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THE MAXIMUM PRINCIPLE FOR RELAXED HEREDITARY
DIFFERENTIAL SYSTEMS WITH FUNCTION SPACE END CONDITION*

FRITZ COLONIUS*

Abstract. This paper contains a proof of the global pointwise maximum principle for relaxed hereditary
differential systems with general function space end condition. First a multiplier theorem establishes the
existence of Lagrange multipliers (/o, /), where /o€ R, and [ is in the dual of the Sobolev space W™*[—r, 0].
Then [ can be identified with an element of W™ [—r, 0] provided that the optimal trajectory satisfies a
certain regularity condition. This yields two equivalent forms of the maximum principle. Using the results
on regular reachability obtained in a companion paper, the maximum principle is shown to be—in a certain
sense—generically valid.

Introduction. This paper deals with necessary optimality conditions in the follow-
ing control problem for hereditary differential systems:

t

0.1) Minimize j "o (0), ule), 1) dt
subject to

0.2) X()=f(x, u(), t) (te T =[to, t1]),
(0.3) X = @os

0.4) h(x(t),)=0 allte Ty =[ti—r, t1],
03) u(eQr)  (teT),

where x,(s)=x(t+s)eR", se[-r,0] and t;—r>t, 0=r<oo, g:R"XR"XT->R
f:C'[-r0IXR"XT>R", h:R"xT;>R", @oe C"[-r,0] and Q()<=Qo=R™, Qo
compact, are given and (1€ T) means for Lebesgue almost all t€ T. r denotes the
length of the time delay. The state at time ¢ of the hereditary system (0.2) is given
by the function segment x,. Hence, (0.4) is a condition for the final state x,. This
infinite-dimensional or ‘“‘function space” end condition appears appropriate if the
behavior of the system after ¢, is of any interest. We call 4 the output function of the
system (0.2). The function space end condition (0.4)—opposed to a finite dimensional
one h(x(t), t1) = 0—presents particular difficulties which were dealt with in a series
of papers: Banks/Jacobs [2], Banks/Kent [3], Barbu [5], Barbu/Precupanu [6, Chap.
4, §3], Bien [9], Bien/Chyung [10], Buehler [12], Colonius [13], [14], [16],
Colonius/Hinrichsen [17], [18], Das [19], Jacobs [25], Jacobs/Kao [26], Kamenskii
[27], [28], Kent [33], [34], Kurcyusz [35], Olbrot [39], Utthoff [45] (see also the
surveys given in Banks [1], Banks/Manitius [4], Kamenskii/Skubachevskii [32]).
Apparently, the first formulation of such a problem—in the context of the calculus
of variations—was given by Elsgolts (see Zverkin et al. [54]).

It is appropriate to discuss the relation of the present paper to Banks/Kent [3],
Barbu [5], Bien/Chyung [10], Olbrot [39] and Colonius [16] also dealing with con-
straints like (0.5).

Banks and Kent split the end condition into two conflicting inequality constraints
and use methods by Neustadt in order to prove that the maximum principle is a
necessary and, in case of normality and convexity, also sufficient optimality condition.
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However, due to their problem formulation, the Lagrange multipliers corresponding
to the two conflicting inequality constraints may eliminate each other. Hence, in the
necessity part, nontriviality cannot be guaranteed.

Barbu [5] uses the methods of convex analysis and the existence theory of
differential equations associated with nonlinear monotone operators in Hilbert space.
Problems with fixed final states and pointwise control constaints are formally included
[5, Problem (2.4)-(2.6) and § 5]. However, the required assumption (local reachability
in W?"-norm) cannot be satisfied for bounded sets of admissible control values (see
the discussion in Colonius [16, § 4]).

Colonius [16] gives a special approach to linear time invariant single delay systems
with fixed final states. In this case stronger results than in the present paper are
obtainable.

Bien and Chyung [10] transform the pure phase constraint into a mixed con-
trol/phase variable constraint using a classical device (cf. Pontryagin, et al. [41]). For
a trajectory x, condition (0.4) is—under sufficient smoothness conditions— equivalent
to

(0.6) 0=h(x(tr=r), t1=r),

d 0 s 0
0.7) 0= Eh(x(t)’ t)= ah(x(t), t)x(t)+(—9;h(x(t), t)
= 2 he0), D ult), )+ Sh(x(t), 1) aa.teTh
ox ot

They generalize the theory of Makowski and Neustadt [37] to hereditary systems with
a single constant delay (Olbrot [39, Remark (6.3c)] proposes a similar procedure
having reduced the retarded system to an unretarded one). The obtained maximum
principle has only a local (in the sense of Girsanov [20]) form on the final interval
T;. That is, the maximum condition has a differentiated form. It has to be assumed
that the optimal solution satisfies a certain a priori condition. This regularity condition
also has a local form and involves derivatives along the optimal solution as well as
cone approximations to the set of admissible control values. As the authors remark,
it appears very difficult to assure the validity of the regularity condition before the
computation of the optimal solution. Furthermore, the regularity condition requires
implicitly that the number m of independent control variables is not less than the
dimension k of the output space. This restrictive condition appears also in the optimal
control of nonlinear systems with energy constrained controls (see Kurcyusz [35]).

