Optimal control of linear retarded systems to small solutions

FRITZ COLONIUSt

This paper deals with necessary optimality conditions for control of general linear
retarded systems to small solutions. Here the final states at time 7T are required to
generate small solutions of the uncontrolled system vanishing after 7 —h+a, whers
x>0 is fixed, This generalizes the fixed fina! state problem where a=0, and for a=h
includes problems with fixed reduced final state Fxz, where F is the structural
operator of the delay system. Necessary optimality conditions in the form of a
maximum principle are valid if a certain space called the ‘small attainability sub-
space ’ is closed in a Sobolev space. A sufficient criterion for this closedness property
is indicated. Finally, an example is discussed where the maximum principle for the
fixed final state problem is not valid, while the new problem with a=h can be solved
by an application of the obtained results,

1. Notation

For a Banach space Z, {z*, z);=2%(2) denotes the value of the bounded
linear functional z* on Z in 2€Z. For 1 <p< o0, we define ¢ by 1/p+1/g=1,
and let M?:= RrxL_([-h, 0], R"). For keN, we denote by Wkr=
Wk.p{[ —h, 0], R*) the Banach space of functions = :[ -4, 0]—-R"® having an
absolutely continuous (k—1)st derivative x%-1 with derivative x*¢L? and
2| := [(Ja(=R)|, |Z(=R)]|, ..., |z*(—=R)|, |2*®|L,)|, where |-| denotes the
euclidean norm in finite dimensional space. The dual spaces of W7 and
MP are identified with W¥9 and M9, respectively. The natural embedding
Ay, , of Wk into M7 is given by

[Ap Pl = $(0), [Ay,8148) := $(s), se[—4,0]
We omit the indices & and p. The inverse A-1: MP— Wk? hag domain A W&P,
The abbreviation ‘ a.a.’ means : for almost all.
Finally, S(¢) is the semigroup of operators on M? corresponding to the free
motions of (2.1), i.e. S(¢) maps y€M? onto the corresponding solution segment,
{x(t), x)eMP of (2.1} with x=0 and initial state (2.2).

2. Introduction

The purposes of this paper are: (a) to prove optimality conditions for
control of linear retarded systems to small solutions, and {b) to clarify the
relation between optimal control of these systems with general * function space
targets ' and state space theory based on the structural operators D, ¥, and
@ introduced by Delfour and Manifius (1980}. Wae consider linear autonomous
systems of the form

@(t)=L{x) + Bau(t) aa. te[0, T] (2.1)
with initial condition
2(0)=¢°, =x2(t)=yi(t) a.a. te[—k, 0] (2.2)
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where 2,(8) 1= a(t+3)ER™, se[—h, 0], u(t)cR™
and T>hk>0, L:C([-%, 0], R")>R" is linear and bounded, BDER”X'";
g=(f° JNeM?:= Rrx L,([~h, 0], R*), and 1 <p< 0.

Optimal control problems for (2.1) and (2.2) with integral cost functional
and fixed final state

xp=FeWtp([ -k, 0], R®) (2.3)

have found some interest in the last ten years {see, for example, Banks and
Manitius (1974), Bien and Chyung (1980), Colonius (1982)). Motivated by
recent work of Manitius and others on the structural operator ¥ (Bernier and
Manitius 1978, Delfour and Manitius 1980, Manitius 1979, 1980, Salamon
1881), we will treat problems where the end condition (2.3) (for simplicity
consider § = 0) is replaced by

T =0 (2.4)

where x(t), te[T —k, T'+ «], is the solution of (2.1) with initial state ((7'), z)
at time 7 and zero control u{t)=0, t> T ; furthermore x>0 is fixed. For
a=0 this recovers (2.3). For a=~% it means that the reduced state F(z(T), x;)
is zero. For general «, condition (2.4) means that the state x, generates a
solution of the homogeneous part of (2.1) vanishing after {=T+a«—%; then
the state of the system ‘ automatically * becomes zero at 7' +«.

Most interesting is the case where z{t) vanishes for t> T (i.e. a=h).

By a classical result due to Henry (1970), each small solution (i.e. a solution
decreasing faster than any exponential function) vanishes after (n—1)h.
Hence it is sufficient to consider «€f0, nk], and (2.4) with « =nh means that we
want to reach an arbitrary small solution at time 7T'.

Suppose that the homogeneous part of (2.1) has only the trivial small
solution (i.e. Ker ' ={0}). Then clearly the only way to bring the system to
the null terminal state is to control it until the last moment, that is a=0.

