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If small attainability subspaces of linear time delay systems are closed in a
certain Sobolev space, the existence of Lagrange multipliers for optimal control to
small solutions is guaranteed. This paper characterizes the required closedness
property using an algebraic approach due to B. Jakubczyk. As a main result it
turns out that closedness is—in an algebraic sensc——generic in the variety of system
matrices (4,.4,, B,} with rank 4, not greater than the dimension of the control
space. This is in contrast to known results on closedness of attainability subspaces
playing an analogous role for optimal control to fixed final states instead of small
solutions.

1. INTRODUCTION -

Consider the linear, autonomous time delay system
X(@)=Agx(t) + A4, x(t — h) + Byu(t), t>0; (1.1)

here T>h >0, 4,,4, €ER"" B, ER"™™ the control functions u are
elements of L ( [0, T], R™), and 1 < p < 0. Define the attainability subspace
s/ < WHP([—h, 0], R") by

27 = {x;: x is a solution of (1.1) with initial
state x, = 0 for some control function u € L };

here x,(s):=x(t+s), s€[—h,0], t>0. Then the small attainability
subspace 7 5 of order a > 0 is defined by

3 == {x,, 1 xis asolution of (1.1)on [T, T + a] with control
function u = 0 and initial state x, € &7, }.
Observe that for T' > T > nh

t=H oA =y,
415
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since & 7 — ., . and the attainability subspace does not increase after time
nh (see [1, Corollary 5.1]). This paper gives an algebraic characterization
for closedness of «/'%, where a = kh, k € {0, 1, 2,...} fixed, as a subspace of
W*+1-2([—h,0],R"). This property guarantees [2,3] the existence of
Lagrange multipliers for optimal control of the delay system (1.1) from a
fixed initial state to small solutions, where the end condition has the form

X, a=0 (1.2)

and x(t), t > T, is the solution of (1.1} with zero control u(¢}) =0, t > T, and
initial state x, € #;. This means that the final state x, at time 7 has to
generate a small solution vanishing after time t =7 + a — A, i.e., the system
“automatically” comes to equilibrium, without control action.

For a =20, this includes the fixed final state optimal control problem,
where x, =0. For a = A, it means that the reduced state Fx, =0 (see |5]
and Remark 4.5 below). By a classical result due to Henry [6] all small
solutions vanish after time = (n — 1) A. Hence (1.2) holds for a = nh iff it
holds for any a > nh.

Kurcyusz and Olbrot showed in [7] that &% =.% is closed in
w'e(|—h, 0], R") iff

A Al <% foralli=0,1,.,n— 1, (1.3)

where # :=1m B,. This condition is not generic in the space of system
matrices (4,,4,,B,) ER"" X R™** X R"*™_ In particular, if the pair
(4,, B,) is controllable, (1.3) means that Im4, —cIm B,.

The results of this paper show that the small attainability subspace .« % is
closed under much weaker conditions. Again, closedness is not generic if we
allow arbitrary system matrices (4,,4,,B,) € R"" X R**" x R"*™,
However, it turns out that closedness is—in an algebraic sense—generic in
the variety of all matrices (4,,4,, B,) satisfying rank 4, < m. This means
that closedness of ./ % is generic if the number of “independent delay terms”
is not greater than the dimension of the control space. Then the existence of
Lagrange multipliers for the corresponding optimal control problems with
fixed reduced final state Fx, = 0 is guaranteed. This “law of requisite variety
in control” (cp. [11]) distinguishes an important class of delay systems, since
in applications usually only certain state variables contain a delay.
Furthermore, this result underlines the relevance of the structural operator ¥
and the associated state concept.

Our methods are algebraic and based on the paper by Jakubczyk (8]
Section 2 gives a brief summary of these tools. Section 3 characterizes
closedness of .4 using invariants of induced module homomorphisms over
the ring R,(s) of proper rational functions over R. In Section4 we get
criteria for closedness in terms of the system matrices 4,,A4,,B,. This



ATTAINABILITY SPACES OF DELAY SYSTEMS 417

generalizes the characterization (1.3) by Kurcyusz and Olbrot in |7] and
yields the genericity statement.

