constraint in %,, is imposed in order to guarantee
unique solvability of the system equation (2.1). The norm constraint in %,, will be
needed to prove existence of an optimal solution c°. In fact, without this latter condition
(OLS) may not have a solution, see Remark 4.7 below. Recall also the assumption o <y
which implies 27,4 % 0.
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Proposition 4. 1. For every z € H, there exists a solution c® of (OLS) over %,,.

Proof. Observe that %, is weakly closed in HY, since it is convex and closed with
respect to the norm topology. The latter property follows from the fact that norm
convergence in H° implies pointwise convergence almost everywhere of a subsequence.
Since %,, is bounded it is also weakly sequentially compact.

By Lemma 2.2 the mapping ¢ — u(c) is continuous from the weak to the strong
topology of H°. Therefore ¢ — |u(c)—z|? is weakly lower semi-continuous. Hence we
have to minimize a lower semi-continuous functional on a weakly sequentially compact
set, which yields existence of a solution c® of (OLS) in %,,.

Remark 4. 2. The proof of the previous proposition can easily be adapted to
more general fit-to-data criteria and different sets of admissible parameter values. If only
the fit-to-data criterion is weakly lower semi-continuous in the variable u from the weak
H?-topology to [R and the set of admissible parameter values is weakly sequentially
compact, existence of a solution c° is guaranteed.

To apply the general theory of Section 3 we put
W=H°xCxR, X=H° Y=H°xR, K=H°xR_cY,

where H® and [ _ are the natural negative cones in H® and [R respectively. Then X, Y
and W are Banach spaces and K is a closed convex cone in Y with vertex at the origin.
Let g: X x W — Y be defined by

1 \
g(c, W) = (gl (C’ W), g2 (C, W)) = (a -G 5 (ICIZ - y2)> ’
where ce X and w=(z, o, 7) € W, with a <7y. Here a stands for the constant function
with value a. We henceforth use the more suggestive notation
g, )=a—c,

and

206 7)=5 (e~ 7).

Similarly let f: % x W — [R be defined by

fle D=5 ) ~2P.

Note, that the minimization criterion is defined on a neighborhood # of %,4 but not on
all of H®. With the above notation, the OLS-problem on %,, is equivalent to the
problem

(OLS)” minimize f(c, z) subject to (g, (c, ®), g,(c, 7)) € K.

Lemma 2.4—2.5 show that this problem can be considered as a special case of the
abstract optimization problem (P)* in Section 3. We check the regularity condition (3. 2)
for (OLS).
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Lemma 4. 1. Every c € U,, is regular in the sense of (3.2).

Proof. We have to show that
4.1 Oeint{g(c)+g.(c) HO—H° xR_}.
Recall also that
g.(c) h=(=h, (c, h).
Hence (4. 1) is equivalent to

(4.2) Oeint {(a—c—h—H‘l,%(Iclz—y2)+(c, h)—R-):heH°}.

Now let (¢,7) € H® x R with |(¢,7)|<d, >0 to be chosen sufficiently small. Denoting
the projection of ¢ onto the closed convex cone H® by ¢~ we get that
p=a—c—(x—c—¢p—¢ )—¢, as in the first component of the set in (4. 2). Concerning
the second component of this set we observe that

1

P+ amc—¢—9)= 2 7~ e+ (e, )~ (6 6 +¢7)

<5 @) +21d .

Since a <7y one can always (for é sufficiently small) choose 7€ R, such that
1
r= (cP =) +( a—c—¢—¢7)+F.
This proves regularity of c.

Next we derive first order necessary optimality conditions for (OLS) over %,4.

Proposition 4. 2. Let c® be a local solution of (OLS) in %,,. Then there exist
A eH® and A,eR_ such that for every he H®° the solution n=n(h) of
A(®) n= —hu(c®) satisfies

4.3) (@(c®) — 2z, n)+ (A, B) = A,(c% B) =0
and
4.4) (4, x—c%) =0, 2,(Ic°* =% =0.

Proof. The result follows from Theorem 3.1, Lemmas 4.1 and 2.4, equation
(4. 1), and an application of the chain rule.

Corollary 4. 1. Let c® be a local solution of (OLS) over #,y. Then there exist
Ay € H® and 1, € R_ such that the unique solution p of

4.5) A(®) p=u(c®) -z
satisfies ‘
(4.6) pu(c®) =4, —4,¢°,

and (4.4) holds
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Equations (4. 6) and (4. 4) can, equivalently, be replaced by

4.7 (pu(c®)+4,¢% h) <0, forall heH°
with h(x)=a—c%(x) a.e. and
4.8) Ay (Ic°F —y?)=0.

Proof. Proposition 4.2 and selfadjointness of A imply for all h e H® that
0=(u(c®) —2z 1)+ (A, H) = 2,(c" )
= (A(") py )+ (A — A5%, h)
=(—u(c®) p+ 4 —A,c% h).

Thus the first part of the corollary follows. Obviously, (4.4) and (4. 6) imply (4. 7) and
(4. 8). Conversely, define

Ay =pu(c®) + A,c°.

Then A, € H® since any h € HY is admissible in (4. 7). Appropriate choices of h in (4.7)
yield that 4,(x)=0 if ¢°(x) > o. Thus also (4.4) holds.

Remark 4.3. Let M ={x:4,(x)=0}. Then from (4.4) we obtain
Mc{x e [0, 1]:c%(x)=a}, except for a set of measure zero.

Also note that if A,=0 (e.g. if |c° <y), then (pu(c®), h)<0 for all he H® with
h(x)=a—c%(x) a.e. Therefore, the solution of the adjoint equation and u(c®) have
opposite signs or at least one of them is zero.

