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ABSTRACT
The stability behavior of time varying systems can 

be studied using the concept of Lyapunov exponents 
and their corresponding Lyapunov subspaces. For lin­
ear time varying systems the entire Lyapunov spec­
trum can be approximated by the Floquet exponents 
of periodic systems. This leads to a variety of stability 
results, including the characterization of stability radii. 
Furthermore, a structural stability type theorem shows 
that stability features of time varying hyperbolic sys­
tems persist under small perturbations. For nonlinear 
time varying systems a stable manifold theorem allows 
us to interpret the linear results for the nonlinear sys­
tem locally around an equilibrium point.

1. INTRODUCTION
Two standard techniques for the stability analysis of 

dynamical systems were developed in M.A. Lyapunov’s 
thesis from 1893: A Lyapunov function describes the 
convergence behavior of all trajectories in (at least) 
a neighborhood of the limit set under consideration, 
where the limit set could be e.g. a fixed point or a pe­
riodic orbit. On the other hand, Lyapunov exponents 
describe the exponential growth behavior of the trajec­
tories depending on their initial values. This approach 
gives a detailed picture of the stable and unstable di­
rections of the system at a limit set. Our aim is to 
present a stability theory for time varying systems us­
ing the concept of Lyapunov exponents. Our hope is 
that this theory will lead to design principles for time

varying mechanical systems and structures.
A brief summary of the Lyapunov exponents ap­

proach for time invariant systems y =  X ^ y)  looks like 
this: Let y* be a fixed point of the vector field Xo- 
Linearize the system around y*, i.e. consider the lin­
ear system x =  Ax, where the matrix A =  D s Xo(y*) is 
the Jacobian of Xo at the equilibrium point y*. Com­
pute the eigenvalues and eigenspaces of A, and map 
the eigenspaces to the nonlinear state space as stable, 
unstable, and center manifolds. These invariant mani­
folds determine the phase portrait of y  =  Xo(y) around 
y* and, in particular, describe the stability behavior 
locally around y*.

Now consider a time varying system y  =  X (t,y )  
with fixed point y*. One faces a variety of difficulties 
when trying to adopt the program above to this sit­
uation: The linearized system x =  D9 X (t,y* ) • x =  
A(t)x is time varying, hence the set of eigenvalues of 
{A(t),t €  K} may not describe the stability behavior 
of A(t). Therefore, one has to use the Lyapunov ex­
ponents of {A (t),t €  R}. But these exponents may 
not be regular, i.e. they are only defined as lim sup’s, 
see e.g. Hahn (1967). Furthermore, the correspond­
ing subspaces will now depend on time, which makes 
computations quite difficult. Finally, it is not obvious 
how to construct (time varying) invariant manifolds 
that reflect the stability behavior of the linear system 
in the behavior of the nonlinear system around y*. For 
these (and other) reasons, the precise stability picture 
of y =  X ( t ,y )  at y* is extremely difficult to obtain.
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Note however that if A (t) is periodic, then stability 
analysis is feasible, e.g. via Floquet theory, Lyapunov 
transformations, or Poincare maps.

An idea that yields a variety of stability results for 
time varying systems is to model the time dependency 
of X (t,y )  itself as a dynamical system. This can be 
done either for individual systems, i.e. one considers 
a flow € R} on some state space, and assumes 
that the system is of the form y  =  X (ip(t),y). Un­
der certain conditions on {V’(t), f G R} one then ob­
tains stability results for the time varying system, see 
e.g. Johnson and Nerurkar (1992a,b). The other ap­
proach is to consider a family of time varying systems 
y =  X (t,y )  =  X 0 ( y ) +  £  where =

>=i
(uj(t),i =  1 . ..m ) can be any measurable time vary­
ing function with values in some set U C Rm . In this 
case, the set of time varying perturbations u 6  U is 
rich enough to model any (bounded) measurable time 
varying vector field, and one can define an associated 
(topological) flow on U. As a consequence, the Lya­
punov exponents, their corresponding subspaces, and 
stable manifolds can be studied. This is the approach 
taken in this paper. In particular, we reduce the study 
of time varying, measurable vector fields to the study 
of a family of periodic systems, for which a detailed 
stability analysis is available.

In Section 2. we give a brief overview of constant 
and periodic linear systems in order to explain the es­
sential features of stability analysis via Lyapunov ex­
ponents. Section 3. deals with time varying systems. 
We show which of the essentials can be retained for 
this class of systems. Finally, Section 4. is devoted to 
the stability study of nonlinear, time varying systems 
around fixed points. This is done via linearization, 
and the results of Section 3. are utilized by means of 
a stable manifold theorem.