The problems connected with the end condition led Olbrot {39] to another
problem formulation. He required instead of (0.4) (for the fixed final state problem,
where h(x(t), 1) =x(t) —@1(t—t1), @1: [—r, 0]>R") that

lx:,— @il =& foraconstant e >0.

Here the norm may be taken in various Banach spaces. Then he proved necessary
optimality conditions for these much simpler problems. In an engineering interpreta-
tion, the number & specifies the accuracy required in reaching the final state, and the
norm to measure the distance between the desired and the reached final state can be
chosen on the basis of technological requirements. However, it is not clear what
happens for ¢ » 0; in particular, the problem might become ill behaved for small e.

It appears more satisfactory to require that the end condition be fulfilled with
arbitrary accuracy, i.e., we minimize over sequences of controls and corresponding
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trajectories satisfying approximately the end condition (0.4). This can be achieved by
a ‘“relaxation” of the problem (see Young [52], Warga [48]). Following the approach
by Warga [4§L we consider the set #* of relaxed controls and in the “preproblem”
(0.1)-(0.4), (0.5) replace the condition (0.5) by

(0.5) ved*

and insert v in (0.1), (0.2) instead of u. We denote (0.1)-(0.5) as Problem 1 and study
necessary optimality conditions for an optimal solution (x°, v°) of this problem, which
is well defined under the assumptions stated in § 1. This extends the approach in
Colonius [13], [14], where the fixed final state problem was treated, to the general
function space end condition (0.4).

The relaxation of the problem will allow us to weaken the regularity assumption
needed in Bien/Chyung [10]. In particular, the condition m =k on the dimensions
of the control and output spaces, respectively, is no longer necessary.

We obtain a global, pointwise maximum principle, provided that the optimal
trajectory satisfies a certain regularity condition referring to the infinite dimensional
part (0.7) of the end condition. This regularity condition has a similar form to those
given—in the theory of ordinary differential systems—by Warga [46], [47],
Schwarzkopf [42] for inequality and by Schwarzkopf [43], [44] for equality constraints
on control and phase variables.

Two equivalent forms of the maximum principle are stated corresponding to the
formulations (0.4) and (0.6), (0.7) of the end condition. We exploit the results in
Colonius [15] (this issue, pp. 675-694) in order to show that the maximum principle
is—in a certain sense—generically valid.

This paper is built up as follows. In § 1, the assumptions are formulated. Section
2 establishes the existence of Lagrange multipliers (lo, /1, L)e R, xR* x (LX(Ty))*,
provided that the infinite dimensional part of the attainable set of the linearized system
has a nonempty interior. In § 3, the regularity assumption on the optimal trajectory
is used to regularize [,. That is, /, can be identified with an element of LE(T)). The
global pointwise maximum principle is obtained as a straightforward consequence.
Section 4 discusses the range of validity of the maximum principle.

We retain the notation and conventions of Colonius [15].

1. Assumptions. The following assumptions will be imposed throughout this
paper:

(1.1) The functions f: C"[-r,0]XR™" X T >R" and g:R"XR™ x T >R are con-
tinuous in (¢, w) € C"[—r, 0] X R™ and (y, w) € R" X R™, respectively, and measurable in
teT.

(1.2) Thereare p, q: R, X T -> R, such thatforall ¢ € C"[—r, 0], y e R™ and w € Q,

(e, w,)1=p(lellw, 1) (teT),
1g(y, o, DI =q(yl, 1) (teT),

and p(s, e Ls(T), q(s, )eLy(T) and p(-, 1), q(-,t) are monotonically increasing
for all (s, t) e Ry X T.

(1.3) The functions f and g are continuously Fréchet differentiable in the first
argument; the corresponding derivatives D1f(¢, w, t) and D1g(y, w, t) are continuous
in (p, wt) and (y, w), respectively; h=(hy,  *, h):R"XT;~> R* is continuously
Fréchet differentiable and the derivative is continuously Fréchet differentiable with
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respect to y e R";

ID1g(y, w, )|=q(yl, £) (teT),

where p, q are as in (1.2).

(1.4) For each relaxed control v € #¥, there is a unique trajectory x € C"[to—r, ;]
satisfying (0.2) and (0.3).

The conditions (1.1)—(1.3) may be required only in a neighborhood of the optimal
solution similarly as in Berkovitz [8], Bates [7]. The assumptions on f coincide with
Colonius [15, (1.1)—(1.4)]. Hence, [15, Lemmas 1.1, 1.2, 1.3 and 1.5] are valid here.
The continuity (instead of integrability) assumption on D;f(¢, w, t) in ¢ is stronger
than desirable. However, it is needed for [15, Lemma 1.2] used in the proof of Lemma
2.1 below. By [15, Thm. 2.1], the relaxed problem admits the interpretation given in
the introduction. Furthermore, existence of an optimal solution is guaranteed:

THEOREM 1.1. If the trajectories x, satisfying (0.2) and (0.3), are uniformly
bounded, there exists an optimal solution (x°, v°) of Problem 1.

The proof of this theorem follows from compactness of ¥* and Colonius [15,
Lemma 1.3].

, In the rest of this paper we assume that (x°, v°) is an optimal solution of Problem
1. Furthermore, for the sake of simplicity, we let ¢(0) = 0.