Remark 4. 4. Let us also consider three different fit-to-data criteria:

1
4.9 5 |u(c)— z|121°(n)
with Q a measurable set in (0, 1) and z € H°(Q),

@ 10 5 1) ()~ 13
with X €[0,1] and z e R and
@ 11) | % |u(c) — zl s
with z e H!. It can easily be seen that the problem of minimizing one of these criteria

over %,y subject to (2. 1) holding has a solution.

We extend z to an H°-function on (0, 1) in case of (4.9) and to a constant function
with value z in case of (4. 10). In either of the cases (4. 9)—(4. 10) the formula analogous
to (4. 3) becomes

(4.3A) (u(c®) =z, nx) +(Ae, B)— 4,(c%, B) =0,

where y is the characteristic function of Q in case of (4.9), and the delta function with

weight at % in case of (4.10). In either case y € H™!. Let us define p as the unique
solution of

4.5A) A p=(u(c®—2)y.
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Note, that pe H? in case of (4.9) and pe H! if (4. 10) is chosen as the fit-to-data
criterion. Then the assertions of Corollary 4. 1 in particular (4. 4), (4. 6) and«(4. 7), remain
correct.

In a similar way, formula (4. 3) becomes
4.3B) ((c®) =z, n)gs + (Ag, B)go — A5 (c® B)=0

in case of (4.11).

Remark 4. 5. At several occasions it will be convenient to consider a finite
dimensional space of parameters. Let Hy be a finite dimensional subspace of H°.
Assume further that set theoretically Hy = L*. Define

%;g::%adeN,

and as before let W =H®x C xR be the space of perturbation parameters.

Then, with X=Hy, Y:=HyxR and K:=(H° nHy)x[R_, the Output Least
Squares Problem over 4 is a special case of the abstract optimization problem (P)* in
Section 3.

One can easily see that the assertions of Proposition 4.1 and Lemma 4. 1 remain
valid, i.e. an optimal solution c® of (OLS) over %2, exists and each solution is regular.
Hence for he Hy also the assertions (4.3) and (4.4) of Proposition 4.2 hold.
Furthermore, with p defined by (4. 5), it follows that

(4. 6B) (pu(c®), h)=(4; — 4,¢° h)
for all he Hy.

We now investigate smoothness properties of a local solution c°. These results are
generalizations of ([13], Section 4). Let I denote the set of all x, where c(x) does not lie
on the boundary a of %4, i.c.:

I={x€e[0,1]:c%(x)>0a}.

Unless otherwise specified we assume that I has positive Lebesgue measure meas(I).
We shall make use of the following alternative assumption on an open subset ¥ < (0, 1)
with meas(V N 1)>0.

(A) Either f is not a.e. zero on VI and for every subinterval ¥ of V with
meas (¥ nI)>0, the function u(c®)—z is not a.e. zero on VI, or for any such
subinterval ¥ of ¥ with meas(¥ nI)>0, the function f is not a.e. zero on ¥ I and
u(c®)—z is not a.e. zero on VL

Theorem 4. 1.  For a local solution c°® of (OLS) over %,,, let V <(0, 1) be open with
meas (V' nI)>0 and (A) holding. Then i, <0 and c®|I = — ;' pu(c°)|l. Further, for any
open set U (0, 1) with meas((U nI)—1)=0 it follows that c°|U € H*(U).

Thus Theorem 4. 1 establishes the local smoothing property that—under the above
assumptions—the local solution c® will have jumps only when it “enters or leaves the
boundary o” of the admissible set.
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Proof of Theorem 4.1. From (4.7) in Corollary 4.1 we obtain
4. 12) pu(c®) = —A,c® a.e. on I.

Suppose next that A, =0. Then pu(c®)=0 a.e. on I. Suppose u(c®) (X)+0 for some point
of dengity x of VnI. Then u(c (x)=t=(1 for all x in a neighborhood V of x with
meas(V n1)>0. Hence p(x)=0 for xe VI and therefore

u(c®)—z=0 a.e. on V1.

This contradicts the first part of the alternative (A). Since almost all elements of ¥ I
are points of density it follows that u(c®) is zero a.e. on V N I. This implies f=0 a.e. on
V NI and again we arrive at a contradiction to the first part of the alternative.

Hence 4,+0. In the same way also the second part of the alternative implies
A,#+0. Thus ¢®= —A;'pu(c® on I. Since p and u(c®) are elements of H? the final
assertion follows easily.

Remark 4. 6. The condition “for any subinterval ¥ of V with meas(¥V nI1)>0
the function f (resp. u(c®) —z) is not a.e. zero on ¥ N 1I” in alternative (A) is implied by
meas{xe VnI:f(x)=0}=0 (resp. meas{xe VnI:u(c®) (x)—z(x)=0}=0), but not
conversely. As an example one may take V=I=(0,1) and f=1—y., where yc is the
indicator function of a generalized Cantor set C with 0 <measC<1. Hence C is a
closed set with no interior points (see e.g. [6], pg. 189). Thus f is not a.e. zero on any
subinterval of V but f is not a.e. different from zero.

We immediately obtain from the proof of Theorem 4. 1 the following consequence
on “attainability” of the observation z. Observe that |c°| <7 implies 4, =0.

Corollary 4. 2. For a local solution c°® of (OLS) over %,, let V <(0, 1)~be open with
meas (V' N I)>0 and suppose that for any subinterval 7 of V with meas(Vn1)>0 the
function f is not a.e. zero on V N 1. Further assume that A,=0. Then

u(c® =z a.e. on Vnl.

In particular, if f is not a.e. zero on any subinterval of (0,1) and |c°| <y then

u(c® =z a.e on I.