The methods differ from those employed in [7] as well as from those used
by Banks et al. in [1] and Colonius and Hinrichsen in [3] for the study of
closedness of attainability subspaces.

Notation. For k€N = {1,2,.}, W*?([t,,t,], R") denotes the Banach
space of continuous functions y: [f,,¢,]—R" having an absolutely
continuous (k — 1)st derivative w*~" with derivative y'* € L ([¢,,1,], R").
The norm is given by

lwrll = 1wl [y o)y [P ol Il @),
where |- | denotes the Euclidean norm in finite-dimensional space.
For square matrices 4,, i € {1, 2,..., k},
k
1 I A'- ::AlAZ v Akg
i=1

and [ [}., 4; is defined as the unit matrix.

2. PRELIMINARIES

Based on the work of Jakubczyk [8] this section gives an algebraic
framework for the study of closedness of small attainability subspaces.
We consider operators

K:L,([0,;],R™) > W ([0, 1,], R")

of the form
K=L+ M. (2.1)

Here M is a finite-dimensional operator (i.e., a bounded operator with finite-
dimensional range) and L is a Volterra-type operator

(Lu)(t) = f; {(t — 5) u(s) ds, e [0,1,], (2.2)

where [ is a n X m-matrix with entries /;; of the form
[;;(t) = Cexp{4?) B, t>0, (2.3)

and A, B, C are matrices of dimensions kX k, kX 1, and 1 Xk, k€N,
respectively.
Observe that the decomposition (2.1) is unique.
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Remark 2.1. The Laplace transform of /; is a strictly proper rational
function over R, and, conversely, by standard results in realization theory
the inverse Laplace transform of each strictly proper rational function has
the form (2.3).

Let L(s) be the Laplace transform of L.

One can associate certain invariants g; to operators of the form (2.2).
Consider the formal power series expansion

L(s)=)> L;s7/,

i=0

where L; € R"*™ (observe that L, = 0). Let

Ly, 0 - 0
_ L, L, :
i= : 0
Li Li—I Lo

We define as a special case of [8, Remark 2|
q.(L) :=0,
q,(L) :=rank &, —rank ¥ _,, i€ N, (2.4)

9o(L) 1= sup g(L).

Remark 2.2. The invariants g, are related to the Smith normal form of
L(s) over R (s) (see [8, Theorem 3 and Remark 1]).

Remark 2.3. The invariant g, measures the rank of that part of the map
L, which makes elements in L, at most i times smoother, and g, is the
general rank.

We note the following lemma.

LEMMA 2.1. Let X,Y be Banach spaces and A,M: X - Y be linear
operators, where A is closed and M is a bounded finite-dimensional operator.
Then Im A is closed iff Im(4 + M) is closed.

For a proof see, e.g., [8, Lemma 1].
The following two theorems are basic for this paper.
THEOREM 2.1. Let K be an operator as in (2.1). Then K has a closed
range in W*([ty, 1,1, R") iff
gL} =g, (L) (2.5)

This is a special case of [8, Corollary 1].
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DerFINiTION 2.1. Let X, and X, be subspaces of a Banach space X,.
Then X, < X, iff there is a finite-dimensional subspace X of X, with
X, <X, + X

THEOREM 2.2. Let K,=L,+M, and K,=L,+ M, be operators as
described in (2.1) (with possibly different dimensions m). Then the following
conditions are equivalent:

(i) ImK,c,ImKX,;
(i) ImL,clImL,;
(iti) ImL,(s) < Im L,(s) over R ,(s);
(iv) qd[Ly, Ly])=q{L)} for all 1 i< 0.

In (iv), [L,, L,| is the Volterra-type operator |L,,L,| (u) = (L u, Lyu).

The proof follows easily from [8, Theorem 5| taking into account the
definition of g,.

The relevance of these results for the theory of delay systems will become
clearer by the following definitions.