2, The abstract maximum principle. In this section, we reformulate Problem 1
in an abstract setting of operators on Banach spaces. Then we obtain the existence
of Lagrange multipliers (lo, /1, l) € R, X R* x (L% (T,))* provided that the output set of
the linearized system has a nonempty interior. This yields two different forms of the
abstract maximum principle reflecting the two formulations (0.4) and (0.6), (0.7) of
the end condition. These two formulations are equivalent under the assumptions stated

in § 1.
For the ease of notation, we introduce
C"(T)={x e C*(T): x(to) = 0},
W(T)={x € W"(T): x(t,) = 0}.
Observe that the natural embedding of W**(T) into C"(T) is compact. W**(T) is
in a natural way isomorphic to L% (T). We extend each element x of W*"*(T) (resp.

C"(T)) to a continuous function x:[to—r, t;]-> R" by x,, = ¢o.
Define

G:C" (XN >R
by Glx, 0):= | glx(0, 00,0 dr
F:CY(T)XN->W""(T)
by F(x, 0)(1) = j g 0(s),5)ds,  teT;

B:C"(T)-»R*
by B(x)=h(x(ti—r), t—r);
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C:C(T)xN>LE(T))
by C(x, v)(¢) 2=%h(x(t), 0f (x, v(2), t)+;—th(x(t), t), te Ty
K:W"(T)>L5(Ty)
by (Kx)(1) :=£h(x(t), t)x(t)+%h(x(t), n,  teT.

Then (B, K) and (B, C) may be considered as maps with values in
W S(Ty) = R X LE(T)).

Define the solution map S:¥* > W"(T) by S(v)=x, where x is the response
of system (0.2) with initial condition (0.3) to the relaxed control v.

Problem 1 is equivalent to the abstract one, Problem 2.

Problem 2.

Mini{r}lize G(S(v), v)

subject to

(B, K)(S(v))=0.
Observe that
(B, K)(S$(v)) = (B(S(v), K($(v))) = (B(S(v)), C(S(v), v))
= (B, C)(S(v), v).

Remark 2.1. The problem formulation with the operator (B, K) will yield the
form of the maximum principle proposed by Banks/Kent [3], the formulation with
(B, C) will yield the form given by Bien/Chyung [10].

In the following, we assure differentiability of the involved operators and give
concrete representations for the derivatives. First, by the Riesz representation theorem,
there is a (n X n)-matrix function n defined on T X[ty —r, ¢;] such that

(2.1)

2.2) Duf(x%, 0°(s), $)x; = j dn(s, Ox(t)  (seT)

to—r
for all x e C"[to—r, t1]; here n(-, t) is measurable and 7n(s, +) is of bounded variation
for (s, t)e T X[to—r, t1]. The integral is meant in the Riemann-Stieltjes sense.

For all s € T, we require that n(s, +) is normalized, i.e., left continuous on (£, —7, t;)
and n(s, 1) =n(s, s) =0, tc=s =t =t,. This determines 7 (s, -) uniquely. One can show
(using Bourbaki [11, § 8, exc. 6]) that n is even measurable on the rectangle T X
[to—r, t1]. Define h(x, t)=0for xeR", te T\Ty, and let for te T:

23) H=(oh60,0)
=1,
2
2.4 Ho)= (b 0.0)
I=1--n,
2
(2.5) Ho(0) = (2= h(x°0),)
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LeMMA 2.1. (i) The maps F and G are linear in v € N, C is affine in v € N.
(i) The restrictions of F, G, (B, C) and (B,K) to W*"*(T)x¥* are weakly*
continuous, S is weakly® continuous.

(iii) The maps B, C, F, G, K and S are continuously Fréchet differentiable.
(iv) The derivatives have the following form:

[D1F (xo, vo)x](t) = J le(x?, v°(s), 8)x, ds, teT,

to

DiG(, 0% = [ -g(x(0), 0°0), 0x()
70X
DB(x°)x = Hy(t1 —r)x(t1— 1),
[D:CG% 010 = 5 fi(x?, 0°0), )Ho (0x(1)
+ He()D1f(x?, 0°(2), £)x,+ Hy(1)x(2), te Ty, where x,, =0,
[DK(G)x1(0)= ¥ £2(0He (0x(1) + Ho(D5() + Ha(Dx(), 1€ Ty,

Forve%*, the function x(v) = DS %) (v -2 satisfies
()= Dif(x?, 0°(t), Ox: +f(x?, ()= 0%(0), 1) (teT),

X, =0.

(2.6)

Proof. Assertion (i) follows directly from the definitions. Assertion (ii) follows
from Colonius [15, Lemma 1.1]. The operators B, C, F, G, K are continuously Fréchet
differentiable by [15, Lemma 1.2] and the chain rule. This yields also the form of the
derivatives as indicated in (iv). Finally, the existence and the form of the derivative
DS (v°) follows from [15, Lemma 1.5]. O

Consider the linearized system (2.6) in its abstract form

2.7 x =D F° vO)x+F(x° v-0%, ove%*
with output
(2.8) (DB(x°), DK (x°))(x) € W*(T)).