For general target functions $, we replace the end condition {2.3) by the
following one : The difference z,—¢ is to generate a small solution of the
homogeneous part of (2.1) vanishing after t=7+a—%. This might be called
* optimal control to final states which are fixed modulo small solutions ’.

The optimal control problem with end condition (2.4) lies in between the
fixed final state problems (with end condition of the form (2.3)) on the intervals
[0, T} and [0, T + «], since the control must be zero on [T, T'+ «], and say for a
standard quadratic cost functional, these three problems will in general lead
to different optimal controls. The advantage of this ‘ intermediate ’ problem
formulation lies in the following.

For fixed final state problems, the existence of a Lagrange multiplier in
WL3([ ~k, 0], B") (i.e. the validity of a maximum principle) can be assured for
each smooth cost functional, if and only if the attainability subspace is closed
in Wt3([—Fh, 0], R*). In the case of simple delay systems of the form

()= Ag(t) + Ax(t — k) + Byult) (2.5)

where A4, A.eR"*", BieR"m,  Kurcyusz and Olbrot (1977) completely
characterized this closedness property ; in particular, this property is inde-
pendent of the length T'>% of the time interval. Hence it is the same for T
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and T+«. However, we will show that for optimal control to final states
which are fized modulo small solutions a maximum principle is valid under a
generalized closedness condition, which naturally depends on «. As an example
illustrates, by this way one gets a maximum principle for a new class of linear
retarded systems.

Section 3 contains known results and some complements on the strongly
continuous semigroup of operators on J® belonging to the free motions of (2.1),
the adjoint and the transposed semigroup, and the related structural operators
D, F,and @. Thisis used in § 4 for the proof of a maximum principle involving
the transposed semigroup for problems with general function space end condi-
tion. Several concrete forms of the optimality conditions are derived.

Section 5 discusses the application to the problem of control to small
solutions. Here the maximum principle is valid if the ‘ small attainability
subspace of order « ’ (defined as the set of function segments x,,, as in (2.4))
is closed in a certain Sobolev space. We give a sufficient condition for this
closedness property. Finally, an example is discussed where the maximum
principle for the fixed final state problem is not valid, while the new problem
with end condition (2.4} and « =% can be solved by an application of the obtained
results.

3. On the structural theory of linear retarded systems

In this section, we collect some basic facts on the semigroup of operators
corresponding to the free motions of (2.1), the adjoint and the transposed
semigroup and the structural operators D, F, and & (cp. Delfour and Manitius
1980, Manitius 1980, Salamon 1981) and give some complements.

Let S(t), t 2 0, denote the strongly continuous semigroup of bounded linear
operators on MP corresponding to

0
#(t)=L(x,) = jhdn(s)x(t-{-s) (3.1)
where % : (— 00, 0]>R™ " is a nxn matrix function of bounded variation,
right continucus on (—#, 0) with o(0)=0 and n(s) =n(— &) for s< — k.
The transposed semigroup on M7 is denoted by S7(t) and corresponds to

2(t)=LT(x,}= _[0 dnT(s)a(t +s) (3.2)
Zh

Finally, S*(¢), t 2 0 denotes the adjoint semigroup of S(¢) on M9

These three semigroups are related to each other by the hounded linear
structural operators F, G : MP—M?. TFor =(° J1)eM?, the value Fy is
implicitly defined by Hale’s bilinear form

0 o
s Py =gomgo+ § § iT(s~0) dnlo)yi(s) ds (3.3)

for all J = (°, Jl)eMe.
Observe that F leaves the finite dimensional part #° of  invariant.
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The operator G is defined by
0
[Gg](8) := X(h+8)y°+ [ X(h+s+0)i (o) do, sc[—h, O],}
—h (3.4)

[G¢]° : = [G¢T(0)

where X(-) is the fundamental solution of (3.1). The importance of the
operators F and G becomes apparent in the following theorem (Manitius
1980).

Theoren. 3.1 _

{i) Suppose that a(t), t> — &, is a solution of (3.1) for {> ¢ with initial con-
dition (x(0), wy)=yeM?. Then z(t)=0 for all ¢ 0 if and only if Fy=0.