Let S: W'?(|—h, 0}, R")» W"?([—h, 0], R") denote the operator which
maps the initial state w € W'?({—h, 0], R”) onto the corresponding solution
segment x, of the uncontrolled system (1.1) (i.e., u=0). Then by the
variation of constants formula for ordinary differential systems we get

Sy=Aw+4,v, (2.6)

where
[A,w](1) ==exp(dot + B w(0), € [-h 0],

Al =] expldo(t =) AW ds, 1€ [-h0L

Hence S is an operator as described in (2.1).
Define for u € L ([—h,0], R™)

(B,u)t) = f exp(A4,(t — s)) Byu(s) ds, t € [~h, 0].

Then we get for the solution segment x, of (1.1) corresponding to the initial
state v

x,=Sy+ B u
h y v (27)
=A;py+4,v+ Bu
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By Laplace transformation 4, and B, induce moduie homomorphisms over
R, (s):

A(s): Rp(s) = Ry(s) A(s):=(sI—A4,)"'4,,

B(s): RY(s) = Ry(s), B(s):=(sI —A4,)" ' B,.

3. CLOSEDNESS OF SMALL ATTAINABILITY SUBSPACES

In this section, we use the invariants ¢, of induced module
homomorphisms over [ ,(s) to characterize closedness of small attainability
subspaces.

By the variation of constants formula (2.7) and induction, one finds for
Xyn € s NEN,

2

-1
) Stiu(N—l')h’ (31)

0

vl

Xy =

i

where u,(s) := u(t + 5), s € [—h, 0] for ¢ > h. If we identify L,([0, Nh].R™)
appropriately with L,([—h, 0], R™"), we get

#y, =1m|B,, SB,,..., S¥ ' Bv]. (3.2)
Define for k=0, 1, 2,... and NE N

K{ .= S¥|B,, SB,,....S" " 'B,],

L% :=A*B,,A,B,,..A) 'B,].
Then

Im K = o7 %" (3.3)
and
MY = KW — L

is a finite-dimensional operator.
The following theorem gives a first characterization of the closedness

property.
THEOREM 3.1, The small attainability subspace o/ ¥, is closed in
W12 ([—h, 0], R™)
ifr
Tior (L) = 4o (LR)- (3.4)
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Proof. Observe that by Remark 2.1 K, L{¥, and M} are operators as
described in (2.1). By Theorem 2.1, (3.4) holds iff »/%} =Im K{ is closed
in W*+1?([—h, 0], R"). Now we will analyze property (3.4).

LeEMMA 3.1. Equation (3.4) holds for all N&€ N jff the following two
conditions are satisfied:

(1) i+ I(Avav) = qoo(Af:Bv);
(i) g, (L) =qA}B,) for all 1 <j< oo and all N € N.

Proof. Observe that
A%B, =L\",

Hence (i) means that g, (L") =q(L{*). The use of conditions (ii), (i),
and (ii) again shows that for N > 1

9o (LY =g, (4:B,)
- qk+ I(Af'Bl.*)
= Qk+1(L1(J())-

Conversely, we only have to prove (ii) for ¥ > 1. Observe that

e 8]
(sI—Ay)~ =D Ay sl (3.5)

~

Hence, for j > 0, the first kK +j + 1 coefficients in the power series expansion
of

A() T Bls) = [(s] —Ag) " A"V (s - 4,) ' By (3.6)

vanish. Furthermore

[A:(va’Lz(\{(-F”J:L}\fi]' (37)
Then by definition of g;,

and

q{)(lAvau’ L}Vk+”]) == qk([AﬁBv9L}\¢(+l)]) = 0! (39)
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since in the formal power series expansion L{¥*" gives no contribution to
the coefficient of s/, j <k + 1. Thus we get, from (3.4),

qoo(L/(\'kJ)r1) = qk+1(Lz(vki1
= qi1([Ay B, Lyt "))
= %H(Ang)
=4(4}B,),

where the last equality follows from (i). The equalities (3.8), (3.9), and
(3.10) prove (ii), taking into account the definition of q_,.

The following theorem gives an interpretation of Lemma 3.1 in terms of
structural properties of the system.