2. REVIEW OF CONSTANT AND PERIODIC LIN­
EAR SYSTEMS

The analysis of constant coefficient, linear systems

(1) x =  Ax  in Rd

where A  6  gt(d,K), the dx d matrices with coefficients 
in R, is a paradigm for many approaches in linear and 
nonlinear systems theory. Once a problem is reduced 
to one of the form (1), i.e. to a problem of linear 
algebra, it is considered ‘solved’. Let us recall briefly, 
with respect to stability analysis, what can be said 
about the constant coefficient linear system.

The system (1) is exponentially stable iff it is glob­
ally asymptotically stable iff it admits a strict qua­
dratic Lyapunov function iff all the eigenvalues of A  

are in the left half of the complex plane. The system is 
(marginally) stable iff it admits a quadratic Lyapunov 
function iff all eigenvalues of A  have nonpositive real 
part and purely imaginary eigenvalues are geometri­
cally simple. Actually, the eigenvalues and their as­
sociated (generalized) eigenspaces contain additional 
information: Let Aj <  Aj <  ••• <  At,fc <  d, be the 
different real parts of the eigenvalues of A, with as­
sociated sums of generalized eigenspaces Ei ...E k  of 
dimension d i . . . dt- Let e^, i =  1 . . .k , j  =  1 . .  .<4 be 
a basis of with eij €  Ei and consider an initial value 
x0 =  22 a i j e ij ■ Define t(x0 ) =  max{i, aij 0 for some 

i j
j  €  1 . . .  d,}. Then the solution y>(t, XQ) =  eA t xo of (1) 
behaves like eA ,<*o)* for t —+ oo. In particular, we have 
XQ €  Ei iff * lira |  log |y>(t, x0 )| =  X- Hence for Aj < 0 
the system is exponentially stable from initial values 
xo €  Ei, and exponentially unstable from XQ £ Ej 
with Aj >  0. Consequently, E* =  ®  Ei is the (ex- 

A,<0
ponentially) stable subspace of (1), the exponentially 
unstable subspace is EX =  ®  Ei, and Ei for A,- =  0 

Ai>0
is the center subspace E c . Stabilization of the linear 
system (1) then amounts to changing the dynamics in 
E U ® E C. Furthermore, recall that a linear vector field 
A  6  g£(d, 1R) is structurally stable in g£(d,TR.) iff A is 
hyperbolic (has no eigenvalues with zero real part). 
This means that stability features of A  are preserved 
under small variation of its coefficients.

TUrning for a moment to nonlinear systems, con­
sider the differential equation

(2) x =  X 0 (x) in R*,

where, for simplicity, Xe is a C°° vector field. As­
sume that Xo has an isolated fixed point x* E Ra , i.e. 
XQ(X*) =  0, and let without loss of generality x* =  0. 
The local behavior of the nonlinear system (2) around 
x* is described by the linearized system

(3) z — A z  in R‘i ,A  =  Z>x Xo(x’ ).

There exist local C°° manifolds W *, W w , W e  at x* such 
that dim W* =  dim E*, dim W“ =  dim EX, dim W* =  
dim E c , and on W* and W“ the system (2) has the 
same (exponential) stability behavior as that of the 
linear system (3) on E*, and EX respectively. Fur­
thermore, the invariant manifolds are tangential to the 
corresponding subspaces at the fixed point z* . If x* is 
hyperbolic, then the local flow of (2) is equivalent to 
that of (3) (i.e. orbits are transformed into orbits via a 
homeomorphism), and the system (2) is locally struc­
turally stable at x* under small perturbations within 
all (X  , r  >  1 vector fields.
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Ideally, one would like to be able to analyze time 
varying systems in the same way as time invariant sys­
tems. While this is not possible in general, the program 
does go through for periodic systems 
(4)
i  =  A(t)x  in R4 , A (T  4 -1) =  A(t) for all t G R.

This can be seen in different ways, and we will present 
three approaches. Floquet theory implies that the fun­
damental matrix o f (4) can be written in the form 
$(t) =  P (t)e A t , where P (t) is a T-periodic matrix 
function, and A is a constant matrix containing the 
Floquet exponents in its diagonal. As in the time in­
variant case, A contains the exponential stability in­
formation of the system, together with the stable, un­
stable, and center subspaces E*(0), F “(0), ^ (O ) for 
the initial time t =  0. Then E'^t) =  $(t)E *(0) =  
P(t)E*(0) changes T-periodically (although need 
not be periodic), and this is the stable subspace for 
time t. Analogously, P “ (0) and E e (0) are transported 
via $(t) to the time periodic subspaces E u (t) and E e (t). 
Again, hyperbolic periodic linear systems are struc­
turally stable within this class of systems.

Lyapunov transformations transform periodic linear 
systems (4) into time-invariant linear systems o f type 
(1). This transformation is given by the solution of a 
linear, periodic matrix differential equation that pre­
serves the exponential growth rates (hence the expo­
nential stability behavior) and that maps the invariant 
subspaces o f (4) into those of (1), and vice versa. It 
may be viewed as a T-periodic coordinate transforma­
tion. Compare e.g. Gantmacher (1959) for details on 
Lapunov transformations.