Then the chain rule and (2.1) imply
2.9)  DKx%x(0)=D:Cx°% 0)x()+Ckx°% v)-C(x°% 0%, ved™ .
Define the set o of attainable output values by

of ={p € W(T)): there is a v € ¥* such that ¢ = (DB(x°), DK (x°)x(v)},
and let
o i={z € LX(T)): there is ¢ € o with z = ¢}.
The set & will always be considered in W"*_norm and the set mosf in L&-norm.
We have
(2.10)
ol ={z € LY(T1): there is a v € #* such that z = D;C(x°, v)x(v) + C(x°, v)},
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since
0=, =R (%), (0, 0°(0), )+ h(0), 1)
dt ’ ax 9 ty ’ at ’

=[CGE°% 0N (teTy).

THEOREM 2.1. Let v°e &*, x°=S(v°) be an optimal solution of Problem 2 and

assume that intwod# 3. Then there are nontrivial Lagrange multipliers
(IO’ l) = (103 ll9 12) € lR+ X Rk X (Lgo(Tl))* such that

1,D1G(x%, v)x (0) + G (x°, v =) +1; - DB(x%)x(v)

2.11) +5L,oDK(x%x(v)=0 forallve¥*.
If Ocint moodd, then (lo, 11) # (0, 0), and if O€int &, then I, # 0.

Proof. If 0€dmf, there is a support functional /, at 0 to 7, and (2.11) is
satisfied with [o =0, /; =0. Now let 0 € int 7. We verify the assumptions in Colonius
[16, Thm. 1.3].

By Lemma 2.1, v—>G(S(v), v) and v+~ (B, K)S(v) are continuously Fréchet
differentiable and weakly* continuous. By Warga [48, Thm. IV.3.11], ¥* is weakly*
compact and convex. The space LY(T,) can weakly* continuously be embedded into
the Hilbert space L5(T;). Hence there are Lagrange multipliers (lo, /1, 2)€
R, X R* x (L& (Ty))* satisfying (2.11) and (lo, /1) # (0, 0). By the same theorem, I # 0
if 0eint &. 0

Remark 2.2. In the case where Oe€int &/, Theorem 2.1 follows easily from the
multiplier theorem by Zowe/Kurcyusz [53, Thm. 2.1], which does not presuppose
properties with respect to weak™ topology.

Remark 2.3. By weak* continuity and compactness of ¥*, mosf is a weakly*
closed convex set in L% (T}). Hence, Phelps [40, Thm. 1] shows that the set M of
points in 7%/ admitting a weakly* continuous support functional /, # 0 is norm dense
in the norm boundary of 7wsf. If 0€M, then (0,0, )R, xR x L¥(T;) =R, x
R* x (L& (T)))* are Lagrange multipliers satisfying (2.11). This shows that also in the
case where int 7o = there are “many” points in 7 admitting nontrivial
Lagrange multipliers, even with I, € L{(T;). The same argument applies where int & =
. Then one obtains Lagrange multipliers (0, /) € R, X W*'(T).

COROLLARY 2.1. Let the assumptions of Theorem 2.1 be satisfied. Then

(i) the adjoint variable y* € (W™*(T))* defined by

y< =DiF(x° v°)*y* +1,D:G(x°, v°) + DB(x°)*I; + DK (x°)*1
satisfies
G (x% v—0")+y¥ o Fx°,v—0%)20 forallves™.
(i) The adjoint variable y© € (C"(T))* defined by
y< =DiF(x° 0°*y€ +10D:G(x°, v°) + DB(x°)*1;+ D:C(x°, v°)*L,
satisfies
I,G(x° v—0v")+ yc oF(x° v—00)+15L°C(x° v)=0 forallve F*.
(iii) The difference y* —y< e (W™ (T))* satisfies
vy  —y€ =DF(x°, v°)*(y* —y©)+[DK (x°)* — D, C (x°, v°)*1L..
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Proof. Observe that both adjoint equations are uniquely solvable since Idcr)y —
D, F(x°, v°* and Idwr~y—DF(x°, v°)* are isomorphisms, where Id denotes the
identity map on the respective spaces. By definition of y*, (2.11) and (2.7), we find

LG’ v—v")+y* F(x° v—0°
=1G(x°, v =v")+[ltD1G(x°, v°)+11 - DB(x°)+1, - DK (x")]
- (Id=DF(x°, v*) 'F(x°, v -2
=10Gx° v =00+ 1D1G(x°, v%)x () +1; - DB(x®)x(v)+ 1, - DK (x°)x(v)
=0 forallve¥™.
Assertions (ii) and (iii) follow similarly, taking into account (2.9). O

3. The global pointwise maximum principle. The abstract Theorem 2.1 is only
a first step. The optimality conditions involve the multiplier I, € (L% (T}))* which may
not be identifiable with a real function. In order to regularize [, we make use of the
following notion.

DEFINITION 3.1. A trajectory x° satisfying (0.2), (0.3) is called regular (with
respect to (0.4)) if and only if there exists a neighborhood V of 0 € R* such that

d
(3.1 Ve h&x0), Dleo f(xl, 0, n=x°(0]  (te Ty,
Observe that 0 is always in the set at the right-hand side. By Colonius [15, Lemma
1.4] x° is regular if and only if there is a neighborhood Vi of 0e L& (T}) such that
Vo {C(x°, v): ve F*).

The proof of the global pointwise maximum principle is prepared by the following
two lemmas, which contain the crux of the proof.

LEMMA 3.1. If the optimal trajectory x° is regular, then 0 € int mo.