Remark 4. 7. Suppose that f is not a.e. zero on any subinterval of (0, 1). Then
the corollary shows the following: If u(c®)+ z, then the norm constraint must be active.

Remark 4. 8. Results similar to Theorem 4. 1 hold for other fit-to-data criteria as
well. In the case of the point fit-to-data criterion (4.11), for example, we replace
alternative (A) by the following condition:

() For any subinterval ¥ of (0,1) with meas(¥ nI)>0 the function f is not
a.e. zero on ¥ n I. Furthermore u(c®) (X) + z and almost all elements of a neighborhood
of X are in I
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Indeed, from Remark 4.4 we know that (4. 7) and hence (4. 12) hold. If A, were 0,

then pu(c®)=0 a.e. on I. Assume that p(x)+0 for some pomt of density x of I. Then

p(x)*0 for all x e ¥, where ¥ is an interval with meas( ¥ nI)>0. Hence u(c®)=0 a.e.

on ¥ N1 and therefore f=0 a.e. on ¥ NI, which contradicts (A). Thus p=0 a.e. on I

and (A) implies that p=0 in a neighborhood of % By (4.5A) this contradicts the
assumption u(c®) (%)% z. We conclude that 1,40 and

pu(c®) _
A

Therefore, if (4. 11) is used as a fit-to-data criterion and (&) holds, then for any open set
U c(0,1) with meas((U nI)—1I)=0 it follows that c°|U e H!(U).

—c% ae on I.

In addition to the identification problem (OLS) over #%,,, we consider the
following variant (OLS) over #%2;:

T |
Minimize 3 lu(c) —z|® over %L, where

Uly=fee H' :c(x) 2 clm <7},

and u(c) is the unique solution of (2.1).

In a completely analogous way to the procedure for (OLS) over %,y one can
establish the existence of an optimal solution c® of (OLS) over %) and show that this
problem falls into the general framework of Section 3 be defining

W=H°xCxR, X=H', Y=CxR, K=C_xR_cY,
and

g XxW-oY
by
g(c, W) =(g1 (C, W), 82 (C, W)) = ((X - % (ICI%I‘ _72)> .

Again we use the more suggestive notation
gi(c,)=a—c,

and
1
£2067)=75 (lclf: —y?).

First we verify regularity of an optimal solution.

Lemma 4.2. Every c € %}, is regular in the sense of (3.2).

Proof. We need to show that
(4.13) Oeint{g(c)+g,(c)H'-C_xR_}

1
=int {(a—c—h+C+,—2—(|c|§,1—y2)+(c, h)g1 +R+>:heH1}.
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As in the proof of Lemma 4.1 consider (¢, r) € C x R with
(P, Nlcxr <9,
and 6 >0 to be chosen sufficiently small. We will show that
(P, 1) eg)+g()H' —C_xR_.

Note that the function ®=¢ —min¢ satisfies @ € C,. Hence, considering the first
component in (4. 13) we decompose ¢ as

¢=a—c—(x—c—min@)+ P,

and therefore ¢ € a—c— H' + C,. The second component can be treated in a similar
manner as in the proof of Lemma 4. 1.

We obtain the following first order optimality conditions for (OLS) over #},.

Proposition 4. 3. For every local solution c® of (OLS) over %), there exist A¥ € C*
and /., € R_ such that the unique solution p of A(c®) p=u(c®)—z satisfies

(4 14) (__u(CO) D, h) + <}'T’ h>C - '12 (CO’ h)H1 =0
for all he H' and
4. 15) A a—c%c=0, A,(Ic°F —y*)=0.

For (OLS) over %) we can prove stronger local and even global smoothness
results than over %,,. First observe that a priori ¢° is in H' and hence continuous. Thus
I={x:c°(x)>a} is open in [0, 1]. In the following theorem we do not assume that

I1+0.

Theorem 4.2. Let ¢ be a local solution of (OLS) over %}, and suppose that the

1

alternative (A) holds for V=1. Then c2 € BV, and in particular c® € H*>"* for s € (—2—, 1
Moreover, either c®(x)=a or |c°|gi=17. In the latter case I+ and c® e H*(I); if O€l,
then c2(0)=0, if 1 €I, then c2(1)=0.

Proof. Suppose first that A, =0. Then

@. 16) (—u(c® p, h)+ (A%, hye=0, forall heH',
and

4.17) ¥, a—c%c=0.

Recall that since A} € C* it can be represented as
1
(A%, hye={ h(x)dv(x), for heC,
0

where v is of bounded variation and monotonically nonincreasing. If I+ @, then (4. 17)
implies that v is constant on each connected component of I. Therefore pu(c®)=0 on I
by (4. 16). This leads to a contradiction to (A) as in the proof of Theorem 4. 1. Since
|c®lz: <7 implies 1, =0, the alternative I =0 or |c°|z: =7y holds.
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Suppose now that I +0. Then necessarily 4, +0 and for every he H!(I) we have
(pu(c®), Bgoqy + A2(c® h)g1 ) =0.

Thus (taking derivatives in the distributional sense on each of the countably many
subintervals constituting I) we obtain

0—c% =4;'pu(c® on I.

c
This proves c2. € H(I) or ¢® € H3(I).

If 0e I, let 7 € (0, 1) be such that [0,7)=I. Choose h e H! with h=0 on [1, 1] but
otherwise arbitrary. Then

0=(pu(c®), Mgo+ A,(c° M)y
(pu(c®), h)+ A,(c® B)— A5 (c2x, h) — A, c2(0) h(0).

This implies ¢2(0)=0. Similarly, one can show c2(1)=0 if 1 e 1.