Poincare maps can be utilized for the analysis of (4) 
in the following way: Define w =  and consider the 
augmented- system

x =  J4(0)Z in R 4

(5) 0 =  w  on S 1 , the one-dimensional sphere, 
parametrized by the angle [0,2r).

Consider the global cross section T =  { (z ,0 ),z  G R4 , 
0 €  S1} and define the Poincare map P  : r  —> r  by 
P(x, 0) =  (y>(T,z),0), where <p is the solution o f (4), 
i.e. P n (x,Q) =  $ (n T )z ,  with $  the fundamental ma­
trix of (4). The discrete time system {P",n G Z} 
is time invariant. The eigenvalues m  of P  are 
related to the Floquet exponents A j. . .  Aj of (4) by 
A,- =  jr log |pi |, and the invariant subspaces E‘, E*, E e 
of P  generate the corresponding subspaces of (4) via 
E*(t) =  $ ( t)E ’ ,
E*(t) =  G W E *, E e (t) =  Q (t)E e .

Turning again to nonlinear systems, assume that (2) 
has an isolated periodic solution <p{t, z) with period 
T >  0. Linearization of (2) around this periodic orbit 
leads to

(6) z  =  A(t)z in R4 , A(t) =  Dr Xo(^(t, *))•

The system (6) can be analyzed by the techniques de­
scribed above, which leads to results for (2) locally 
around the periodic orbit 7 =  {y>(t,z), t G [0,T)} 
e.g. in the following way: Pick p  G 7, construct a lo­
cal transveral cross section r p  at p, and consider the 
Poincare map Pp  : r p —♦ r p  of (2). Linearization of 
this map leads to eigenvalues and invariant subspaces 
as above. These invariant subspaces correspond to 
the stable, unstable and center manifolds W*, Wp  , W ‘ 
of Pp . The flow $(t) of (2) maps these manifolds 
in r p into those of the periodic orbit 7. These in­
variant manifolds are tangential to the corresponding 
(time-varying) invariant subspaces of (6), displaying 
the same exponential growth behavior. Local equiva­
lence of the flows (Grobman/Hartman Theorem) and 
local structural stability follow in the same way. We 
refer the reader to Wiggins (1988) for an account of 
the theory.

General time varying systems require a different ap­
proach to identify exponential growth rates, associated 
invariant subspaces, and corresponding invariant man­
ifolds. The next section presents the linear theory, and 
Section 4. contains our results on nonlinear systems.

3. TIME VARYING LINEAR SYSTEMS
For general time varying linear systems, the ap­

proaches outlined in the previous section do not work: 
The real parts of the eigenvalues of A(t), t G R do not 
necessarily determine the system’s stability behavior, 
Lyapunov transformations exist only for so-called reg­
ular systems (compare again Gantmacher (1959)), and 
there are no obvious choices for transversal cross sec­
tions and Poincare maps along trajectories. Therefore, 
a different approach has to be developed. In this sec­
tion, we present our results in the following set-up.

Consider the family of linear, time varying systems

m
(1) x =  A(t)x =  Aox +  ^ U i ^ A i X  in R4  

¿=1

where (ui)i = x ...m  =  u € U =  {« : R — U, measur­
able} and U C Rm  is assumed to be convex, com­
pact, with 0 G int U, the interior of U. We call U the 
perturbation range of the system (1). In order to be 
able to treat all bounded, measurable matrix functions 
A(t), we introduce a range parameter p >  0 and define
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U" =  p-U =  {y € Rm , there exists x €  U with y  =  px}. 
Then U p  denotes the corresponding function space. 
Note that for all bounded, measurable matrix functions 
A(t), t  g  R  there are A0 . . .A m , U C Rm  for some 
m  < dP, and p  > 0 such that A (t) =  Ao +  Eu,(t)Aj 
with u G Up .

Exponential stability of the system (1) is measured 
by its Lyapunov exponents: Denote by ^ (t,z ,u ) the 
solution of (1) with initial value x  €  Rd  and perturba­
tion u G U  We define
(2) 1

A(u, x) =  limsup -  log x, u)|, (u, x) €  U x  Rd , 
t— »00 *

r / 0 .

For u ^constant, the Lyapunov exponent A(u,z) is 
one of the real parts of the eigenvalues of A(u); in fact 

t
A(u,r) <  A,- iff x G ®  Ej (with notations from Section 

j= i
2.). For u(f) periodic A(u,z) is one of the Floquet 
exponents of A(u(t)). For general u G W the system (1) 
is exponentially stable for all initial values x 6  Rd , x /  
0, ifmaxA(u, x) <  0. Furthermore, for every u G U 
there are at most d  different Lyapunov exponents of 
A(u(t)). We will see later on that one also obtains 
generalized notions for A(u(t)) corresponding to the 
(generalised) eigenspaces.