Proof. First we construct an inverse of the map v — C (x°, v) from &* into L'Jo(Tl).
Take V'in (3.1) as a k-simplex with vertices ey, 3, * * *, ex+1. Let eg:=0. Since O € int V,
we can divide V into k + 1 subsimplices V/,j=1, - - -, k + 1 with vertices e, - -, €i—1,
€j+1," * ', €x+1. Then there are v e #* such that

e=C(x% 0", i=1,--- k+1,

and we know that

eo=0=C(x° 0.
We may assume that fori=1,---,k+1,

o' () =0%),  telto, ti—r].
By definition of C,
e; = H.()f(x7,0'()—0°(t), 1) (teT)).

For t e T we define continuous piecewise affine maps

A V->rpm(Qo)
in the following way:

Ae)=0' (1), i=0,1,---,k+1.
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Each z € V lies in some V. Consider the barycentric coordinates «; with respect to
i .
Vi i.e.,
k+1
z2= 3 ae,
i=0
i#]
k+1
where a; =0, ¥,_;.; @ =1, and define

k+1

Agz= Z aA(e;).
poy

We have to show that this is well defined. Clearly, A,z e rpm({o). Suppose that
zeV'N V', Then only those coordinates a; of z in V’ (resp. V') are nonzero for which
e;€ V' N V. These coordinates have the same value in V' and V. Now let

Veoi={z e L5(T)): z(t) e V(te Ty)}
and define A: Vo> %" by
(Az)(t)=Az(t) (teT).

Then Az € ¥*, since the coordinate functions of z may be chosen measurable
and the support of (Az)(¢) is contained in Q(¢). We have

(3.2) C(x°, Az)=z

for all z € V., since C and A satisfy this equality pointwise.

A is extended to a map A:LE(T)-» N by an affine continuation of A, in the
k +1 sectors of R" corresponding to Vi j=0,1, -, k. Then A satisfies a Lipschitz
condition for a constant L, 0 (see Warga [48, p. 268] for the definition of |- ||v):

(3.3) |Azy— Azallw = Lllzy — 22l|o.
Now consider the equation
(3.4) x=DF(x° v)x +F(x° A(z—D,C(x° v%)x)) - F(x° v°).

Since for fixed z € LX(T,) the value of the right-hand side depends only on x, €
C"[-r, 0], this equation can be written as

() =f(x, 1) (teT), x,=0.

Using (3.3) and the assumptions (1.1)—(1.3) one finds that f* is continuous in the
first argument and measurable in the second argument; furthermore, f° satisfies a
global Lipschitz condition uniformly with respect to z in the first argument. Hence
for each z € L& (T) there exists a unique solution of this functional differential equation
(cf. Hale [22, Thm. 2.3 and p. 55], which by definition is equivalent to (3.4).

Take z =0. Then x =0 solves (3.4) since

F(x° A(z=D:C(x° v%)x)) = F(x°, A(0)) = F(x°, v°).

The uniform global Lipschitz condition and Gronwall’s inequality imply that x depends
continuously on the right-hand side of (3.4). Hence there is § >0 such that for all z
with ||z]|le < 8,

z—D:C(x° v%)x € Ve
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Thus by construction of A there is v € ¥* with

(3.5) v=A(z-D:C(x° v%x).
Then

(3.6) x=DiF(x° v)x +F(x° v—-0"),
and by (3.2)

3.7) C(x° v)=z-D,C(x° v%)x.

Since this holds for all z with ||z]l <8, we find by (2.10) that O int meosf. O

LEMMA 3.2. If the optimal trajectory x° is regular and (Lo, I, I,) are Lagrange
multipliers satisfying (2.11), then [, can be identified with a function pe
L&(Ty) = (L&(Ty)*.

Proof. Consider the subspace S of simple functions in L% (T). S is dense in Lo
(see, e.g., Hewitt/Stromberg [23, Thm. 11.35]). We shall prove that /,|S is continuous
with respect to L;-norm on S. Then ,|S can be extended to a continuous linear
functional on L(T;) which by duality of L, and L. can be identified with an element
p of LE(T)). Then I, and the functional defined by p coincide on S, hence, on Lfo(Tl).

The general element s € S has the form

!
s()=% Ek:l sixe(t)a; (teTy),

i=1j=

where s; € R, {a;} is a base of R" and {E;} is a measurable decomposition of T}.
Since x°is regular, we may assume that +yg,(¢)a; € V, where V satisfies (3.1).
Then there are vj; € ¥* such that

+xEga; = C(xo, vﬁ)
and
(3.8) [ oz o—voolar<2n(E).
T

Decompose s into its positive and negative parts:

1 k
s= % ¥ (s —sixea

i=1j=1
where s}; :=max (0, £s;).
Apply the maximum condition in Corollary 2.1(ii) 2k/ times in order to obtain

b(s) = 12(;; (53 =5 )xea)
=§{s}}lz o C(x% v +s5lo C(x° v3;)}
=z -3 {s5[lG(x°, v —v")+yC « F(x°, 05 — )]
i
+55[1G(x% vy —0)+yC o F(x° vy — v}
é—coizf(sf} +55)A(E;)