It remains to prove that ¢ € BV. If I =0, then ¢°(x)=a and nothing is to prove.
Thus, by the first part of the proof, we can assume A,+0 and we have for all he H*

1
(€, Bygs = ——— (pu(c®), +5 Gt e,

2

This implies
(1] 1 » 0 1 (1]
(4 18) (cx9 hx)= __(pu(c )9 h)+°—<l?’ h>C_(C sh)
Az Az

The right hand side in (4. 18) can be extended to a continuous linear functional on C,
having the representation [hdy, he C, and with y € BV and normalized in the usual
manner. Therefore, for all h e H} we obtain

(€, h)=[hdy=—[yh.dx.

Thus ¢? = —y proving the assertion.

5. Output Least Squares stability

In this section, we study continuous dependence of the (not necessarily unique)
solutions of the estimation problem on the observation z, the (upper) norm bound 7y,
and the (lower) pointwise bound o. This continuity property is called Output Least
Squares (OLS-)stability and it will be analyzed using perturbation theory of optimiz-
ation problems.
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The sets %4, %} and %Y of admissible parameters have been defined in Section 4
(see Remark 4.5 and Lemma 4.2). Consider the output least squares identification
problems:

. 1
(OLS)*  Minimize f(c, w)=—2— lu(c) —z|* over ce U,y or UL or UY,

where w=(z,a,y). The family of problems (OLS)*, we W are considered as pertur-
bations of the reference problem (OLS)*’=(OLS), where w°=(z° «° y°)e W. When
calling upon the notation and results of Section 2 and 3 we replace (a,7) of those
sections by (a2, y°).

The following definition should be compared with Chavent’s notion of output
least squares identifiability (OLSI) [7]. We do not assume uniqueness of the solutions c®
of (OLS)** and consider stability with respect to the constraint set as well as the
observations. Moreover, the stability concept of this paper requires only continuity at
the fixed parameter value w° (instead of continuity for all z in a neighborhood of the
attainable set).

Definition 5.1. The unknown parameter c is called Output Least Squares (OLS-)-
stable in %,, (resp. %L or 4Y) at the local solution c® of (OLS)*’ if there exist a
neighborhood V of w® in W, a constant r>0, and a nondecreasing continuous real
valued function ¢ with ¢(0)=0, such that for all w=(z,a,y) e V there exists a local
solution ¢ of (OLS)* with |c —c° <r and for every such local solution ¢,

et — < e (d(w, w)).

Remark 5. 1. Before we analyse OLS-stability of the parameter ¢, we note that
the boundedness assumption itself implies some weak continuous dependence of the
solutions ¢2 of (OLS)” on w. For let (" o" y")=w"— w’=(z% a® 7% in HxCx R,
with a°® <°. Assume that there exists a unique solution c° (= c%) of (OLS)*° and let c2,
denote solutions of (OLS)*". Since |c2,| <supy”, the set |2 is bounded in HC. Take any
weakly convergent subsequence of c2. with limit & Then &(x)=a° a.e., and |&| <7°.
Moreover

lu(cSn) —z"| S lu(c)— 2", forall ce{ceH®:c(x)=a" |c|<y"}
which, by Lemma 2.2 with (a,y) = («°, y°), implies
[u(@—z° L lw(c)—2°, forall cef{ceH®:c(x)=a’ |c|<y°}.

But ¢° is assumed to be the unique solution of (OLS)*’ and therefore ¢ =c°. The usual
subsequence argument implies that ¢, — c° as n — oo. If the solution of (OLS)*’ is not
unique, then every subsequence of c%. converges weakly to some solution of (OLS)*".

On the other hand, OLS-stability of a parameter requires more: weak continuous
dependence is replaced by strong continuous dependence and if ¢ is OLS-stable at the
local solution c° then the perturbed problems must have local solutions in a
neighborhood of ¢® and these local solutions must depend continuously on the
perturbation.

OLS-stability can only be obtained by imposing further assumptions on the
problem data or by adding a regularization term to the fit-to-data criterion. The
regularization approach will be taken in the next section.
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In this section we obtain OLS-stability by either admitting only a finite
dimensional parameter space (Theorem 5.1 and 5.2) or by exploiting the consequences
of the norm bound defining the set %,y (Theorem 5.3). First we consider the OLS-
problem over the set

o”;vd = a”ad (@) HN'
Define the corresponding set of attainable observations ¥V as
v N={u(c):ceul}.
Note that ¥ ¥Nc H?
Theorem 5. 1. Let (H1), (H2) hold and suppose that z° € ¥V, i.e. z°=u(c® for

some element c® € UY,. Furthermore, assume that u(c®) does not vanish identically on any
interval. Then the parameter c is OLS-stable in UY, at every such solution c° of (OLS)*".

Proof. As noticed in Remark 4.5, the problem (OLS)* over %X can be recast as
a special case of the parameter dependent optimization problem (P)* of Section 3. Let c°
satisfy the requirements of the theorem. Then, by Remark 3. 2, conditions (3. 8) and (3.9)
in Theorem 3. 3 hold, since f and g are continuously Fréchet differentiable. Regularity
of ¢® holds by Remark 4. 5. We turn to estimate the second derivative of the Lagrangian
from below.

That is, we have to consider the expression
F(c% wO) (b, ) = n|* + (u(c®) — 2° &) — A, |hI?

where &=u,(c®) (h,h) is given by A(c®)é=—2hy and n=u,(c°)h is given by
A(c®)n = —hu(c®. By assumption z° € ¥V and by Lemma 2.7 we obtain

F,.(c® w°) (h, h) = [n|* — A, |?
2 [y Z k7 2 hu(c)-».

Since meas {x: u(c®) (x) =0} =0, |hu(c®|g-. defines a norm for he Hy. This norm is
equivalent to the H®-norm, because Hy is finite dimensional. This implies

F.o(c® w°) (b, h) Z 8|hlo
for an appropriately defined constant 6 >0 independent of h € Hy. Therefore all the
hypotheses of Theorem 3.3 are satisfied and the proof is complete.