In general it is difficult to analyze the Lyapunov 
exponents directly via the definition in (2). Instead, 
one separates the system (1) into an angular and a 
radial part. Since linear systems are homogeneous of 
order 1, it suffices to consider the angular part on the 
projective space P*- 1  in Rd . The projected system 
satisfies the differential equation

m
(3) s =  h(u, s) =  ho(«) +  r  «.(tJA^s) in P**1 

»=1

with h ,(s) =  (Aj — sT AjS • Id)s, j  =  0 . . . m where T  
denotes transpose and Id  is the d  x  d  identity matrix. 
Solving the corresponding (decoupled) linear equation 
for the radial part yields

t

. . .  A(u,s) =  lim sup - /  q(u(r), s(r))dr,
(4) t-»oo t J0

x ^ " 1,

where g(u, s) =  q0 (s) +  S u ^ s ) ,  q,(s) =  sT AjS  for 
j  =  0 . . .  m. Since A(u, s) =  A(u, a s) for all a  G R, 
a  #  0, (4) describes all Lyapunov exponents of A(u(t)) 

for any initial value x /  0. In order to simplify our 
exposition, we will assume the following nondegeneracy 
condition for the projected system (3):
( H )

dim £A {h(u ,s), u G l/} ( s )  =  d — 1 for all s g  P  , 
where £ A  denotes the Lie algebra generated by the 
vector fields {h (u ,s), u G U }. Note again that for all 
bounded, measurable matrix functions A (t), t G R we 
can find A , , j  =  O ...m , U C Rm , P >  0 such that 
A(t) =  Ao +  Eu,(t)A,- with u G U p and (H) is satisfied 
for U».

Define the Lyapunov spectrum of the system (1) for 
Up  as
(5) Exy(/>) =  {A(u, s), u G U p , s  e  P 1 - 1 }.

A direct analysis of the Lyapunov spectrum is difficult, 
since the exponents A(u,s) need not depend continu­
ously on u nor on s. (Compare, however, Arnold and 
Nguyen (1994) for some continuity properties of sto­
chastic Lyapunov exponents.) Therefore, we estimate 
E£y (p) from above using the so-called Morse spectrum, 
and from below via the Floquet spectrum. A compar­
ison of these two spectra will yield the desired results.

The theory of the Morse spectrum is developed in 
Colonius and Kliemann (1995a) for general nonlinear 
systems, and the corresponding results for time varying 
linear systems are presented in Colonius and Kliemann 
(1995b). Since the results of this paper can be formu­
lated without direct recourse to the Morse spectrum, 
we refer the reader to the two papers mentioned above 
for background material and proofs.
3.1. THE FLOQUET SPECTRUM

Spectra, being defined via time averages for t —► 
±oo, are defined on the limit sets of trajectories. In 
order to describe the Floquet spectrum, i.e. Lyapunov 
exponents over periodic orbits in the nonlinear equa­
tion, we first identify those sets on the projective space 
IP**- 1 , where periodic orbits of the projected system (3) 
can be found.
1. D efin ition . A set D  C is called a control set 
of the system (3), if (i) D  C c£O+ (x) for all x  G D, 
where O+ (x) =  {y G P*- 1 , there exist u G U and t >  0 
with ^ (t ,x ,u ) =  y},¥> denotes trajectories of (3), and 
“cF  is the closure o f a set, (ii) for all x  G D  there 
exists u G U  such that <p(t, x , u) G D  for all t >  0, and 
(iii) D  is maximal with properties (i) and (ii). Control 
sets with nonvoid interior are called main control sets.

It is shown in Colonius and Kliemann (1992) that 
the system (3) has t  <  d  main control sets D i . . .  Di, 
which are linearly ordered by the relation
Dk -< D j if there is z  G A  with 0 + (x) fl Dj ••
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Over the main control sets of (3) on IP** 1 we define 
the Floquet spectrum of (1) as
(5)
^ ( D ^ p )  =  {A(u,s), (u, s) €  Up  x  IP**- 1 ,

is a periodic or constant solution of (3) in intDi} 
t

^Fl(p) =  U  ^F t(D i,p). 
t=l

Note that each A €  ^ F I(P) is a Floquet exponent of 
some periodic system of the form (1). The following 
result was proved in Colonius and Kliemann (1995b).

2. T heorem . Consider the linear, time varying sys­
tem (1) and assume (H). Then for each i =  1 ,..  . t  we 
have that cfBFt(D i,p) is a bounded interval. Further­
more, if  D i -< Dj then ^ F t(D i,p) <  %Fi(Dj,p) in the 
sense that K*(p) <  ^ ( p )  and Ki(p) <  Kj(p), where 
K*(p) =  inf ̂ Fi(Di>p) and «¿(p) =  supEFt(Di,p).

Of course, it holds that ^Fi(p) C ^Ly(p)- In the 
next section we will study the question under which 
conditions the two spectra agree.