(ii} The following relations hold

SRy=GF, STh)=G*F*, S*)F*=F*8T(¢), t=20

For the canonical embedding A : W+r_Mr defined above one has that
im G=AWLP and the map Gy : MP— W2 defined by (Gy-¢)(s) : = [GY]Ms),
8e[ —h, 0], is an isomorphism. This twin of ¢ and its adjoint Gy, *: Whi—

Me will play an important role in the optimality conditions. The following
relations are easily seen to be valid

G= AG”,', G*= G",'* A*, f\‘—lS(’l) = G",I,T (35)

Lemma 3.1
The adjoint A* : M9— W14 is given by

(AR =)= g0+ | gis) ds

L Ao =4+ § Yiordo, s, 0]

Furthermore, A*M? is dense in W14,

‘'he proof of this lemma can be given using partial integration and the
duality relations between M¥ and M9, respectively W# and W9, Similarly,
one gets the following proposition.

Proposition 3.1
The adjoint G,.* : Wh9— M9 is given by

0

° .. :
[G* d1°=(—Rh)+ _]'hg XT(h+8)p(s) ds

(4]
[Gy* ¢1Ms)=p(—h—8)+ | %XT(k+a+3)¢;(o) do, s€[—h, 0]
-h—2
Remark 3.1

Observe that [G-* ¢1(s)— ¢(—h—3s), se[ -k, 0], is a continuous function
having the value [G)-* ¢]°—¢(—k) at 3=0.
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Define inversion operators #! and £ in the following way
P Ly([—h, 0, RY—~Ly([—h, 0], RY), (F16)(6) := E(—h~s), se[—h, 0]
F i MPoMr, [ 0=y, [Fg]ti=
Consider the equation
y(t)y=— f dnT(s)y(t—s), a.a. £<0 {3.6)
with initial data -

((0), yp) = yeM? ' (3.7)

SO = e, $), Ypenl -, $), <0

where y(, ) is the unique solution of (3.6) on (— 0, 0] with initial condition
(3.7). Then

and define

S(-t)=8T@), t=0 {3.8)
(cp. Bernier and Manitius 1978, proposition 5.1).

Proposition 3.2
Suppose that y(-) solves

(3.9)
{#(0), ya) =M1

where f:(—co0, 0]—»R" is an L9function on compact subintervals. Then y
solves the Volterra integral equation

0
§O=— § dnTlelyt—a)+/), e tso}

0 A 0
y()=y(0) + j,‘ nT(8)y(—s) ds— _! T(—s)y(s)— _‘[ fs)ds, t<0_ (3.10)
Proof
Suppose that yeAWL2c Me. Then one finds for the corresponding solution
y of (3.9) by partial integration and Fubini’'s Theorem for £ <0

0

§

dnT(s)y(r—8) dr

e

I

gy =

o 0
T (—hy(r+h)dr+ _,fh !vT(S).?](T—S) dr ds
h 0 0
=- :!n nT(=h)y(r)dr+ _Ih T (s)y(—s) ds— _IhTIT(S)y(t—S) ds

A 0
== ‘I 77 (t—-38)y(s) ds+ _Ik 77 (s)y(—s) ds

Since the right-hand and the left-hand sides of this equality depend con-
tinuously on $eM? (compare Delfour and Manitius 1980, Theorem 3.1), this
equality holds for all yeM? Now the assertion of proposition 3.2 follows

easily. a
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Proposition 3.3
For each ¢eWhe, the function §:= [Gy-* ¢]'eL, satisfies the Volterra
integral equation

. ¢
Eh)y=¢(—h—t)- jh nT(s—t)é(s) ds, te[—h, 0]

Proof
Using the fundamental solution, Manitius (1980, pp. 7-8) has shown that
for each e MP the L ,-function

L) =[Gy E—R), (e[0, h]
c(t) =L(§l) + !/'l( - t)! tE[O, h]
{(t):=0, t<0 and [{0):= y°

satisfies

with

Since ¢* is related to the transposed equation as G is to the original, then
£ 1= [G*J)! satisfies a certain transposed equation, which we write in inte-
. grated form

0 t+h

' t
)=y + I I d177'(8)f(1'+8) dr + I Y —7)dr, te[—k, 0] (3.11)
-k 0

- —

After partial integration and application of Fubini’s theorem, this yields

4 0
£(@)=y°— _IhnT(S—t)E(B) ds + Ih Pir)dr, te[-4, 0]

— =

Define I: Whasl, as[é:= jqu

Then lemma 3.1 shows that

an=Uwaur-LnTw4naﬂda te[ —h, 0]

This is a Volterra integral equation in L, with inhomogeneous term ['A*y,
and the solution operator X is an isomorphism on L, (see Dunford and Schwartz
1967, IV.9.53). Thus for yeif?