Remark 5.2. In Theorem 5.1, the function ¢ in the Definition 5.1 of OLS-
stability is given by g(x)= d[/;, d >0, since g is obtained by an application of Theorem
3.3. The same remark holds true for all other results on OLS-stability in this paper.

We can obtain OLS-stability also in certain cases, where z is not in the set ¥ of
reachable observations. For this purpose, we prepare the following lemma.
Lemma5.1. Let ce 4. If u(c)>0 on [0, 1], then for all he Hy and
n=A"1(c) (hu(c), E=—-2A4""(c)(hn)
the following inequality holds:
It + (u(c) — 2% &) 2 Inl (k3 * Ihu(e)lg->—2k5 * fu() —2° [hlL=).
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Proof. We compute, employing Lemma 2. 6
Inl? + () — 2% &) Z Inl* — 2(47*(c) (u(c) — 2°), hn)
2 [n|* —2kg * u(c) — 2%g- [hn]
2 |n|* — 2kg * |u(c) — 2° Al Il
2 [l (k3 ! 1hu()lg-2— 2k; *u(e) — 2°) |hlL»)
for all he Hy. This is the desired inequality.

Theorem 5. 2. Let c® € %Y, be a local solution of (OLS)*° and suppose that u(c®)>0
or u(c®)<0 on [0, 1]. Choose k>0 with |hu(c®)| - <x|hu(c®)z-2, and suppose

u(e?)~21 S5 kyks e~ minu(e®) (o)L

Then c is OLS-stable in %Y, at the solution c° of (OLS)*".

Proof. By our assumptions |hu(c®)| . and |hu(c®)|z-. define norms on H,. Since
all norms on Hy are equivalent, k exists. By Remark 4.5 c® € %Y, is regular. For the
second derivative of the Lagrangian we obtain by Lemma 5. 1

Feo(c® wO) (b, ) =Inl? + (u(c®) — 2°% &) — 4, |hI?
2 [n] (kz " [hu(c®)lg-»—2k; u(c®) — 2° |hl)
2 | (k3 '™t hu(c®)l e — 2k Hu(c®) — 2° IhlLw)
2 ] [hlye (k5 '~ minu(c®) (x)— 2k *u(c®) — 2°)
2 5 hp )
for some §>0 independent of h. Hence, as in the proof of Theorem 5. 1, the assertion

follows from Theorem 3. 3.

Theorem 5. 3. Suppose that c° is a local solution of (OLS)*’ in %Y, with u(c®)=z
and that the assumptions of Theorem 4.1 are satisfied. Then the parameter c is OLS-stable
in U, at °.

Proof. By Theorem 4.1 one has 4, <0. Again we appeal to Theorem 3.3 and it
only remains to establish the lower bound on F,. We compute

Foe(c®, W) = In* + (u(c®) — 2, &) — A, |0
2 —Ay|hf?.

Since 4, <0 the assertion follows.-

6. Output Least Squares stability by regularization

In the last section we imposed further assumptions on the problem data in order
to establish OLS-stability. An alternative is to add a regularization term to the fit-to-
data criterion (see e.g. [11], [12]). Then this regularized problem is analyzed with
respect to continuous dependence on the observation z and the constraints defining the
set of admissible parameters.
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For >0 we define the regularized output least squares minimization problem as:
P | ) 5 ~
(ROLS) minimize 5 [u(c) —z|* + Blc|* over c e U,y;

here %,y ={ce H®: c(x)=a a.e.}. Of course, « is chosen so that (H1) holds. It is simple
to see that for each B> 0 there exists a solution ¢/ of (ROLS) in #,,. At times we shall
write (ROLS), to specify the value of the regularization parameter in (ROLS).

In the previous section the existence of a solution c® of (OLS) was guaranteed by
the norm constraint involved in defining the set %,,. In contrast, in this section we
make the following assumption:

. . 1 ~
(H3) There exists a minimizer ¢ of 0 lu(c)—z|? over c € U,.

Thus (H1), (H2) and (H3) are assumed to hold throughout this section. Without
loss of generality we also assume throughout that a minimum-norm solution c® of
(OLS) in %,, satisfies |c°| <y so that the estimates of Lemma 2.1 are applicable. We
again refer to the optimization problem in (H3) as (OLS) and we define

UN=UynHy, ¥V ={u(c):celyy} and ¥¥={u(c):ceZy}.
The set of perturbation parameters is now taken in the space
W=H’xC.

Of course, (H3) holds, if %,, is replaced by %, and in this case all the results of
this section remain correct, if the norm bound y is added to the set of perturbation
parameters.

We first discuss the asymptotic behaviour of the global solutions c* as f— 0. Let
c® be any solution of (OLS) over #%,y. Then clearly, |u(c®)—z|=dist(z, ¥"). This is
generally not true for solutions ¢ of (ROLS).

Lemma 6. 1. For all §>B,2=0 the following assertions hold:

(@) sup {|c’[} S inf{|c*]},

(b) sup {|u(c’) —z|} <inf {|u(c’) -1},
(c) sup {% lu(c?)—z|*> + ﬂlc"lz} §% dist (z, ¥')? + B inf|c°|?;

here the supremum and the infimum are taken over all global solutions in 4,4 of (ROLS) or
(OLS), for B+0 or =0, respectively.

21 Journal fiir Mathematik. Band 370
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Proof. For all solutions ¢ and ¢/ we have
Iu(C”°) — 2|2+ BolcPP < - Iu(c”) — 22+ BolcfI>.
Addition of (8 — B,) |c"|2 yields by definition of c#

6.1 —;— (P = 22+ BICO + Bo e ~ )

Iu(C”) —z*+ Bl < lu(cﬁ") — 2|+ BlePol.