3.2 THE LYAPUNOV SPECTRUM
The Floquet spectral intervals HF l (D ,p) increase 

with increasing p >  0. We introduce the following 
condition, which allows us to study the monotonicity 
of the Floquet spectrum (in p) in more detail.

(I) The system (3) has the p-p' inner pair prop­
erty, if for p <  p' it holds that for all trajec­
tories tp(t,xo,u) in IP**- 1  with u G Up  there 
exists a time T  >  0 such that <p(T, z 0 , U ) G int 
0 + , p '(xo), where O + , P '(XQ) is the forward orbit 
of ZQ using controls in U p .

A detailed discussion of the inner pair property can 
be found e.g. in Colonius and Kliemann (1994). Under 
assumption (I) we obtain the following result.

3. Theorem . Consider the linear, time varying sys­
tem (1) and assume (H) and (I).

(i) For each i =  1 . . . k  the map p  »-► Di(p) is in­
creasing, left continuous, and has at most d 
discontinuity points.

(ii) For each i =  1 . . .  k the map p E pt(D i,p) 
is increasing, left continuous, and has a t most 
countably m any discontinuity points. It is dom­
inated from above and below by a right con­
tinuous function, which agrees with the spec­
tral map at its  continuity points, in particular, 
p =  0 is a continuity point.

(iii) A t the continuity points p o f  the spectral map 
in (ii) we have

(a) K*(p) <  Kj(p),Ki(p) <  Kj(p) with K* and 
K the infima and suprema o f the Floquet 
spectral intervals (see Theorem 2);

(b) ^Ly(p) =  cf^Ft(p) (compare (5)).
(iv) min Ex, (p) and max E^v (p) depend continu­

ously on p.

Theorem 3. was proved in Colonius and Kliemann 
(1995b). As a consequence, we obtain the main result 
of this paper.

4. Theorem . Let A(t) be a bounded, measurable ma­
trix function and consider the linear, time varying sys­
tem x =  A (t)x in Rd  with Lyapunov exponents X j,j =  
1 - . .  k. Then for every j  and every e >  0 there exist a 
periodic (piecewise constant) matrix function B(t) and 
a Floquet exponent pj of B (t) such that |Aj — p, | <  e.

Proof. Choose Ao, At and U i(t),i =  l . . . m  such that 
m

A(t) =  AQ+  This is always possible by e.g.
«=1

letting m  =  d2 . Denote p := ess sup||u(t)||, the essen­
tial supremum of ||u(t)||, and set Up  =  {v €  Rm , ||v|| < 
p}. One can always choose this set-up such that As­
sumptions (H) and (1) are satisfied, e.g. such that the 
projected system (3) has only one main control set on 
IP4 - 1  for all p > 0. This holds e.g. for m =  d2 .

Note that p as defined above need to be a continuity 
point of the spectral map in Theorem 3. (ii). But for 
any 6 >  0 there exists pt with p' > p, |p — p'| <  6 and 
p' is a continuity point. Let A be a Lyapunov exponent 
of A(t), then by Theorem 3. (iii) there exists for e >  0 
a periodic v° G U p such that a Floquet exponent po 
of Bo(t) =  Ao +  Ev°(t)A,- satisfies |A — po| <  f . A 
standard argument for periodic differential equations 
shows that a periodic, piecewise constant B i(t) with 
v' G Up  can be found such that a Floquet exponent pi 
of B i(t) satisfies |po - p i |  <  | . Now set B(t) =  B i(t).

This proof also shows that B (t) can be chosen in 
such a way that its range is close to the range of A(f), 
i.e. set a  =  esssup]|A(t)||, then for all 6 >  0 there 
exists a suitable B (t) with esssup||B(t)|| <  <r +  6. □

The Approximation Theorem 4. is not constructive 
in the way it stands now: The approximating peri­
odic system B (t) may have a large period, and it is 
not clear how to construct B(t) from a given measur­
able matrix function A(t). It is clear, however, that 
choosing AQ, Ai and Ui(t) for i =  1 . . . m  judiciously 
will result in smaller control sets and smaller spectral 
intervals which therefore approximate better the Lya­
punov spectrum of a given system A(t).

Before we turn to a variety of system theoretic im­
plications of the results above, we discuss briefly the
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concept of ‘eigenspaces’ for time varying systems of 
the form (1). It is clear that the eigenspaces of A(t) 
for t € R  do not have meaning for the stability behav­
ior of the system, as explained for constant and time 
periodic systems in Section 2. However, we have the 
following decomposition result which clarifies the role 
of the main control sets.

5. T heorem . Consider the linear, time varying sys­
tem (1) and assume (H) and (I). Let p be a continuity 
point o f  the spectral map in Theorem 3. (ii), and let 
Di(p) be the corresponding main control sets.