(3.10)

THEOREM 3.2. The small attainability subspace ' is closed in
W +L-2(|—h, 0], R™) for all NE N iff the following two conditions are
satisfied:

(i) The small attainability subspace 7% is closed in
Wk+ l,p([_h, 0]’ P");
(it) forall NEN
L4 AR IR )
Furthermore, condition (ii) holds iff
Im(4**!(s) B(s)) = Im(4%(s) B(s))  over IR, (s).
Progf. Remember

kh _ (k) G+ DA _ k+1)
&t =1Im K}, & M =Im Ky

Hence Lemma 2.1, Theorem 2.1, and Theorem 2.2 show the equivalence of
(i) and (ii) above with conditions (i) and (ii) in Lemma 3.1, respectively.
Furthermore, by Theorem 2.2, condition (ii) is equivalent to

Im[4%B,,., A" 'B, ] cIm(4%B,) for all NEN,
i.e.,
Im(A%*'B,)) c Im(4%B,).
Then Theorem 2.2 again shows the last assertion.

Remark 3.1. For general linear retarded systems, conditions (i) and (ii)
above are still known to be sufficient for closedness of % (3,
Theorem 3.2].



ATTAINABILITY SPACES OF DELAY SYSTEMS 423

The following theorem shows that condition (ii) in Theorem 3.2 holds for
k=n iff it holds for k> n. I could not prove a similar statement for
condition (i).

THEOREM 3.3. The condition
Im(A**"(s) B(s)) < Im(4*(s) B(s)) (3.11)

holds for k = n iff it holds for any k > n.

Proof. 1t is a trivial consequence of the definitions that (3.11) holds for
k" with k" > k' > 0 if it holds for k’. For the converse, it suffices to prove
that (3.11) implies

Im(4%(s) B(s)) < Im(4*~'(s) B(5))

fk>2n+ 1.
The Cayley—Hamilton Theorem applied over < (s) shows that

A"(s)= ) q;(5) 4’(s),

J<n
where g,(s) € R ,(s). In the non-trivial case
[=min{j:q,(s)# 0} <n
exists. Hence for any w(s) € R]'(s)

A¥(s) B(s) w(s) = 1/q,(s) A*~(s) q\(s) A'(s) B(s) w(s)

=1/g/(s)4*'(s) B(s) w(s)

A"(s) = X q;(5) 4°(s)

i>1

—_ l/q,(s) An—!—l(s)___ Z qj(S)AflJrjA](s)

J>li

X A*T () B(s) w(s).

(Observe that k +n—I1>k+ 1, k—1+j>k+ 1). By assumption there is
w'(s) € R7(s) such that

A%(s) B(s) w(s) = 1/q,(s) IA"" () -2 afs)4 " 1(S)J A*(s) B(s) w'(s)

= 1/q,(s) A*~ '~ (s) lA"(s) -y qj(s)Aj(s)J B(s) w'(s)
=A4"""(s) B(s) w'(s),

ie., Im(A%(s) B(s)) c Im(4* ' (s) B(s)).
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4. CLOSEDNESS CRITERIA IN TERMS OF THE SYSTEM MATRICES

In this section we establish criteria for the properties (i) and (ii) in
Theorem 3.2, and prove a genericity statement.

THEOREM 4.1. The following two conditions are equivalent:
(i) Forall NEN, o it < o/ }1.
(ii) There exists a sequence C,€ R™*™ =0, 1, 2,..., such that for
all t k+1 t+1 K
[Z jl_I] AIA%'jBoz Zo (Z .]—IIAIA&) ByCiyy )
- = j=

where the sum at the left is taken over all (i,,...,i,,,), I; € {0, L,..., t}, with

}‘: h i;=1t, and the inner sums at the right are taken over all (i,,....i;), I, €

{0, L,..., r}, with Z}‘:] i;=r. In particular, (ii) is satisfied if
(i} For all (iyyy iy, ) €10, 1, n— 1},

k+1
]—[ (A,AY) % < A% %, where % :=ImB,.
j=1

Proof. Condition (i) is equivalent to
Im(A**'(s) B(s)) = Im(4*(s) B(s))  over TRs). 4.1)
This holds iff there is an m X m-matrix C(s) with entries in = (s) such that
[(s] —A,)" " A,|*"'(sI—4,)" "' B,
= [(sI —A,) ' 4,1¥(sI — 4,) "' B,C(s),
which is equivalent to
[A,(sT—A,) """ By=|A,(s —A4,)""|* B,C(s). (4.2)