Estimating the first by the last term in (6. 1) we obtain
B = [cPo?) < Bo (I — |cPP?).

Since B, < B, this implies |c?| < |c#| and therefore (a) is verified. Again by (6. 1) we find
5 () =212+ o PO S 2 u(ch) 2+ ol
and consequently, using (a) we have
5 ()= 2 lu(e?) 2 < o (P 1) S0.
Therefore (b) holds. Finally (c) follows from the second inequality in (6. 1) with g, =0.

In the following lemma (H3) is needed essentially.

Lemma 6.2. (a) Let B, — Bo=0 and let c’» be any sequence of corresponding
solutions in U, of (ROLS),.. Then c’~ has a weak limit point and every weak limit point
of ¢’ is a solution of (ROLS),,.

(b) Let B,— Bg =0 and let ¢’ be any sequence of solutions in %,4 of (ROLS), .
Then there exists a convergent subsequence of cPr, and every convergent subsequence
converges to a minimum-norm solution of (ROLS),,.

Proof. (a) By Lemma 6.1(a) and (H3) the set {|cf"|} is bounded and thus there
exists a weakly convergent subsequence ¢’ —~ ¢ e 4,,. For all c € %,, we have

lu(C”") Zl2+ﬂ..|0”"|2< lu(c) — 21> + Bylcl*.
By weak lower semicontinuity of the norm and Lemma 2.2 we have

1 1
5 (@) = 22+ Boléf? <5 1u(©)— 21+ Bolel?,
for all ce#,. Thus (a) is proved. Next, let f,— B¢ and let ¢’ be any weakly
convergent subsequence of cf» with ¢’ —~ ¢ e #,,. Then by Lemma 6.1(a) and lower
semicontinuity of the norm
lim sup |cP| < || < liminf ||

ng ny
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This implies ¢ — ¢. If there were a solution c#° of (ROLS);, with |cfo| <|¢], then

lim sup | < |cPo] < |¢| < liminf|cP™|,

N

which is impossible and (b) is verified.
Lemma 6.3. (a) lim " (sup {|Ju(c?) — z|*} — dist (z, 7)) =0,
B0+

(b) if ze ¥, then sup{|u(c®)—z|} =0(]/E),
where again the sup is taken over all solutions ¢’ of (ROLS),.

Proof. From Lemma 6. 1(b) and (6. 1) we obtain for each solution ¢ and ¢°

(6.2) 0 < |u(cf)— z|* —dist (z, 7)* £ 2 (> — Ic#|?).
Assume that there exists 6 >0 and a sequence of solutions ¢’ of (ROLS),, f, — 0, with
(6.3) Byt (lu(chr) — 2> — dist (z, 7)*) = 6 > 0.

By Lemma 6.2(b) there exists a subsequence of {c’~} converging to a solution c° of
(OLS). Thus (6. 3) contradicts (6. 2) and (a) is proved. Part (b) is an obvious consequence
of (a).

We now investigate further the relationship between solutions of (OLS) and
(ROLS). Let Co be the set of all minimum-norm solutions of (OLS) and C, the set of all
solutions in %,, of (ROLS);. Then, assuming (H3), Cy and C g are nonempty and weakly
closed. In general, they are not connected. Recall that a set is connected if it cannot be
expressed as the union of two nonempty, relatively open disjoint sets. A connected
component is a maximal connected subset. The following result establishes that every
connected component of C, in the weak topology is approximated by solutions of
(ROLS);. In this sense no minimum-norm solutions of (OLS) get lost when regulariz-
ation is introduced.

Proposition 6. 1. Let M be a connected component of C,, when C, is endowed with
the weak topology of H°. Then for every sequence f,— 0, ﬂ,,>0 there exists a
corresponding subsequence of local solutions ¢ of (ROLS),, in U, converging in HC to
an element of M as n, — oo.

Proof. Observe that C, is weakly compact and hence Co\M is weakly compact
as well. One can show that then exists a weakly closed set V, which contains C in its
strongly interior and which satisfies ¥V n(Co\M)=0. Now consider for f>0 the

T | ~ . .
problems (P), minimize —|u(c)—z|2+ﬁ |c|* over %, N V. There exist solutions ¢/ of

(P);. Take a sequence {/3,,} with B, — 0. As in Lemma 6.2(b) there exists a norm
convergent subsequence of solutions c’™ of (P)g,, converging to a minimum norm
solution of (P),. By choice of ¥V we have c®e M “and moreover ¢ is a solution of
(ROLS)B”k for all B, sufficiently large. This ends the proof.

Next we turn to the central question of stability under parameter perturbations.
As in Section 5 we employ a superscript w to denote the value of the perturbation
parameter w=(z,a)e W=H°x C. Thus (ROLS) becomes (ROLS)*. The unperturbed
problem is (ROLS)*’, with w° = (z°% «°) and a° so that (H1) holds. The next definition
formally specifies the property that will be the focus of our investigations.



24 Colonius and Kunisch, Stability for parameter estimation

Definition 6. 1. The unknown parameter ¢ in (OLS) is called Output Least
Squares Stable by Regularization (ROLS-stable) in %,, (resp. %, or %Y) at w® e W for
BeJc=(0,0), if for every (global) solution cfo of (ROLS),‘,Y0 with B e J there exists a
neighborhood V of w® in W, a constant >0 and a continuous nondecreasing real
valued function ¢ with g(0) =0 such that for all w e V there exists a local solution cf, of
(ROLS)y with |cf — cfo| <r and for every such local solution 4

|ch — chol S @ (lw —w°l).
Remark 6. 1. Similar to (OLS)} we define (ROLS)? by replacing the H%-norm in

the fit-to-data criterion of (ROLS) by the H!-norm. Correspondingly (ROLS),-stability
is defined in an analogous manner to ROLS-stability with we W'=H!x C.