(a) For each p  £  int D{(p) there exists a peri­
odic u(t) G U p  such that p  G E p (u) for some 
j  =  1 . . .d ,  where E?(u) is an eigenspace of the 
fundamental matrix at time T , the period o f 
u(t). Equivalently, Ej (u) is an eigenspace o f  
the associated Poincare map, see Section 2.

(b) In general, define for u G U p  : Ef(u) =  {a: G 
Rd , x  0 implies <p(t,x,u) G c£Di(p) for t G 
R). Then the E p (u) are subspaces o f dimen­
sion independent of u & W ,  invariant under 
the How of the system (1), and Rd  — E f(u) ® 
• ■ • © E ^ ( u )  where is again the number 
of main control sets for the projected system  
(3) with range Up . The dimension d im f^ u )  
is the sum o f  the dimensions o f  the (general­
ized) eigenspaces of Ao that are contained in 
ctDi(p).

Theorem 5. shows that for general linear time vary­
ing systems one can still define ‘eigenspaces’ Ef(u), 
but they are, in general, a coarser decomposition of Rd  
than eigenspaces for constant or time periodic systems. 
In analogy to  Section 2. we define for u G Up  
(6)
E‘ (u) =  ®E((u), Ki(p) <  0, stable subspace,
E>(u) =  QE((u), K*(p) >  0, unstable subspace,
E‘ (u) =  ® E p (u), 0 G rf£ p t(D i,p ), center subspace.

These subspaces describe the uniform stability behav­
ior of the family of time varying systems (1), as ex­
plained in the next section.

3.3 STABILITY OF LINEAR. TIME VARYING SYS­
TEMS

Exponential stability of time varying linear systems 
is described by the system’s Lyapunov exponents. The 
theory developed in the previous sections leads to the 
following results. According to Theorem 3. the spec­
tral intervals are increasing and left continuous in the 
perturbation size p. This leads to a schematic picture:

Figure 1. Spectral intervals depending on the 
perturbation size p.

For p  =  0, the spectrum consists of the real parts 
of the eigenvalues of A o . For increasing p, the main 
control sets develop around the corresponding (sums 
of generalized) eigenspaces of AQ, and the spectral in­
tervals increase. They are ordered by the order of the 
main control sets, but they may overlap (see Figure 
1.). With increasing p, control sets may merge and 
then the corresponding spectral intervals unite. (In 
general, it is not possible to compute the Lyapunov 
exponents, and hence the spectral intervals, analyti­
cally. See Grüne (1995) for the numerics of spectral 
intervals and explicit examples.) As a consequence, we 
can describe the exponential stability behavior of the 
family (1) of time varying systems at a continuity point 
of the spectral map in Theorem 3. (ii). (For the study 
of discontinuity points we refer the reader to Colonius 
and Kliemann (1995b, 1993)).

Let p  be a continuity point of the spectral maps 
p »-♦ c lE p t(D i,p ), i =  1 . .  . t(p ) .  The system (1) with 
initial value xo G Rd is exponentially stable from Zo 
if xo G E*(u). This means that (1) is stable from all 
zo G Rd , z 0  0, such that the trajectory <p(t, xo,u) of 
the projected system has an cu-limit set on P -̂ 1  which 
is contained in UclDi(p), where the union is taken over 
all main control sets with Ki(p) <  0. In particular, 
the family of systems (1) is exponentially stable for all 
u G Up  and all ZQ G Rd  iff max E i y (p) <  0. The results 
for instability are completely analogous using E%(u). 
Similar to the constant coefficient case, one can prove 
that if max EL9 (P) >  0, then for an open an dense set 
of u G Up and xo G Rd  the system response is unstable 
(see Colonius and Kliemann (1995b)). Furthermore, 
if the minimum of the largest spectral interval is pos­
itive, then for all u G U p  there exists a dense set of
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initial values xo €  such that the system response is 
unstable. For initial values in the center space E‘(u) 
no general results can be obtained. For xo €  E?(u) 
the individual Lyapunov exponent A(u,x0) has to be 
computed. Again, A(u, xo) <  0 means exponential in­
stability, and A(U, XQ) =  0 means exponential growth 
or decay, or marginal stability.

An equivalent to structural stability (see Section 2. 
for constant coefficient and periodic systems) for time­
varying systems (1) is obtained from Theorem 3. in 
the following way: Assume that the system (K ) is hy­
perbolic in the sense that E '(u) =  0 for all u  G U p , i.e. 
0 £ Ei s ,(p).
6. Theorem . Consider the linear time varying system  
(1) and assume (H) and (I). Let p  be a continuity point 
of the spectral maps. I f  the system  (K ) is hyperbolic, 
then there exists a 6 >  0 such that for all p* €  (p — 
6, p + 6 )  we have

(a) The system  (1** ) is hyperbolic,
(b) dim E ‘ (u) =  dim £ ’,(«) for aZ/ u €  Up  and 

v E U P , compare (6).
Furthermore, for p =  0 we obtain that the stability 
behavior o f  Ao is preserved under small time varying 
perturbations in U p  ,p' <  6.
Proof.