The left- and right-hand sides of (4.2) are equal iff the corresponding formal
power series have the same coefficients, 1.e.,

o el o N 0 ,
(A1 N ailsTl)  By= (A1 v A{,“s") B, N Cis™, (4.3)
i=1 J i=1 i=0

where C(s) =32, C;s !, C; € R™™; without loss of generality C,=0.
Thus (4.2) is equivalent to the condition

k+1 K+ I
[Z I (AIA"Of)]B(,zz [T 4,49 B,C, . foralit>0, (4.4)
ji=1 Jji=1
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where the sum at the left is taken over all (i,,...,i,,,), 1,20, with 3 i, =1,
and the sum at the right is taken over all (i,...,{;, ), i; 20, with } i, =1t + 1.
The right-hand side may be rewritten as

41 i k ~r H )
NS T i s,
r=1 JF=1
where the inner sums are taken over all (i,,..., ), {; 2 0, with } i, =1+ 1—r.
Then (4.4} and hence (i) are equivalent to (ii).

Now suppose that (iii) holds. Then the Cayley—Hamilton Theorem applied
over X shows that for all r =20, 1, 2,...

k+1 ka1
|3 7T At | 2= X | T iy | <t
i=1 j=1

where the sums are taken over all (i,,..,#,,,), {;20, with > i;=¢ Hence

also
t+1

I3 &
l}__{ Aﬁ«j RN [\"HA Al ]@mga@, 4.5)
i

r= i i=1

where the sum in the first term is taken over all (i,.., {;,,), {; 20, with
2 i;=t, and the inner sums in the second term are taken over all (i, ,..., /)
[; 20, with 3" i; = r. Now define recursively a sequence C,€ R™*" =0, I,
2,..., as follows: Take C, :=0, and suppose that C,...., C, € R™*™ have been
defined. Then by (4.5) each column of

ke t+1
th\m il 4,4 }B "_\ l\ II IBOCH;,,
i=1 r= l :

is in

ﬁ’c:A .

ST s] e S

where the sums are taken as in (4.5). Hence there is a matrix C,, , € R™*"
such that (ii) holds.

Remark 4.1. Consider the case & = 0. Then (ii) reduces to: There exists
a sequence C, € R™*™ =0, 1, 2,..., such that

t+1
A A By = }_ B, C, .., for all #

r=z(

Invoking the Cayley—Hamilton Theorem over [, this is easily seen to be
equivalent to

A Ay # @ forall t=0,1,...,n— 1.
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Kurcyusz and Olbrot showed in |7] (see also |8]) that this condition is
equivalent to closedness of =% in W!"?([—h, 0], R"). Using
Theorem 3.2 and the fact that .7, is always closed in W'-?(|—h, 0], R"), one
sees that this characterization follows also from Theorem 4.1. In order to
characterize closedness of .o/ ", we prepare the following Lemma.

LEMMA 4.1. Suppose that L is an operator as considered in (2.2) with

Ly=.--=L,_,=0. Then the following two conditions are equivalent:
(1) (L) =gqu(L);
L, 0 0 0
. :
(i) Im L’f“ M P < Im Li + - +1Im 0
Lyy; R Lyyj L,
Jor all j € N.

In particular, (ii) holds if InL, ., < Im L, for all j € IN.
Proof. First, we observe that (i) holds iff for all j€ N

gy +j(L) = q,(L),

ie.,
rank &, ;= (j+ 1)rank &, = (j + 1) rank L,. (4.6)

Thus we have to prove the equivalence of (ii) and (4.6). Certainly,
rank &, ;rank & ; ,>rank L,. We show first that (ii) implies the
converse of this inequality. Let {¢i,i € I} be a maximal set of linearly
independent columns in L,. Consider the corresponding set of columns in
% .,; (we omit the zeros corresponding to Lg.,..., L, _,):

