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ABSTRACT. Stochastic systems and control systems with values in a state space 
M can be considered as dynamical systems on the space U X M, where U denotes 
the space of admissible control functions for control systems, and the trajectory 
space of an underlying noise process for stochastic systems. Invariant probability 
measures for these flows are the main topic of this paper: We show that their 
support is contained in sets 'D C U x M, which are the lifts of so-called control 
sets D C M to invariant sets in U x M. Several results on the characterization 
of control sets D are given, together with criteria for the existence of invariant 
measures /Jon U x M with supp /J C 'D. The case of Markovian stochastic 
systems is treated in some detail. Because of the importance in applications, 
we prove rather complete results for two classes of systems: linearized systems, 
which playa crucial role in the theory of Lyapunov exponents for stochastic and 
control flows, and general nonlinear systems with one dimensional state space, 
which are important in stochastic bifurcation theory. 

1. INTRODUCTION: COMMON TECHNIQUES FOR STOCHASTIC, CONTROL 

AND DYNAMICAL SYSTEMS 

Common ideas and approaches in the theories of continuous time dynamical 

systems and of (Markovian) stochastic systems go back at least to the 1930's, 

when Kolmogorov introduced rigorously the generator of certain diffusion pro­

cesses as a second order (elliptic) operator. With Ito's formulation of stochastic 

calculus, and Dynkin's characterization of those operators that are generators of 

diffusion processes, many techniques that had been developed for ordinary dif­

ferential equations and their flows could be carried over to stochastic differential 

equations, yielding in particular results on invariant sets, recurrence and tran­

sience, invariant measures, ergodicity, stability, and stochastic perturbations of 
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( detenninistic) differential equations. (It should be noted that corresponding 

results for discrete time systems have been discovered at the same time or even 

earlier (see e.g. Kolmogorov (1931)), and that this correspondence also works 

for the newer developments in our area, but the discrete time situation is not 

the topic under consideration in this paper . ) 

The first important connection between (optimal) control theory and stochas­

tic systems was probably the celebrated duality between the linear quadratic 

control problem and the Kalman-Bucy filter (1961), which led to an almost 

parallel development of linear optimal control for deterministic and stochastic 

control problems (compare e.g. the books of Kwakernaak and Sivan (1972) or 

Hijab (1987)). New ideas in nonlinear control theory, in particular the geometric 

approach of Brockett, Lobry, and Sussmann, and the so called support theorem 

of Stroock and Varadhan led since the 1970's to control theoretic descriptions 

of the supports of transition probabilities and invariant measures, and to char­

acterizations of ergodicity, recurrence and transience. Some general uniqueness 

results on invariant measures for stochastic systems were then obtained using 

Hormander's theorem (1967) on the characterization of hypoelliptic operators. 

(Again, similar approaches with corresponding results also hold for the discrete 

time case.) 

Recently, the common viewpoint of flows of dynamical systems, stochas­

tic systems and control systems is leading to a further unification and cross 

fertilization of these areas. While the theory of smooth flows for (time indepen­

dent) vector fields is classical (see e.g. the textbook of Nemytskii and Stepanov 

(1949)), the theory for stochastic flows has been developed in the 1980's by 

Kunita, Elworthy, Baxendale and others. The corresponding concept of control 

flows was introduced by Colonius and Kliemann (1990"). Besides questions 

about invariant measures and (smooth or measurable) ergodicity, which will be 

treated later on in this paper, it is in particular linearization techniques that 

have led to common developments, based on OseledeC's multiplicative ergodic 

theory (1968), which can be interpreted as a result for dynamical systems, sto­

chastic systems, or even control systems. In particular the areas of Lyapunov 

exponents, bifurcation theory, chaos, hyperbolicity and strange at tractors are 

active research fields at the moment for systems with noise and for systems 

with control inputs, as these and other conference proceedings (e.g. Arnold et 

al. (1991)) demonstrate. 