[Gu* AX =[G ] =¢

=XTA*)
Since I is continuous on Wh?and A*3¢is by lemma 3.1 dense in W2, it follows
that @ * =X
This shows that for all $eW'¢ the integral equation in the proposition is
satisfied. O

In the following section we need two operators related to the input. Define
Byju, [Bul':=0
0, [DEIs):= Bytls), se[—h, 0]

]

B:R™—Mpr as [Bul]®:
D:L,—M? as[DEF:

I

We note the following lemma.
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Lemma 3.2
The adjoint D* : M1—L, is given by

(D*f)(s)= B, ¢(s), se[—4, O]
By the variation of constants formula, we obtain

GD¢ = f S(h—s)BE&(—s) ds (3.12)

0

Hence by theorem 3.1 and (3.5)

A1 }‘ S(T ~s)Buls) ds
0

T-hA

A
=A"18(h) § S(T—h-s)Bu(s)ds+ A1 | Sth—s)Bu(T'—h—s)ds
d 0

—¢, [F T S(T b ) Bugs) ds+DjluT:| (3.13)
)]

where uq 1= w(T +s), s€[ —h, 0].
Finally, define the attainable subspace o7, at time ¢ by

o= { i' S(t —s) Bu(s) ds, ueLp}
0

Then for t >k
M‘=S(h)-ﬂ‘_h+ﬂh (3.14)

4., Optimality conditions

First, we formulate an optimal control problem for the linear retarded
system (2.1) with general function space end condition. Then, under a certain
closedness assumption necessary optimality conditions involving the transposed
equation are proved. Various concrete forms of the optimality conditions
are derived. We consider the following optimal control problem.

Problem 1 T=h
Minimize § golz(®), w(®) dt+gy(xp, ug)
ueLy{[0, TL, R™) 0
subject to (2.1), (2.2), and
Crq=2eZ (4.1)

where g, : R*x R*—R and g, : W"? x L,—R are continuously Fréchet differ-
entiable, and for all £> 0 there are m,, my > 0 such that for all |x| <k and all
ucR™

<My +my|u|P!

0
| a_u 9‘0(33, u)

the derivatives (8/dx)g,(xy, uy) and (3/ou)g (x4, up) will be identified with the
respective elements of W2and L, ; the map C : W?—Z is linear and bounded,
where Z is a Banach space.
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Remark 4.1
The values Cxy and g,(xy, #p) are well defined, since z,gWh? for t > h.

Remark 4.2

The differentiability condition for g, is for example satisfied if g, has the
integral form of the first term in the performance index and satisfies the same
conditions. The dependence on z(t) and u(t), [T —k, T'] is formulated via
¢1, since this part of the performance index plays a special role which is more
clearly expressed via ¢g,. Define g: M# x R"—>R as g((¢°, 1), u) := g4(¢°, u),
then by the variation of constants formula, problem 1 is equivalent to the
following problem expressed in terms of the state space equation.

Problem 2
T~h
Minimize G(y, u) := OI g(y(t), w(t}) dt + g, (A"Y(T), ur)

subject to t
y(t) =8¢+ [ S(t—s)Bu(s)ds, te[0, T]

CA-Y(T)=2

The next theorem gives optimality conditions involving the transposed equa-
tion.

Theorem 4.1

Suppose that CA-1%/; is closed in Z and (Z, %) is an optimal solution of
problem 1. Then there exists a solution p{-)=(p°(-), p!(*)) of the transposed
equation in M¢

. T-4 a _ _ _
(i) pt)=8T(T —h—t)p(T - h)+ ’I ST(s-1) P gl(x(s), x,), u(s)) ds,
te[0, T—h]
such that the  maximum conditions’
(ii) B*p(t) +a% go(E(E), A(t) =0 a.a. tc0, T—h]

e
D* (T — h) + o ga(p, ) =0
and the following transversality condition hold
i) BT W)= Gy * o (g, ) L Ker (CGy)

Proof

Define § as the state space trajectory corresponding to #. Then (7, %) is
an optimal solution of problem 2. This problem may be considered as 2 mini-
mization problem with respect to » subject to an equality constraint defined
by the map associating with ueL, ([0, T'], R™) the element

CA- [S(T)aﬁ + jT S(T — 8) Bu(s) ds]-z of CA-\p
0
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Since CA~1%/, is by assumption closed in Z, it is a Banach space. Hence, by
the Lagrange multiplier theorem (Luenberger 1968, p. 243), there exists
1e(CA-1%/ p)* such that

T
i Gy, ﬁ)u+<1, CA-1 ] S(T —s)Buls) ds> =0 (4.2)
du 0 z

for all ueL,. Here the derivative exists by the chain rule, the assumptions
on g, ¢;, and Vainberg (1964, theorem 21.1). .