The following theorem is an analogon to Theorem 5. 2. In reference to the earlier
development of this section we have to replace (OLS) by (OLS)"*".

Theorem 6. 1. Assume that there exists a solution of (OLS)*’ in %Y, and that for

a solution c® of minimum norm |u(c®) (x)|=u>0 on [0, 1]. Choose k>0 such that
) ~ 1

|hu(c®)|p- S k|hu(c®)|g-2 for all he Hy. If dist(z° ¥™)=|u(c®) -z <7 kik; 'k tp, then
there exists f>0 such that c is ROLS-stable in %Y, for B € (0, p).

Proof. Note first, that Lemma 6.1 and Lemma 6.2 remain correct with Uy,
replaced by 4. Lemma 6.2 implies that there exists a f; >0 such that either
u(c”)g% or u(cf) < —% on [0,1] for Be(0,B,). Since every solution cf is regular, it

remains to estimate F, from below. Recall that |cf|<|c°| for >0 and that by
assumption |c®| <y for a minimum norm solution of %Y. By Lemma 5.1 we obtain for

1=u(c’) (), E=te(c”) (b h) and h e T:
Fuch, w°) (b, )= Il + (u(c?) = 2°, &) + BIKIE — P
2 il It (k;lx“ %—2k;‘|u(cﬂ)—z°|)+ﬂ|h|2zﬂlh|2,

provided that
(6.4) kytpeTt z 4k u(c?) -2,
for all solutions c? of (ROLS)},Y". By Lemma 6. 1(c)
lu(c?) — 2% < dist (2°, 7)* + 2 B|c°)2.

- 1 2
Hence (6. 4) holds, if dist(z° ¥")? +28|c°? é(Z kik;* ,urc“) . Finally (6. 4) holds for

B<B,, where

2
(:11— k, k{l;uc'l> —dist (z°, ¥)?

The assertion of the theorem thus follows for f=min(B;, B,).
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Recall from Lemma 6.2 that lim |cf|=|c?|, where ¢° is a minimum-norm
g0+
solution of (OLS)** and ¢* is any solution of (ROLS)}".

Theorem 6. 2. Suppose that B> 0 is chosen such that for a minimum norm solution
¢® of (OLS)*°

|c%12 —sup |cP|? < k3,

and define
B=1dist(z", 7) (k] —Ic°/* + sup|c[?)~* 20,

where the supremum is taken over all solutions ¢? of (ROLS)}’O in Uy

If B<PB, then the parameter c is ROLS-stable at w° in WUpg for all Be(B, B). If
2% € ¥, then c is ROLS-stable in 4,4 for all B e (0, p).

Proof. Arguing as in the previous results we only show how to obtain the lower
bound on F,. Let n=u,(c’) h and &=u,(c?) (h, h) with h e H°. Then

F.o(cP, w°) (b, h)=In” + (u(c’) = 2° A" () (—=2hn)) + 2 BIh* — 2, A
2n* = 2(hA7(cP) (u(c") —2°), n) + 2 B|H
221> — hA™ () (u(c?) — 2°)
2 2B1hf* =147 () (u(c”) — 2°)IF |hl?
2 |h* 2B — ki u(c”) - 2°),

by selfadjointness of A~! and Lemma 2.1; here we use the assumption that |c°| <7,
which by Lemma 6. 1(a) implies |c’| <y. Thus we have for all solutions ¢? of (ROLS),‘,T’0

(6.5) F..(c?, w®) (b, B) 2 |h* (2B — k1 ? |u(c?) - 2°P%).
Now we use Lemma 6. 1(c):
Foo(c?, wP) (h, B 2 [h? ki 2 [2K3 B —dist (2% 7)* —2(1c% = |c )]

— AP ke 2 [2(k3 — I +1e?1) — dist (2%, 7°)°].

Note that by assumption k?—|c°?>+|cf|>>0 for Be(0,B). Thus for € ¥ the
theorem is proved. Otherwise we observe that

2B(k2 — | + |cP|?) — dist (2°, 7)? =dist (2°, ¥)* (BB~ ' —1)>0,
and again the desired estimate on F,. is obtained.
Remark 6.2. If |c°|><k2, then one can choose f§ arbitrarily. In this case c is

ROLS-stable at w° in 4,4 for all f e (B, o0) with p=4dist(z°, 7)* (k} —|c°)~".
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Remark 6. 3. Similarly suppose that |c°> —a?<k?. Then |c°%—|cf|> <k? for
all solutions c? of (ROLS),‘,?O, p>0 and E in Theorem 6.2 can be chosen arbitrarily. The
parameter ¢ is ROLS-stable at w® in %, for B € ( B, ) with

B=1dist (2% ¥)? (k2 —|c°P +a?) 1.
Remark 6. 4. Let

C°={c°: there exist solutions c? of (ROLS);" such that ;im cf =)
-0
and let z° € ¥". Then Lemma 6.2(b) and Theorem 6.2 clearly imply that for every
minimum-norm solution ¢® € C° and every ¢ >0 there exist a ROLS-stable solution c?
with |c®—cf|<e. If moreover C° consists of only one element c° then lim cf=c°
-0
(where c? is any solution of (ROLS);°) and ¢? is ROLS-stable for all § sufficiently small.