In this paper we will utilize ideas from ergodic theory of dynamical systems 

(see e.g. Mafie (1987)) to discuss existence and possible supports of invari­

ant measures for control and stochastic flows, where it is assumed that the 

stochastic flows are defined over a probability space il, which is the trajec-
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tory space of an underlying (stationary) driving process. Over the same space, 

now viewed as the space of admissible control functions, control flows can be 

defined, and their interplay yields the results in Section 4, mainly with the 

Krylov-Bogolyubov construction of invariant probability measures. In Section 

2, the precise concepts of stochastic and control flows are defined, and some ex­

amples are given. Since it turns out that the so-called 'control sets' and 'chain 

control sets' play a crucial role in the analysis of invariant measures, Section 3 

is devoted to the study of dynamical properties of control flows, in particular 

to lifts of control and chain control sets. Two classes of examples, which are 

central in linearization techniques and in the study of bifurcation behavior, are 

treated in detail in Sections 3 and 4. An application of the theory developed 

here to linearized systems and their Lyapunov spectrum will appear elsewhere 

(Colonius and Kliemann (1991 a». 
But first of all it seems useful to describe a little bit more precisely the 

current state of common techniques in ergodic theory of dynamical, stochastic 

and control systems, and so the remainder of this introductory section is devoted 

to this topic. 

Dynamical systems and Markovian stochastic systems 

Ordinary differential equations with generator X, a smooth vector field, on a 

smooth manifold M, give rise to (local) flows and (local) one parameter groups 

of diffeomorphisms, describing the solutions of the differential equation. (From 

now on we will assume that all systems are complete, i.e. the explosion time 

of all trajectories is ±oo.) Generators of (Markov) diffusion processes given by 
m 

stochastic differential equations dx = Xo(x)dt + ~  X;(x) 0 dW; on M (where 
;=1 

(WI . .. W m) is a vector of independent standard Wiener processes, and "0" 
denotes the symmetric or Stratonovic stochastic differential) are second order 

(elliptic) operators A = Xo + t f: Xl, acting on the space of bounded mea-
;=1 

surable (or COO_) functions. An associated one parameter semigroup (for t 2': 0, 

i.e. forward in time) is given by the transition probabilities pet, x, B), see 

e.g. Ethier and Kurtz (1986) for these facts in a much more general context. 

Qualitative theory, in particular ergodic theory, for dynamical and stochastic 

systems analyzes the long term behavior (i.e. t -t +00) ofthese (semi-)groups, 

without solving the equations explicitly. For problems like invariant sets, re­

currence and transience, stability, etc. Lyapunov functions are one appropriate 

tool. The stochastic version of this theory is described e.g. in some detail in 

the books by Hasminskii (1969) or Friedman (1975), where it becomes clear 

that stochastic Lyapunov functions are a convenient tool for the generator A 
as are ordinary Lyapunov functions for the vector field X. For the existence of 
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invariant probability measures of the above semigroups, a Krylov-Bogolyubov 

construction works in both cases: H the time averages of the semigroups yield 

a tight family of probability measures, then any accumulation point is an in­

variant measure (see e.g. Nemytskii and Stepanov (1949) for the deterministic, 

and Hasminskii (1969) for the stochastic case). Compactness ofthe state space 

M is in any case sufficient for the existence of at least one invariant measure 

(compare Kunita (1971) for the stochastic case). Ergodic theorems can now be 

developed in complete analogy, because for the stochastic case there is a one­

to-one correspondence of invariant sets in the trajectory space and the state 

space for Markov processes. Lyapunov functions are again a convenient tool to 

obtain criteria for the existence of invariant measures etc. in terms of the vec­

tor field(s), see e.g. Bhatia and Szego (1970) and Hasminskii (1969). For the 

problem of analyzing stochastic perturbations of (deterministic) vector fields 

via Markov theory, large deviation approaches have been developed (see e.g. 

F'reidlin and Wentzell (1984) or also Zeeman (1988) for related ideas), combin­

ing qualitative theory for ordinary differential equations with that for Markov 

diffusion processes. Finally it should be mentioned that for non-flat manifolds 

the behavior of solutions of ordinary differential equations and stochastic differ­

ential equations depend on the (global) geometry of M j for many we mention 

only Emery (1990). 