Employing the chain rule, Fubini’s theorem, theorem 3.1, and (3.5), one
finds that the left-hand side of (4.2) equals

T T-h 0
I ( § ST(t—8) = glE(), Z), &) dt

0 8

!
+8T(T —h—8)Gy* — (@, Up), Bu(s)

ox >M ds
0 9
+ <GW* e 9 (Zp, By, DfluT>L+ i‘; T go(Z(t), ult)) dt

T-h

+<’a%gl(f,v,ar), M) + § (ST(T=h—5)Gyp* C*1, Bu(s))yy ds
L Q

+{Gy* C*1, D Fupdy
Define p(-) as the solution of (i) with

0
P(T —h):= Gp* C*1+ Gy* = g%y, Ug) (4.3)
Then (iii) holds, and (ii) follows from

1

h T—h

PR’
<p(8), Bu(s)); ds+ (5) 3 J0lE(8), u(B))ult) dt

J
+ <le*P(T" k) + ™ 1Ty, Ur), uT> =0 (4.4)
L

for all ueL,.
Equation (4.4) is equivalent to (4.2). This proves theorem 4.1. O

Remark 4.3

In a more general context, Kurcyusz (1976) has shown that the closedness
assumption in theorem 4.1 is necessary in order to guarantee the existence of
Lagrange multipliers for all differentiable performance indices. In particular,
if C is the identity map on W' ?, the attainability subspace must be closed in
WwLp,

Remark 4.4

If g, and g, are convex, the conditions (i)-(iii) above are also sufficient for
optimality. Here the closedness assumption may be omitted (cp. Colonius
and Hinrichsen 1978, remark 1.4).
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Remark 4.5
There are two essential difficulties in deriving theorem 4.1.

(@) The transposed semigroup S7(-) does not coincide with the (rather
complicated) functional analytic adjoint S*(-) of 8(-). The remedy for
this is the intertwining relation in Theorem 3.1 between S7(-) and S*(-)
involving the operator F™*.

{(6) The operator C in the end condition is only defined on W1? (or AWL?),
not on the whole state space M?, gince ape/p < Whr. Thus C*1 is in
Wle, but not necessarily in A*Ma g Wha,

Hence prima facie the adjoint equation should be an equation in W4, not in
M. However, due to the smoothing property of S(h)= G F—being incorporated
in @, respectively &, : MP—WlP—the adjoint Gy*: WL9— M7 brings the
adjoint equation down to M¢ after time 2. Thus the (backward) adjoint equa-
tion (i) in M7 holds only on the interval [0, T'—2].

In the fOIIOng remarks, various concrete forms of the optimality condi-
tions are discussed.

Remark 4.6

Define
#(t) 1= po), te[0, T —h] . (4.5)

(m(T=h), mp}: = Fp(T k) (4.6)
Then = satisfies the equation

0
O dnT(s)w(t—s)—-% go(Z(t), a(t)), a.a. te[0,T—h] (4.7)

This follows from (i) and (3.8).

Remark 4.7

By the previous remark and proposition 3.2 one gets that = satisfies the
following Volterra integral equation

}'T’Tt——s)'tré‘)d8+1r(T h)+ IT)T(S)‘JTT h—g)ds
t

I go(:v(s u(s)) ds, 1[0, T—h] (4.8)

Remark 4.8 ,
As discussed in remark 4.5, the transposed equation (i) for p is valid only on

[0, '=%]. However, in a form similar to (4.8), it can be extended to the final
interval [T'—%, T]. By (4 3) and (4.6)

F (T —=h), 1TT)=(7T(T k), f‘n’T p(T-h)=CGp*%w

where

S

o' . _
w i= C’_*l +o gl(xT; Ap)eWle

+
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Then, since #lw,=[G* w]l, proposition 3.3 yields

¢
(Flrpity=a(—h-1)— _j'h s — 0 Flre)(s) ds

Thus for [T —h, T]
T

m(l)=aft—T)— ,I T (t~s)m(s) ds (4.9)

Formula (4.9) is an ‘ adjoint ’ equation for = on [T —h, T'] in the form of a
Volterra integral equation involving weW®2, The function » satisfies the
transversality condition

0
w—= 91(Zp, @p) LKer C (4.10)
In the following remarks 4.9-4.11 we consider the case where g, is given by
T
$1(xr, ug)= Tfh Folx(t), w(t)} dt (4.11)

with g, as above. This, certainly, is the most interesting case. First, we
observe that (4.11) allows to write an ‘ adjoint’ equation on 7', which is
different from (4.9). Then we show that the adjoint equations (4.8) and (4.9)
for = can be simplified and unified if the new variable {:= C*leW.4 is
introduced. This leads also to simple forms of the maximum conditions and
the transversality condition.