The condition f<f of Theorem 6.2 in case that z¢ ¥ constitutes a certain
relationship between the convergence rate of cf to c°, the bound k, and dist(z°, ¥"): fast
convergence rates of |cf|, large bounds k, and small distances dist(z°, ¥") are favorable.

If the condition B<p is violated, a natural idea is to try to get a better
observation z° i.e. to lower dist(z% ¥”). Next we show that this is a reasonable strategy
which—at least theoretically—leads to success.

Let us first introduce some additional notation. For w?=(z?, a°), with z,?oe H°,
n=0, L..., and «° such that (H1) holds, we denote the solutions of (OLS)*» and
(ROLS);" by ¢ and cf respectively.

Theorem 6.3. Let z° — 23 in H, with z3e ¥, and assume that minimum-norm
solutions ¢2 of (OLS)*, with wQ=(z2, «°) exist with sup{|c|:n=0,1,2,...} <v. Then
there exists f>0 with the following property:

For all B* € (0, B) there exists an N(B*) and a neighborhood J(B*) of p* such that
for all n= N(B*) the parameter ¢ is ROLS-stable in %,y at w®=(z2, a°) for B e J(B*).

Proof. As in (6.5) we obtain for n=0, 1,...
(6. 6) F..(ch, wa) Z |h* (2 —sup ky *Ju(ch) — zI?),
where the supremum is taken over all solutions c£ of (ROLS),‘,Yg. For f* sufficiently small

we need to bound (6. 6) from below uniformly in § € J(f*) and n= N(f*). By Lemma
6. 3(b) we can choose f so that for every p* e (0, B) there exists ¢ =¢(f*)>0 with

(6.7) 2p* —sup ky *[u(cf’) —z5l* =¢,
where the supremum is taken over all solutions c§* of (ROLS);;,g.
First we will show that for all p* € (0, f) there exists an N(B*) such that

&

(6. 8) 2p* —supk; *lu(c)) —zl* 23

for all n=N(f*).
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If (6. 8) were false, then there would exist a sequence n, with limn, = oo and solutions c/;
such that

(6.9 2B* — ki *lu(ch) — 2 <=,
By Lemma 6. 1(a) and the assumption on the boundedness of |c?) it follows that {|cf7|} is

bounded Therefore there exists a weakly convergent subsequence of ¢, again denoted
by cf, with weak limit c§". It can easily be shown that c§ is a solution of (ROLS);?

Then, taking the limit in (6.9), we obtain 2p* -k 2|u(ct —zo|2§—~, which con-

2
tradicts (6. 7) and (6. 8) is verificd.
Next we show that there exists a neighborhood J(8*) of * € (0, f), such that
(6.10) 2B —supk; *|u(ch)—z0? gf for all n=ny(p*) and /)’ € J(B*).

If (6. 10) were not true, then there would exist sequences B, and n,,, with §, — p* and
N, = no(B*), and solutions c”"‘ of (ROLS) "= such that

6. 11) 2B — ki 2lu(chr)— 20 '2<Z

Concerning the index n,, we have to consider two cases: either limn,, = co or infinitely
many n,, assume the same value. We consider the second case first and assume without
loss of generality n,, =7 for all m. Again, {|cg"‘l};‘,§’=1 is a bounded set and by Lemma
6.2(a) any weakly convergent subsequence converges to a solution c'il" of (ROLS),‘;?:.
Thus taking the limit in (6. 11) we obtain

2B*— ki 2lued) —zl <
Wthh contradicts (6. 8). On the other hand, if limn, = oo, then it is 51mple to see that

™ contains a subsequence converging weakly to a solution & of (ROLS)ﬂ. Again we
take the limit in (6. 11) and arrive at

ﬁ*
—4' ’
which contradicts (6. 7). Thus (6. 10) is verified and the theorem is proved.

B* — ki lu(cf) —z0)* =

7. Numerical experiments

In this section we briefly discuss some features of experiments that were carried
out to solve (OLS) and (ROLS) numerically. The approach that we took is rather
simple. The differential equation was approximated by a Galerkin approximation using

linear spline functions with equidistant knots at N i=0,..., N. For the unknown
function ¢ we used approximation by linear spline functions with equidistant knots at
NP

NLP’ j=0,..., NP; thus we searched for a’ in c**= Y o BY, where B{'" are the
i=0
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linear spline basis functions. As “observations” we took the values of the true solution

evaluated at JF’ j=0,..., N. The minimization problem was solved by the Levenberg-

Marquardt routine, available from the IMSL-library. Two classes of examples (E.1) and
(E.2) were tested:

(E.1) a=1, c(x)=e", Neumann boundary conditions,
f(x)=cosknx(k?n*+ e¥), for various values of k,
(E2) a=1, c(x)=1+cosnnx, Neumann boundary conditions,

f(x)=cosknx(k*n?+cosnnx+1), for various values of k and n.
The solution of (E.1) and (E.2) is given by u(x)=cosknx.
It was generally observed that:

(i) The converged values for the optimal parameters were rather independent of
any reasonable start-up value for the minimization routine.

(i) Taking fewer observations did not lead to reasonable results.

(i) The criterion that terminated the minimization algorithm was generally the
gradient criterion.

(iv) Taking the H°- or the H'-norm in the fit-to-data criterion, did not lead to
significantly different results.

(v) Taking N=NP did not lead to good results unless a regularization-term
was used; best results were obtained with f=10"% or 1075

(vi) We do not have a criterion to calculate the “best” f-value. Sometimes =0
gave best values and any >0 introduced too much damping in the oscillation of the
coefficient c(x)=1+cosnnx (see (E.2)). Using a small regularization term, however, we
got a qualitatively correct result in all but one of our calculations. For =0 excessive
oscillations can occur.

For the numerical calculations we thank Dipl.-Ing. G. Moyschewitz.
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