= ~Cous ”Ll

for a constant ¢y >0; here we used (3.8) and the assumptions (1.1) and (1.2).
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Hence, for ||s||., >0,
lim inf [,(s) =0;

the same argument for —s proves that l;(s) - 0 for ||s||., » 0. Thus, [, is continuous on
S in Li-norm and the lemma is proven. [
The following maximum principle has the form proposed by Banks/Kent [3] for
a more general class of systems (including neutral equations) with fixed final state.
THeOREM 3.1 (BK-form of the maximum principle). Let x°, v° be an optimal
solution of Problem 1 and assume that x° is a regular trajectory.
Then there exist Lagrange multipliers (lo, I, p)eR+ka X LE(T)) such that
(lo, 11) # (0, 0) and the adjoint variable o e LE(Ty) defined by
L2}
t

W @)= —j "n(s, * X (s) ds + o j 2 o (x%(s), 0°(s), 5 ds
t ox

+Hx(t1~r)*ll+J

T,

[ y %7 (5)Hex, (8)* +sz(S)*]p(s) ds
1

j=
forte[to, tl_r]:

b
t

v (1) = —j ", *5(s) ds +1o j 2 g(x"(s), 0°(6), ) ds

HH %00+

t

[ £ 8O0+ Has)*Jo(s) ds

forte (ty—r, t1], satisfies

(i)  log(x°(r), v°(0), )+ WX (OF (x?, v°(1), ) = log (x°(t), w, 1) + Y X (Of (x}, w, 1)

forall w e Q(t), a.a. teT.

Proof. In view of Corollary 2.1(i), Lemma 3.1 and Lemma 3.2, we have to
compute adjoint operators. By partial integration, DK (x°)*I, e (W™(T))* can be
identified with the following element of W™ (T):

[ [£ gm0+ B0 ]owa,  relnn-r),
T, Li=1

DK (x*)*l, ="} '~
[[ £ 206 )+ Halo)* |os) ds + L0, re (=1, 1)

]

Similarly,

D1 G (<", o00) = —lo | %g(x%s),v"(s),s)ds, teT,

L3}
t

H, (t;—r)*l, te[to, ti—r],
0, te(ti—rnt].

Then yK can be identified with an element ¢~ € LE(T) and

[DBG")*h10 =

[D:F(x°, 09)*y%1(r) = —j "n(s 0*05(s)ds, teT.

This yields the adjoint equation (i). Furthermore,

Y& o F(x°, v—1%) = L VR (OF G, o) —0°(0), 1) di,
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and the maximum condition in integral form follows. This implies (ii) by standard
arguments (see, e.g., Warga [48, Thm. V1.2.3]). [

Remark 3.1. Since n(s, -) is of bounded variation, one can identify ¢ |[fo, t, —r]
with a function of bounded variation. For special systems, e.g., systems with a single

constant delay, z//Kl[to, t;—r] is even absolutely continuous (see Banks/Kent [3,
p. 583)).

Remark 3.2. One can give the following nontriviality condition in terms of the
adjoint variable ar

(09 0, 0) # (109 l!/K(tl—r)’ l!’K | Tl) € R+ X Rn XL:O(TI)'

Assume that (lo, ¢% (t,—r), ¥* | Ty) is trivial. Regularity implies that the multiplication
operator

H:LL(T)»>Lo(Ty),  (H)O)=H.(0z(t) (1T
is surjective. Hence Kurcyusz/Olbrot [36, Lemmas 3 and 4] imply that
rank H,(¢)* =rank H,(t)=k

for all te Ty and that the generalized inverse [H,(¢)*]" of H,(t)* is bounded on T.
Using the adjoint equation (i), we find that p satisfies the homogeneous Volterra
equation

o) ==[ O] £ O+ Hao)* o5 ds  (te T

By unique solvability it follows that p(¢) =0, ¢t € T;. Then
0=y¢* (ti~r)=—H.(t—)*];

implies that /; = 0. This contradicts the nontriviality condition (g, /1) # (0, 0).
Remark 3.3. Consider the maximum principle for the case of a fixed final state.

Then Iy = 0 implies % (t) =0 (te T,). This follows from regularity, since the maximum
condition has the form

G OF L, 0%, )= ¢K (t)y

for all y e co f(x‘,), Q@), t).
Remark 3.4. If there exists € >0 such that

#°(t)eintco f(x2, Q1), 1) (te[ti—r—e, 1)),

then [ #0.

Suppose /o= 0. Then as in Remark 3.3 it follows that ) =0@te[ti—r—¢, t1)).
This used in the adjoint equation (i) shows that /; = 0, contradicting the nontriviality
condition. Observe that we do not require the existence of a uniform neighborhood
of %°(¢) contained in co f (x?, Q(1), 1) as it is required for stable reachability in Colonius
[15, Theorem 2.2].

The following theorem gives a second form of the maximum principle proposed
by Bien/Chyung [10]. Recall that the dual space of C"(T) can be identified with
NBV"(T), the space of normalized functions of bounded variation on T with values
in R" being right continuous in ¢, (cf. the definition (2.2) of 7).

THEOREM 3.2 (BC-form of the maximum principle). Let x°, v° be an optimal
solution of Problem 1 and assume that x° is regular.