Remark 4.9
Suppose that g, is given by (4.11). Then for ¢cWt?

0 09
5 018 En)b= § = guET+5), T +9)h(s) ds (4.12)

In this special situation, there is an essentially different way to get an
‘adjoint’ equation on [T —hk, T]. It is easily seen that (9/0x)g,(Zp, %yp)
can uniquely be extended to a bounded linear functional on MP?. In this
gense it can be identified with the following function vy, = (y,,°, v,/ )eM?

d
yar' = 0, yalls) i= = go(@(T +5), WT +5)), se[~h, 0]  (4.13)

On the other hand, by lemma 3.1, (8/0x)g,(Zy, Wp)—as a bounded linear func-
tional on W1?—can be identified with the following function

: 0 g
e =A¥pu €Wy (=R} i= | — go(ZF(T +5), W(T +5)) ds
-h Ba:

d 9 0
378 = [ 5 6@ T +0), HT +0)) do, se[-h,0]  (414)



686 F. Colonius

Then we have
G*'VM = Gw* A*')’W

8
= Ow* = 1(Er, Ur) (4.15)

By Manitius 1980, pp. (7-8), it is known that G*y,, satisfies a transposed
equation ; more specifically, define peWh¢([T -, T'], R"*) by

pt) i= [G*yy T —h—t), te[T—n, T] (4.16)
Then ‘
0
Ap= FGy* = 9:(&p, p), p(T'—h)=0
and
0
pO= ~L(p) —— gE(0), W), na. [T-h,T]  (417)
where

plty:=0 fortgT—-h
Transversality can here be expressed in terms of a function ueMv defined by
p={p® pt) := Gy* C*1 (4.18)
Then
p LKer (CG) (4.19)
The functions u and p are related to = by
a(T —hy=pd =w(@t)y=p (T —h—0t)+p(t), tc[T—-h,T] (4.20)
This follows since by (4.3), (4.15), and (4.16)
(w(T —h), Flap)y= G * C*1 + G*y,,

=p+(0, ijT)

Thus in the case of the special functional ¢, given by (4.11) (for which
(8/0%)g,(Zp, Wr) can be extended to a bounded linear functional on Mp) the opti-
mality conditions (4.17) and (4.19) for functions ue M? and pe W4 related to =
by (4.20) can replace the transversality condition (iii) in theorem 4.1 (the func-
tion 7 is related to p by (4.5) and (4.6)). The aesthetic advantage of this
formulation is that here also on the final interval [T — A, T'] an adjoint equation
in the form of a transposed equation is given.

Remark 4,10

For the special performance index given by (4.11), the integral equations
for = deseribed in remarks 4.7 and 4.8 can be simplified. Consider eqn. (4.9)
and observe that

0 .
w=C*] +‘a'; g1{Zp, y)

= C-*-'yu.
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where [:= C*leWre (4.21)

Then transversality is expressed by
{LKerC {4.22)
By (4.9) and (4.14) we find for a.a. ([T -5, T']

T
m(t)=L(t—T)+ywlt—T)~ II 7t (t—s)m(s) ds

; T 9 T
=1t=T)+ | 5 00@e), o) ds— [ nT=s)nle)ds  (4.23)

Now consider eqn. (4.8). By remark 3.1 and proposition 3.3
(T —h)=[Gp* w]°

0
=— __[hj'qT(cr)[GW* wli(o) do+w(—h)

=~ _jh (T —h—o)n(o) do+w(—h) (4.24)

Furthermore by (4.14)
w(—R)=U—~hk)+ yp(-F)

0
=¢-h)+ Jhﬁgo(E(T+s),ﬁ(T+s)) ds (4.25)

Insertion of (4.25) and (4.26) in (4.8) yields for a.a. te[0, T'—A]

T T 0
w(t)=— ‘f 77 (t~s)m(s) ds + ! 2 Jol(s), wls)) ds+ {(—R) (4.26)

In a different way, the adjoint equations (4.23) and (4.26) involving
{eWle defined by (4.21) have been derived in Colonius and Hinrichsen (1978,
theorem 3.1) (with a formal difference in the definition of 5). This adjoint
equation is a minor variant of (4.8), (4.9) based on the special form (4.11) of
¢;- The advantage of this adjoint equaticn is that it has a short and concise
form ; furthermore, transversality is directly expressible by {. However,
the relation of the adjoint equation to the original retarded system is not
immediately apparent. '