(a) If the system (1**) is hyperbolic, then (K*) is 
hyperbolic for p' <  p  because the spectral inter­
vals are increasing. For p <  p' consider w.l.o.g. 
a spectral interval EF i(D i,p )  with Ki(p) <  0. 
Since p is a continuity point of K^p), there ex­
ists p  >  0 such that «»(p') <  0 for all p' <  p+ 6 , 
which proves (a) for p >  0. At p =  0, K, is dom­
inated from above by a right continuous map 
a(p) with lim a(p) =  «¿(0), the corresponding pio
Lyapunov exponent of Ao . By right continuity 
of a  we again obtain 6 >  0 such that Ki(p') <  0 
for all p' <  6, if /c,(0) <  0.

(b) At continuity points of the spectral maps, the 
control set maps p  t—► D ^p) are continuous, see 
Theorem 3. Hence the number of control sets 
t(p') is constant in a neighborhood of p. By 
Theorem 5. (b) the result follows for p >  0. 
At p =  0, the control set maps are again domi­
nated by a right continuous map, see Colonius 
and Kliemann (1995b), and hence l(p) is con­
stant on [0,5) for some 6 >  0. Now the result 
follows as above. □

Theorem 6., when applied to the maximal Lyapunov 
exponent
(7) K(P) =  max (p) =  sup EF i (p)

leads to the notions of robust stability and stability 
radii under time varying perturbations. In the present 
set-up, these concepts and their characterizations were 
developed in a series of papers by the authors, see Colo­
nius et al. (1992) for a survey of the results. Here we 
only mention the basic definition and some immediate 
consequences.

7. D efinition. Consider the constant coefficient ma­
trix Ao €  g£(d,TR) and a family of perturbation ranges 
{U p ,p  > 0} leading to the time varying systems (1). 
Define the stability radius of Ao with respect to {U p , 
p >  0} by

r(Ao) =  inf{p > 0, there exists u €  Z/Psuch
m

that x =  (Ao +  U{(t)Ai)x 
«=1

is not exponentially stable}.

The following result is an immediate consequence of 
Theorem 6.

8. Corollary, (a) r(Ao) =  inf{p >  0, K(P) >  0} =  
sup{p >  0, K(P) < 0}.
(b) r(Ao) >  0 iff Ao is exponentially stable.

Similarly to Definition 7. stability radii can be de­
fined for time-varying matrix functions A(t). Embed­
ding A(t) into a system of the form (1) (see the proof 
of Theorem 4.) leads to sufficient criteria of the form: 
r(A (t)) >  0 if /c(p) <  0, where K(P) is defined as in (7) 
and Up  is a range such that A (t) G {Ao +  EtiiAi, u G 
Up }. (The result follows directly from Theorem 6. and 
the continuity of K(P), see Theorem 3. (iv).) The set­
up presented in this paper is, to the best of our knowl­
edge, the only framework that allows the study of per­
sistence of stability for arbitrary time varying systems 
x =  A(i)x under general L°° perturbations.

4. TIME VARYING NONLINEAR SYSTEMS
The nonlinear analogue of the linear, time varying 

system (3.1) is

m
(1) y =  X (t, y) =  Xo(y) +  X  « .(O X (y) in K, i , 

«=i

with u G U p  as in Section 3. Exponential convergence 
and divergence of the trajectories of (1) is again mea­
sured by the Lyapunov exponents, now defined for the 
linearized flow of the system (1) on the tangent bundle, 
or, equivalently, for the projected flow on the projec­
tive bundle, compare (3.3) and (3.4). A stable mani­
fold theorem (compare Section 2.) then describes how
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to utilize the results on the linearized system for the 
original nonlinear one. This program can be carried 
out in great generality, compare e.g. Colonius and 
Kliemann (1995d). Here we restrict ourselves to lin­
earization around a fixed point, where the results of 
Section 3. apply directly. Note also that the state 
space of (1) could be a smooth manifold, resulting in 
only minor notational complications.

We assume for the rest of this section that the sys­
tem (1) has an isolated fixed point y* g  Rd , u .  X 0 (y* ) 
=  • • • =  X m (y*) =  0. Linearization around y* results 
in the system

m
(2) i  =  A(t)z =  Aoz +  ^2«i(t)A iZ  in Rd , 

i=l

where Aj =  D t X j(y*) for j  =  0 . . .m , and D 9 X j(y*) 
denotes the Jacobian of the vector field X j at y*. The 
perturbations u £ U p are defined as before. Of course, 
(2) is a system of the type (3.1), and therefore all re­
sults described in the previous section hold for the lin­
earized system at y*.

