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Approximate and exact null controllability of linear delay
equations with a constant delay and scalar control are shown to
be equivalent. The main too! is a recent result on equivalence
between spectral controllability and finite spectrum assignabil-

ity.
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1. Introduction

This note deals with null controllability of the
following linear autonomous delay equation with
scalar control:

(2) x(t)=Agx(t)+A,x(t—h)
+bu(t), t=20,

where

x(1)eR", u(t)eER,

Ay, A, ER™" beR"™!,

and k& > 0 is the length of the delay.

We show that approximate null controllability
(in finite time) of (2) is equivalent to exact null
controllability.

For two-dimensional systems, this was proved
by Jacobs and Langenhop [2]. Marchenko [7]
claimed the assertion for retarded systems with
finitely many delays. However, his arguments seem
to be incomplete as noticed in Salamon [8]. Sala-
mon also gave a simple two-dimensional counter-

* This research was performed during a visit 10 Mathema-
tisches Institut der Universitat Graz, Austria, supported by a
grant from Deutsche Forschungsgemeinschaft.

example of a neutral system which is approxi-
mately, but not exactly null controllable.

The proof given here heavily relies on the ideas
of finite spectrum assignability (Kamen [3],
Manitius and Olbrot [6]). The main tool is a result
by Watanabe, Ito, and Kaneko [9], which states
that spectral controllability implies finite spectrum
assignability.

2. Null controllability

We first give formal definitions of controllabil-
ity notions and cite some known facts. Then the
result on equivalence between approximate and
exact null controllability is stated and proved.

Suppose that a control ¥ € L,(0, #;; R) and an
initial condition
x(0)=¢°% x(t)=¢'(t) ae.re[-h,0],

(2.1)
with
p=(¢° ¢')eM*=R"XL,(—h,0; R")

for (2) are given. The corresponding solution of
(2) is denoted by x(@, u, ¢) and the state %(7) at
time f,

2(t)=2(p,u,t)
= (x((p, u, l'),x((p, ”):) EMz,

is given by the variation of constants formula
2(1)=S(1)p+ f 'S(t—s)(bu(s),0) ds;  (2.2)
0

here

x(p,u) (s)=x(p,u,t+s), s€[-h,0],

S(¢) is the absolutely continuous semigroup of
operators asscciated with the homogeneous equa-
tion, and (bu(s), 0)e M2,

Let the attainable subspace &7 at time #; be
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defined by
0

o= {f S(r—s)(bu(s), 0) ds:
4]

ue L,(0,1,; IR)}
c M2

Definition 2.1. System (2) is exactly null control-
lable at time ¢, > h if for every initial state ¢ € M?

S()pes.

Definition 2.2, System () is approximately null
controllable at time ¢, > A if for every initial state
pe M?

S(1,)p € closure,,: /.

Definition 2.3. System (Z) is spectrally controlla-
ble if for all A in the spectrum of the infinitesimal
generator A of S(¢), t >0, the system

(2 xMa)=A M) + b u(t)

obtained by spectral projection of (Z) onto the
generalized eigenspace corresponding to A is con-
trollable.

(For details on the spectrum of 4 and the
spectral projection see Hale [1], Manitius [5].)

Spectral controllability can be characterized by
the generalized Hautus condition

rank(sI — A, — A, exp(—sh), b)=n
forallseC.

The following result is well known for much more
general systems than (2) (see e.g. Salamon [8, IV,
1.11 Theorem)).

Theorem 2.4. Suppose that system (Z) is approxi-
mately null controllable at some time t, > h. Then it
is spectrally controllable.

Recently, Watanabe, Ito and Kaneko [9] proved
the following result on finite spectrum assignabil-
ity via algebraic methods.

Theorem 2.5. Suppose that system (Z) is spectrally
controllable, and let an arbitrary set A of n complex
numbers containing with A also its complex con-
Jjugate be given.
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Then there exists a feedback control u® of the
form

ut(1)= i d,.x(t—ih)+f0 $(8)x(t+8)de
jmQ - Nh

(2.3)

where N is a positive integer, d, € R'*", and { €
L,(=Nh, 0; R'*"), such that the spectrum of the
feedback system coincides with A.

Observe that the state space of the feedback
system

(Zr) x(1)=Agx(t) +A,x(t—h)

N
+b[2d,x(t—ih)
i=0

+f_°Nh§(0)x(z+e)da]

is R" X L,(—Nh,0; R").
Hence the semigroup of operators Sg(1), 1 20,
corresponding to (2) operates on this space.

Theorem 2.6. Under the assumptions of Theorem
2.5, define

V= Im S, (nNh) € R" X L,( - Nh, 0; R").

Then V is a finite-dimensional vector space and
contained in the sum of the generalized eigenspaces
corresponding to X € A,

Proof. By Kappel [4, Theorem 11.7), the sum of
the generalized eigenspaces corresponding to A € A
is an n-dimensional (complex) vector space. Now
(see Manitius [S]) V is contained in the closure of
this space. By finite dimensionality, the assertion
follows.

The next theorem presents the contribution of

this note.

Theorem 2.7. If system () is approximately null
controllable at time t, > h, then it is exactly null
controllable at every time t, > (n— 1)Nh + h. .

Proof. Suppose that (2) is approximately null
controllable at time ¢,. Then by Theorem 2.4 it is
spectrally controllable. Since spectral controllabil-
ity is invariant under the feedback (2.3), also sys-
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tem (2 ) is spectrally controllable. Thus, by Theo-
rem 2.6, the elements of Im S.(nNh) are control-
lable, This proves that () is exactly null control-
lable at ¢ > nNh.

Now let an initial state

eER"XL,(~h,0; R")
for (Z) be given. Extend ¢ to an element
pER"X L,(—Nh,0; R")

by setting ®(t)=0 for t&[—~Nh, —h). For a
control function u, let %.(®, u, t) be the corre-
sponding state of (&) at time ¢. Then the R"-
component xp(p, u, t) of X(, u,t)isfort=0a
solution x(@, u’, t) of (2) corresponding to the
initial state ¢ and a certain control function u’.
Then, by the first part of the proof, there exists a
control u such that

x(@,u's 1) =xp(Pyu, 1) =0

fort>ty>(n—1)Nh.

Taking into account that the state space of ()
is R" X L,(—h, 0; R"), this proves that ¢ is null
controllable in every time ¢, > (n — 1) Nh + h.

Remark. It would be highly desirable to have an
upper bound for N.

3. Comments

The present note deals with the rather special
class of delay systems with a constant delay and
scalar control. This is due to the fact that the
crucial tool in the proof — spectral controllability
implies finite spectrum assignability — has been
stated only for these systems (Watanabe, Ito and
Kaneko [9] allow the slightly more general case of
finitely many commensurate delays in state and
control). However, I must admit that the proof in
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[9] — even for this relatively simple class of sys-
tems — appears very complicated. I hope that the
present note will be another motivation to give a
more convincing proof of this important result.
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