¢ 0
i i 0
(k+l . gk . . .
M = ) Jeryu , JIETY U - U : Jiel;,
/ P 0
Crsi Chrjoa ‘
Cy

where ¢}, , is a column in L, ,.
Let (¢;s..s €4,;)" be one of the first m columns of & ;.
By assumption, there are a,;,) € R such that

b= ayly.

iel
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Then
b — 2 aiO{/f«' L, 0

£k+l“2ai0€;€+l € Im Ly A 2%

€k+j_zai0€;<+j Ly R

Use of (ii) shows that this implies rank %} , ;rank %, | <rank L,. Hence
(4.6) holds. Conversely, assume that (ii) is not satisfied, i.e., there is for
some j > 1 an element (0,f,, ..., )" in

L, 0
Im Lk+1 M P" ,
Ly, R
which is not in
0 0
Im lf" 4.4 Im O
Ly L,

We claim that (0, ¢, , ..., ,;_,)" is not lincarly dependent on M, defined as
above. This will imply that (4.6) does not hold.
Suppose that there are a,, € R with

0 £ 0

, i :
(i _ : a;, (i 4ot X. a;

: ief iel O

(k+j—1 [2+j fi

By linear independence of {f}} it follows that 3, |a;| =0, and (0,4, ...,
(rej—)T isin

0 0
Im L." + .o 4+ Im 0 )
Lysi L,

contradicting the definition of (0, ¢,,..., £, ;).

505/53/3-10
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It remains to prove that ImL, ,cImL,, i > 1, implies (ii). We have to
show

Ly,,x L, 0
: Ly x=0,x€R") clIm : +--+Im{ :

Ly, jx Lysjn L,

There exist x,, x,, x; € R" with

L,,,x=Lyx,, —L, ., x,=L;x,,L; ,x,=L;x;.
Then
Ly, x L.x, 0 0
karzx _ Lk+.1X1 + —Lk.ﬂxl + L, i.x
Ly, ;x Lyjo1% —Lyyj_1X \LpsiX
L, x, 0 0
Ly, x, L,(x;, +x5) 0

Lyi2x, T L, 0+ xy) + —L, %+ Ly 5x

Ly ;1% Liyj—a(x, +x3) —Lyyjoyx 4+ Ly x
Repeated application of these arguments proves the assertion.

THEOREM 4.2. The small attainability subspace %" is closed in
Wk+1.p([—h, 0], R™) if the following condition is satisfied:

k
[]1A,45) Zc4ar 2 foralliy iy € {0, Lyn— 1}
i=1

Proof. First observe that =) is always closed in W"?([—h, 0], R").
Now let k> 1. We know that .o %" is closed iff Im L{¥ =Im(4}B,) is

closed.
Define the multiplication operator 4, on W*?(|—h, 0], R") by

(A p)(0) =4, p(), te€ [—h,0].

Then A, can be written as the composition of A, and an isomorphism
between W*?([—h,0],R") and the closed subspace of all elements
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¢ € W (|-h,0],R") with @(—#)=0. Hence Im(4%B,) is closed in
WwktLr([—h, 0], R") iff the operator

L:=A A% 'B,
has a closed image. By Theorem 2.1 this is equivalent to

g (L) =g, (L) :==sup g,(L).
For the Laplace transform L(s) of L we obtain

L(s)=A,4%'(s) B(s)
oG k )
= Y [ S ] @Ah B,
t=k Jj=1

where the sum is taken over all (i,,..., i), {; > 1, with 3" i, = ¢. Thus the coef-
ficient L, ,, of s **' is given by

k
L., =N 11 4,4%) B,, t >0, (4.7)
Jj=1

where the sum is taken over all (i,,..., {;), {; > 0, with } i, =1t By definition
of g,

q,(L)=0 for i=0,1,...,k—1,
g,(L) =rank L, =rank(4%B,).

Lemma 4.1 and the Cayley—Hamilton Theorem applied over X imply that

qk+j(L) =q,(L) for all j > 1,
if the condition in the theorem is satisfied.

Remark 4.2. Using the explicit formula (4.7) for L, ,, one can give a
complete characterization for closedness of 74" in the style of Lemma 4.1.
We omit this, since the criterion is very technical.