MAXIMUM PRINCIPLE FOR HEREDITARY DIFFERENTIAL SYSTEMS 707

Then there exist Lagrange multipliers (o, l1, p) € Ry X R* X L% (T) such that (I, 1) #
(0, 0), p|[to, t1 —r1=0, and the adjoint variable z//c e NBV"(T) defined by

i ¢S)= —J 1 n(s, )* (Y (s)+ He(s)*p(s)) ds
"9 o . o
—lth E;g(x (8),v°(s), s) ds

—j 1 [ f (x5, v°(s), s)Hxxj(s)*+Hx,(S)*]p(S) ds
¢ Lj=1
_{Hx(tl—r)*ll telto, 1—r],
0, te(ti—r t),
is right continuous in ty and satisfies
() —log(x°(1), 0°(1), )+ (W (1) = Hu(8)*p())f (x7, v°(2), 1)
= —log(x°(1), w, )+ (W () = H () *p (D) (x7, w, 1)

forall w e Q(t), a.a. teT.

Proof. Theorem 3.2 follows from Corollary 2.1(ii) in the same way as Theorem
3.1 follows from Corollary 2.1(i). Observe that D;C(x°, v°)l, can be identified with
an element of NBV"(T):

[D1C(x°, °)*L](r) = —j "l )*H.(s)*p(s) ds

51 n
[T A 07060, 9 Hh 577+ Hials)* o 5) s
t i=1
y© can be identified with ¢ e NBV"(T). Furthermore,

ycoF(xO,v—v°)=J

T

[ 8, 0)=0°%s), ) ds w0

== [ b, w0 =00, 0 d
T
and

Lo Cx’ v)= Lp<t>Hx(t>f(x?, o(8) = 0°(1), 1) d.

This yields the maximum condition (ii). O
Remark 3.5. On subintervals of T, the adjoint equation and the maximum
condition have a simpler form.

Since p(¢t) =0 on [y, t; — r], the maximum condition does not involve p on this
interval. Furthermore,

[ s, b)) ds = L n(s, O HL(s)*o(s) ds

for te[to, ti —r] and for t€[ty, t;—2r]) and s € [t; —r, t1],

n(s, t)=n(s,s—r);

this follows from the definition (2.2) of 7. In special cases, e.g., systems with a single
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constant delay, the adjoint variable ¢ is even absolutely continuous on T with the
possible exception of a jump at ¢, —r.

Remark 3.6. Again the nontriviality condition can be written in terms of the
adjoint variable

(0, 0) # (lo, ¢ | T1) € R, X NBV"(T}).

Suppose that (I, e | Ty) is trivial. Then p(¢)=0 (¢t € T}), since regularity is assumed
and the maximum condition on T; has the form

p(DH()f(x?, v°(t), D =p(t)y
for all y e H,(t) co f(x?, Q(t), t). Hence,

0=y (ti—r)=—H,(t;—r)*],.

Since by regularity, rank H, (¢; —r)* = k, it follows that /; = 0 contradicting the condition
(lo, 11) # (0, 0).

Remark 3.7. Compare the two forms of the maximum principle: The adjoint
variables ¢* and ¢ are related by an integral equation which in its abstract form is
given in Corollary 2.1(jii).

The BK-form appears natural because the end condition is originally a pure phase
equality constraint. Hence, the Lagrange multiplier corresponding to the end condition
should appear only in the adjoint equation, not in the maximum condition as is the
case in the BC-form.

Remark 3.8. Bien/Chyung [10] require, instead of (0.6), that A(x(#), t;)=0.
Then the adjoint variable has a corresponding jump in #;, while (0.6) induces a jump
of ¢ in t,—r. Bien and Chyung redefine their adjoint variable in #; such that the
Lagrange multiplier corresponding to the finite dimensional part of the end condition
does not appear explicitly in the adjoint equation (see Bien/Chyung [10, Thm. 3.1(ii)
and (iii)]). Apart from this minor variation, their adjoint equation coincides with the
adjoint equation above specialized to the case of a single constant delay. However,
the maximum condition given above has a global form on the whole interval T, not
only on [#, t; —r] as in Bien/Chyung [10].

Remark 3.9. Sufficiency of the maximum principle has been analyzed by
Banks/Kent [3] and Bien/Chyung [10]. Restricting their analysis to the fixed final
state problem, Banks and Kent establish sufficiency of the BK-form under the usual
normality and convexity assumptions. Bien and Chyung show sufficiency of the
BC-form under similar assumptions for general function space and conditions. Taking
into account the equivalence of the two forms, their results extend those of Banks
and Kent.

Remark 3.10. We have treated the phase equality constraint (0.4) by using its
equivalent formulation as a mixed control phase variable constraint. Now it is clear
from the proof of Theorem 3.2 that we can deal with any constraint of the form

b(xh U(t), t)=0 (tETl)

where b: C"[—r, 0]xR™ x T; > R* satisfies the same assumptions as f in (1.1)-(1.3). In
particular, for » = 0 the results of Makowski/Neustadt [37] are extended to relaxed—
instead of ordinary—optimal solutions of problems with ordinary differential
equations. The maximum principle obtained in this way is equivalent to that in
Schwarzkopf [43] (where r=0, T1=T). An advantage of our approach is that we
can make use of results in general optimization theory (cf. Theorem 2.1)). Furthermore,
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a relation between regularity and structural properties of the system is obtained
(Lemma 3.1).

Remark 3.11. The regularization procedure performed in the proof of Lemma
3.2 can easily be extended in order to deal with inequality constraints of the form

b(xb U(t), t)éo (te Tl)’

where b is as in the remark above.
Suppose that there exist Lagrange multipliers (lo, /1, [) € R, X R* X (L (T))*
satisfying the analogue of (2.11) and additionally

(L, z)=0 forallzeLX(T;) withz=0.