As explained in Section 2., a stable manifold the­
orem allows us to transfer the linear situation to the 
nonlinear system, locally around y*. A result on stable 
manifolds of (1) at y* is obtained as follows:

1. Theorem . Assume that the vector fields X j , j  =  
0 . . .  m are smooth, and that the linearized system  (2) 
satisBes Assumptions (H) and (I) from Section 3. Let 
p be a continuity point o f  the spectral maps in Theo­
rem 3.3 (ii) and let D ^ p ) . . .  DT(p) be the main control 
sets of the projected system (3.3) with *i(p) < 0 ,  i  =  
1 .. .r. Then there exist topological manifolds W*(u)

r
with dimension dim W*(u) =  dim £*(u) =  £  dim Ef(u) 

«=1
(defined as in (3.6)) such that for all y  €  W*(u) we 
have lim |p(t,y ,u ) — y*| =  0, where <p(t,y,Qi) denotes t »00
the solutions of the nonlinear system  (1).

The stable manifolds W*(u) are local objects at y*, 
but they are uniform in the sense that there exists 
6 > 0 such that for all u € U the W"(u) are defined 
in the ¿-neighborhood {y E Rd > |y — y*| <  ¿} of y*. 
Furthermore, since the stable manifolds according to 
Theorem 1. are (only) topological manifolds, we do 
not have a  notion of tangentiality of f j ( u )  and W’(u). 
But the subspaces and the manifolds are close at y* in 
the sense that their Lipschitz distance goes to 0 as they 
approach y*, compare Colonius and Kliemann (1995d) 
for a precise formulation of this statement and for a 
proof of Theorem 1., which is based on an abstract sta­
ble manifold theorem in Bronstein and Chernii (1978).

Using Theorem 1., the spectral and stability results 
of Section 3. carry over to the nonlinear, time varying 
system (1) at the fixed point y*. In particular, we 
obtain in a nonlinear analogue of Theorem 3.4., and 
Theorem 3.6. reads in its nonlinear version:

2. C orollary. Consider the nonlinear, time varying 
system (1) with isolated fixed point y*. Assume (H) 
and (I) for the linearized system  (2), and let p be a 
continuity point o f the spectral maps. If the fixed point 
y* o f  ( l p ) is hyperbolic (i.e. i f  the linearized system 
(2P) is hyperbolic) then there exists a ¿ >  0 such that 
for all p' G (p  — 3, p  +  S) we have

(a) the fixed point y* o f  ( l p  ) is hyperbolic,
(b) dimW*(u) =  dimW ^(u) for all u €  Up  and

Furthermore, for p  =  0 we obtain that the stability 
behavior o f y  =  Xo(y) at y* is preserved under small 
time varying perturbations in l ( f  ,p' < 6 .

Similarly, the stability and instability results in Sec­
tion 3.3. carry over as local results at the fixed point y* 
of the nonlinear, time varying system (1). In particular 
we have (see Colonius and Kliemann (1995c))

3. C orollary. Let y* be an isolated fixed point of 
the system  (1), and suppose that the linearized system 
satisfies Assumption (H).

(a) I f  K(P) := sup sup A(u, z) >  0, then the fixed 
«eu?

point y* is unstable.
(b) I f  K(P) <  0, then y* €  int W*(u) for all u €  Up .

As in the linear case, Corollary 3. and the continuity 
of K(P) in p  allow us to define a nonlinear stability 
radius of the system y  =  X o(y) at the fixed point y* 
as

r ni(y*) =  inf{p >  0, there exits u ^ U p  such that y*
is not exponentially stable for

m
y  =  X 0 (y) +  5 2  v iW X ity )}-  

>=i

The following result summarizes some results on the 
nonlinear stability radius r ^ . The proof and further 
properties o f rn t  can be found in Colonius and Klie­
mann (1995c).

4 . C orollary. Under the assumptions o f Corollary 3. 
we obtain:

(a) r ^ y * )  >  r(Ao) with A o  =  D t X 0 (y*) and 
r(Ao) as in Definition 3.7.

(b) r ^ y * )  >  0 iff y* is  exponentially stable for 
y  =  X 0 (y).
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Finally, we would like to point out two problems 
that should be addressed in order to complete the the­
ory of time varying systems as presented in this paper. 
First of all, note that the center subspace as defined in 
(3.6) can be rather large, and will, in general, contain 
points from which the system response is exponentially 
stable, see Colonius and Kliemann (1993). Hence a 
more detailed analysis of this subspace is necessary in 
order to obtain a result on center manifolds for the 
nonlinear, time varying system (1). Secondly, our sta­
ble manifold theorem does not imply the equivalence 
of the linear flow and the nonlinear flow around y* 
(Grobman/Hartman type theorem). However, such a 
result would clarify the possible behavior of the non­
linear, time varying system (1) locally around the fixed 
point y*. Both results together could lead to a precise 
bifurcation theory for nonlinear, time varying systems.
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