Remark 4.3. Theorem 4.2 corrects an erroneous statement in |[2,
Theorem 3.1].

Now we will analyse how typical the closedness property of the small
attainability subspace .7, is. By Theorem 4.1 and Theorem 4.2, &%, is
closed if for all i, i,, i, € {0, 1,...., n — 1},

A AL P AP (4.8)
and
A AV AL B AP (4.9)
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These conditions are certainly satisfied if
Im A4, =Im(4,B,), (4.10)
being equivalent to

rank A, =rank(4,B,) (4.11)

If m > n, this condition is not very restrictive in the space of all system
matrices (Ay,A4,, By) € R™*" X R"™" x R"*™ In the following we will be
concerned with the more important case m < n.

First observe that (4.8) implies (4.10) if the pair (4,, B,) is controllable,
hence (4.10) is only a slight strengthening of (4.8), (4.9).

Since always rank (4,B,) < m, condition (4.10) can only be satisfied if
rank A, < m. Hence it cannot be “generic” in the space of admissible triples
(A,,A,,B,). We “tighten” the space of admissible triples by considering
only

Vi={(Ay, A, B) ERP" X R"™" x R"*™ rank 4, < m
0 1 0

and study the subset of triples leading to a closed set .=/'%,. We need some
elementary notions from algebraic geometry to formulate a precise genericity
statement.

An (affine) variety (over ) is defined as the set of common zeros of a
finite collection of polynomials (cp. |9, 10]). A variety is called irreducible if
it is not the proper union of two varieties. Each variety can be written as the
union of a finite number of irreducible varieties, called its components. The
dimension of an irreducible variety X is the (finite) transcendence degree of
its field R(X) of rational functions. The dimension of a variety is the
maximal dimension of its components. Identifying R™*" X R"*" x R"*™
with R2™*"" the set V is seen to be a variety. We need the following
lemma.

LEmMA 4.2, The variety X := {A, € R"*": rank A < m} is irreducible.

Proof. Define a map 7: R™ X (R™)"~™ > X in the following way: The
elements of R™" form the first m rows of an n X n-matrix. The elements of
the n — m copies of R™ are used as coefficients in linear combinations of
these m rows; these linear combinations form the last n — m rows. Then the
rank of the resulting matrix is not greater than m, and 7 is continuous in the
Zariski topology. Thus by [9,p. 7] the closure of Im<7 is an irreducible
variety, since affine space is irreducible, and irreducibility is preserved under
continuous mapping and taking the closure. Furthermore, one can show by
elementary arguments that Im 7 is dense in X; hence X is irreducible.
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It follows from the lemma that also
V= ann XXX anm

is an irreducible variety. Now we can formulate the genericity statement.

THEOREM 4.3. Let m < n. Then the set of all triples (4,,4,, B,) € V for
which the small attainability subspace /T, is not closed in
W?(|—h, 0], R™) is contained in a proper subvariety W of V with dim W <
dim V.

Progf. Define
W:={(4,,4,, By) € V:irank(4,B,) < m}.

Then W contains all triples {(4,,4,,8,) € V for which &%, is not closed:
Suppose that in V rank(4,B,) > m. Then rank(4,B,) =rank 4, and & ", is
closed. '

Now W is the set of common zeros of finitely many polynomials p defined
by minors of 4,B,. Hence W is a variety. Clearly, W # V. Hence there is a
polynomial p defining W such that ¥ is not contained in the set of zeros of p.
Since V is irreducible this implies that each irreducible component of W and
hence W itself has dimension strictly lower than V has.

Remark 4.4, Condition (4.10) does not specify a variety.

Remark 4.5. Define an operator F: W"?(|—h, 0], R") » R" X
W'-2([—h, 0], R") as the restriction of the usual F-operator on M? (see [5]):

Fo :=(9(0), 4,9).

Then the space .«/% is closely related to the following F-attainability
subspace F.« defined by

Faty = {Fp € R" X WhP([—h, 0], R"): ¢ € 7, ).

The space F.+7, is isomorphic to .+ % (under the obvious isomorphism), and
Theorem 4.3 generically characterizes closedness of Fo/, in R"X
W2 ([—h, 0], R").
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