Then we impose the following regularity condition: There exists a neighborhood V
of 0e R* such that

VNR ccob(x?, Q), HNRE  (reTy),

where R*:=={x = (xq, - -+, xx) e R*: x; = O}.

In order to prove that I, can be identified with an element of L% (T}), consider
first nonpositive simpler functions s. Here everything goes through due to the above
regularity assumption. Now suppose s is a general simple function. Decompose s into
its positive and negative parts:

s=s"—s7, wheres",s =0.

Due to the positivity of /5, we find

(Lo, Y=L, s )+ {la, =s Y= (L2, =5 ")
and

(o, —sY=(ly, —s™).

Since (I, —s~) and (l,, —s*) converge to O for ||s||., >0, also {l», s) converges to 0.
Hence, I, can be identified with an element of L (T7).

Remark 3.12. The maximum principle reduces the optimal control problem
(0.1)-(0.5) to an “‘infinite defect boundary value problem” (as defined by Kamen-
skii/Myshkis [31]) consisting of a retarded and an advanced equation coupled by the
maximum condition. Solution of such a system is very difficult (cf. also Grimm/Schmitt
[21], Kamenskii [27], Hutson [24], Kamenskii/Kamenskii/Myshkis [30]).

However, the existence of Lagrange Multipliers is also important in order to
prove the convergence of computational procedures (cf. Wierzbicki/Hatko [49],
Wierzbicki/Kurcyusz [50], who use shifted penalty methods in order to compute
solutions of problems with function space end condition, and Williamson/Polak [51]).

Remark 3.13. Conversely, one obtains results on infinite defect boundary value
problems by considering a corresponding optimal control problem. Existence of an
optimal solution and validity of the maximum principle imply that a certain boundary
value problem has a solution (see Kamenskii [29]).

Remark 3.14. Colonius [16] gave an example of an optimal control problem
where the assumptions of Theorem 2.1 are met while the optimal trajectory is not
regular. It is shown that the maximum principle is not satisfied (for a certain perform-
ance index), i.e., there are no nontrivial Lagrange multipliers (lo, [) € R, X W™ [—r, 0].
This shows that the regularity assumption is crucial for the validity of the maximum
principle.
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4. Discussion. The proof of the maximum principle relies on two main assump-
tions: (i) the existence of Lagrange multipliers (o, /1) € R, X (W5®(T}))* can be estab-
lished if ¢ has a nonempty interior in LE(T)), and (ii) [ can be identified with an
element of W*>(T}) if the optimal trajectory is regular. We shall discuss, for the fixed
final state problem, how restrictive these assumptions are. For simplicity, we assume
that Q(t) = Qo on T and that the function f defining the right-hand side of the system
equation is independent of ¢ and an element of the following Banach space %:

F = {f: C"[-r, 0]xXR" >R": | £l

:=max{ sup lef((p,w)l, _Sup ||D1f(¢,w)||}<°°}-

eeCwe C"weR™

We have for fe F:
o ={z € L&[—r, 0]: there is v € $* such that z = (x),, for x satisfying x,, =0
and % (1) = D1 f(x7, 0°())x. +f(x7, v() —0°(1)(te T)}

The linearized system satisfies the assumptions in Colonius [15, Corollary 4.1]. Hence,
int mof # & if and only if

4.1) int{zeLL(Ty): z(t)eco f(x?, Qo)(te T} # .

By the same arguments as in [15, Remark 4.4] one can see that the set of elements
f € & satisfying condition (4.1) for all x° € C"[to—r, t1]is open and dense in % provided
that o contains at least n+1 points. In this sense the condition int 7o f # J is
generically satisfied for hereditary differential systems defined by fe %.

Linear systems A (see Colonius [15, § 2]) are not included in the class of systems
defined by %. However, on the basis of [15, Remark 4.4], a similar genericity statement
can easily be proven.

Observe, however, that the situation is quite different if we restrict ourselves to
the class of functions f where w € R™ appears affinely. Then the condition n =m on
the dimensions of the state space (=output space) and the control space is necessary
for int woo s # J.

Now consider the second assumption concerning regularity. Colonius [15,
Examples 4.1, 4.2] specifies classes of systems, where all trajectories reaching a certain
final function are regular. In general the situation is much more complicated, and we
have to look at the linearized system.

Colonius [15, Prop. 3.1] states that a trajectory x° is regular if and only if the
zero trajectory of the corresponding linearized system is regular. Since 0 € &, we have
either that 0 €9/ or O eint &f. The first situation is a degenerate one: if 0 € dsf and
int of # & there are Lagrange multipliers (0, [) € R, X (W™*[—r, 0])* and the optimality
condition (2.11) is independent of the performance index (see Remark 2.3 for the
case where int & = J).

Now suppose 0 € int /. Then by [15, Corollaries 4.1, 4.2], O is regularly reachable,
and by [15, Thm. 4.2], the set of regular trajectories is open and dense in the set of
all trajectories reaching 0. Thus, irregularity, in particular, irregularity of the zero
trajectory, is “‘exceptional” (compare, e.g., the discussion by Maurin [38, p. 29]).

In this sense, the maximum principle is generically valid and its use as a necessary
optimality condition appears to be justified.
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