Remark 4.11

If g, is given by (4.11), lemma 3.2 implies that the maximum conditions
(ii) simplify to

B, n(t) +a% go(Z(@), T(E) =0 a.a. te[0, T] (4.27)

Remark 4.12

Yet another form of the maximum principle has been given by Bien and
Chyung (1980) (see also Colonius 1982).
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Remark 4.13 _

Using non-linear semigroup theory, Barbu (1977) derived optimality con-
ditions for non-differentiable convex control problems with functional differ-
ential systems, where the function 5 has finitely many jumps and an absolutely
continuous part. The final version of the optimality conditions has a form
similar to theorem 4.1,

5. . Optimal control to final states which are fixed modulo small solutions
This problem is a special case of problem 1. Taking into account the
smoothing property of retarded systems, a natural candidate for Z is

Z 1= WWhHLp([—h, 0], RY) (5.1)
with
C = A-18(x)A (5.2)

Here [o/h] means the smallest integer equal to or less than «f/h. C: Whr—
W/kI+Lp j5 g bounded linear map, and (2.4) is a special case (with ¢ =0) of

Clry—¢)=A"'S(ax)A(xp~$)=0 (5.3)
where

$E WI.p([ - h: 0]’ Rn)

Definition 5.1
The subspace
& % = A-18(a)Asf p = Wialhl+lp

is called the small attainability subspace of order « at time 7. °

Remark 5.1

In general, o/ > <.o/,,,. Henceif T > nh one has (Salamon 1981, corollary
2.2) that o ,*ccle?,.,, =clof ;, where the closure is taken in M®. For the
simple delay system (2.5), the attainability subspace is known to be constant
for T' > nh (see Banks et al. 1975). Hence, o/ ;2 <, , = o 7, 1.6. small attain-
ability subspaces are contained in the attainability subspace.

The optimality conditions (i)-(iii) in theorem 4.1 hold for problem 1 with
end condition (5.3) if the small attainability subspace o/ ,2 is closed in Wle/h1+1.p,
Before we analyse this closedness property, we remark that here the trans-
versality condition (4.22) { LKer C has the following concrete form. Suppose
that for ¢eW? the corresponding solution x of

z(t)=¢(t), te[—h, 0], 2z{t)=L(x,) a.a. [0, a]

satisfies 2, =0 (i.e. ¢ generates a small solution vanishing after time «).
Then it follows that

(& $Pw=0 (5.4)

In order to give a sufficient condition for closedness of «&/,%, the following
definition is convenient.
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Definition 5.2 i
Let V,, V, be subspaces of a vector space V5. Then V,<,V, if and only if
there is a finite dimensional subspace V of V, with

VicV,+V
Theorem 5.1

The small attainability subspace &7 ;* is closed in Wis/R)+Lp if the following
two conditions are satisfied

(i) o T_ha+h <, oA
(i) of,% is closed in Wis/hitLp
Proof

By (i) and (3.14)
Sl p =S+ )l y_y, + S{a)t),

Since S{a).e/, < 8(x).s 7 this implies that there is a finite dimensional space with
S(«) p=8(a)/, + V. Then it follows by (ii) that & p* = A-18(a)s’ 1 is closed
in W/hl+lp O

Remark 5.2

For «=0, condition (ii) is satisfied if and only if Im F is closed in M7 ;
this follows from A~'/, =Gy Im F since G, : MP— WP jg an isomorphism.
For the simple delay system (2.5), Im F is always closed in M7, since Im F =
R®x L,([—#4, 0], Im 4,). General necessary and sufficient conditions for
closedness of Im F seem to be an open problem (see Delfour and Manitius
1980, remark 2.7),

Remark 5.3

Condition (i) means that &/ *=.7,*+ V, where ¥ is a finite dimensional
subspace of W/al+lp,

Remark 5.4

For system (2.5) and a=10, condition (i) is also necessary for closedness of
& in W2 This follows from Kurcyusz and Olbrot (1977, corollary 2).

In the following example, the attainability subspace is not closed in W2
and there is no.Lagrange multiplier 1 in W%2, However, the small attain-
ability subspace of order a=1 is closed in W22 and the maximum principle
derived in § 4 can be used in order to compute the optimal solution for control
to a small solution. The problem is taken from Kurcyusz (1973, example 2).

Example 5.1 3
Minimize G(u)=4% § [w(t)—v(t)]2 d¢
subject to 0

() = u(t), tef0, 3]
} (5.5)

i2(t)=21{t—1), te[0, 3]
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zl(t)=a%(t)=0, te[~1,0] {(5.6)
vg= (5.7)
where ’
t+2
$(t):= ( ): tE[—l,O]
1/2(6+1)*
and
0, 0<i<}
v(t) = }[
1, $<i<3
Here
0 0 0 0 1
Ao= , Ay= » By=
o o) 2o o o)
0
Since 4,B,= , it follows by Kurcyusz and Olbrot (1977, corollary 2} that
1

&5 is not closed in Wh2
The unique optimal control @ is

1, 1<t<3

with corresponding trajectory Z = (%!, Z%)

0, —Lgtgl
() =

-1, 1<t<3

0, -1gig?
Tt) : =

3(t—2)2, 2<t<3

Then G(z)=14.
The derivative of G at & can be identified with the following L,-function

0, 0<ixgl
0 @)=41, l<i<}
au 0 N h
0, <t<3
Then Kurcyusz showed that &/, is dense in W12, and that there exist no

Lagrange multiplier le W12,
Let us consider the weakened version of the end condition with =1

S(1)(@(3), )= S(1)((0), $)
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i.e. z(t), te[3, 4] coincides with the solution y= (¢, y?) of

yi(t)=0, (3, 4]
g =yt - 1), (te[3, 4]
Ya= ‘;

One finds that for t[3, 4]
al(t)=y\(t)=y"(8)=$1(0) =2

a2(t) = y%(t) = $2(0) + g y,(s—1) ds=4(t —2)?

This yields for the optimal solution %, &= (!, #2) on [2, 8]
A =42t +1)=t—1

Ay=&(t)=1
In particular, we have
#2)=1 and #¥(3)=%

By theorem 5.1, the small attainability subspace &7,! is closed in W22, Observe
that = {($!, $2eW2?: ¢l =constant, $2(—h)= ¢ —h)=0}
e {(P!, $2)eW22: ! = constant}

Hence (i).and (ii) in theorem 5.1 hold. The transposed equation for 7 = (s, #?)
(cp. (4.5), (4.6)) has the form

() = —wi(t+1), ([0, 2]
#4(t) =0, te[o, 2]

and

and the maximum condition yields (see Remark 4.11)
wi(t) =v(t)—u(t), te[0, 3]

The transversality condition for {e W2 (see (5.4)) has the form

<L zpy={(-1)2(0)+ _(I)l {(s)E(1 +3) ds=0
where = (2!, 2?) is the solution of
@) =0
2 t)y=a(t—-1) for i[O, 1]

and z, is any element in WL2([-h, 0], R2). Hence {(0}=0 and {2=0. Then
the adjoint equation (4.23) implies that

n(t)=n2(t) — L2t —3)=0 aa. te[2, 3]
The adjoint equation shows that
7¥(f)=acR on [0, 2]
al{f)=beR on[1, 2]
wl{t)= —a(t—-1)+b on [0, 1]

and
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The maximum condition yields

(a(t—1)—b te[0, 1]
-5 te(l, §]
ii(t) =+
1-b te(3, 2]
|1 te(2, 3]

The constants @ and b can be determined by the boundary conditions

#(2)=1 and #¥3)=1%}
One obtains '
a=+ and b=-§

By standard arguments, 4 can be seen to be optimal, and the minimal cost

J(u) ~0-03

Remark 5.5

Kurcyusz (1973) proposed a different approach to the considered problem.
He observed that for the fixed final state problem Lagrange multipliers in a
stronger (Scbolev-space) topology exist. However, in general it is not clear,
if an appropriate Sobolev-space topology exists and what the concrete form of the
optimality condition is. '

Remark 5.6

In the considered example we have rank A,<n. For systems of the
simple type (2.5) this—not very restrictive—condition is equivalent to the
existence of non-trivial small solutions. Hence the introduced concept for the
final condition makes senge in this case.

Remark 5.7

In Colonius (1982 a) we show that for the delay systems (2.5) the con-
ditions (i} and (ii) of theorem 5.1 are not only sufficient, but also necessary for
closedness of &,*. Furthermore it is shown that closedness of &/, is in an
algebraic sense ¢ typical ’ for this type of system provided that the number of
linearly independent delays (that is rank A4,) is not greater than the dimension
m of the control space. More precisely the following statement is proven :
in the irreducible variety V defined by

Vi= {(AO’ A,, By)eRnxn x RnXnx Rrxm : rank Além}

the subset of triples (4,, 4,, B,) not satisfying conditions (i} and (ii) of theorem
5.1 is contained in a proper subvariety of V.
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