Control systems and Markovian stochastic systems 

Besides the connections via optimal control theory (see the remarks above) 

it is in particular the support theorems that allow the use of control theoretic 

results for the analysis of stochastic systems: H we replace the Wiener processes 

in a stochastic differential equation by admissible control functions with values 
m 

in am, we arrive at the control system i; = Xo(:c) + E u;( t)X;(:c). The sup-
;=1 

port theorem says that the closure of the trajectory space of this control system 

is the support of the diffusion measure induced by the stochastic differential 

equation on this space (see e.g. Wong and Zakai (1969), Stroock and Varadhan 

(1972), Kunita (1974), Ikeda and Watanabe (1981». In particular, if the distri­

bution l:::..c., generated by the Lie algebra of vector fields C = CA{Xo, .•• , Xm} 

in the tangent bundle T M is integrable, then the control system and the sto­

chastic system live on the maximal integral manifolds of l:::..c. and the support of 

the transition probabilities P(t,:c,B) and of invariant measures are described 

by accessible and control sets of the control system (see e.g. Brockett (1973), 

Sussmann and Jurdjevic (1972), Clark (1973), Elliott (1973), Kunita (1978), 

Kliemann (1987». Together with Hormander's characterization of hypoellip­

tic operators (Hormander (1967», one obtains uniqueness results for invariant 
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measures on control sets and corresponding ergodic theorems (Kliemann (1987), 

Arnold and Kliemann (1987/J)). This is also the starting point for various re­

sults on the controllability of stochastic systems with input (see e.g. Zabczyk 

(1981), Ehrhardt and Kliemann (1982), Varsan (1982)). It should be mentioned 

that, among others, also the theory of large deviations for stochastic differen­

tial equations has an interpretation in terms of control theoretic concepts, which 

becomes particularly clear from Azencott's (1980) formulation, see also Arnold 

and Kliemann (19876). 

Dynamical, stochastic, and control flows 

So far we have considered questions in the qualitative theory of stochastic 

systems that could be analyzed using the Markov semigroup (i.e. the genera­

tor) of a stochastic differential equation. Problems that are concerned with the 

long term behavior of different trajectories relative to each other (e.g. conver­

gence or divergence of trajectories), i.e. properties of the multipoint motion, do 

not only depend on the generator A, but on the stochastic flow induced by a 

stochastic differential equation (see e.g. Baxendale (1986b) for example). The 

theory of flows for stochastic differential equations was developed by Kunita 

(1984), Elworthy (1978), Baxendale (1980), and others. In particular, Baxen­

dale (1986b) has shown that the stochastic differential equation for the 2-point 

motion (and its generator) are sufficient to construct the corresponding sto­

chastic flow. Once a stochastic flow is given, it is of particular importance to 

characterize those flows that are associated to Markov processes, and to de­

termine those invariant measures of the flow that are also invariant under the 

corresponding Markov semigroup (in general, a Markov stochastic flow can have 

invariant measures that are not Markovian). These are questions of appropri­

ate measurability, and they are treated e.g. in Crauel (1987, 1990). Problems 

concerning invariant probability measures of stochastic flows (see e.g. LeJan 

(1986)) and associated control flows are treated in Section 4 of this paper. The 

unified formulation of systems as flows does not only allow a common approach 

to basic problems of ergodic theory, but also, via linearization techniques, to 

the analysis of local behavior of nonlinear systems: Given the linearization with 

respect to a stationary situation (e.g. a rest point or a stationary solution), Os­

eledee's multiplicative ergodic theory (1968) describes the Lyapunov exponents 

and the corresponding invariant subspaces of the linearized system, and these 

subspaces can be projected down to the state space M as stable, unstable, or 

center manifolds (see e.g. Boxler (1989) or Dahlke (1989)). For linear sto­

chastic systems (i.e. linearizations around rest points) the theory of Lyapunov 

exponents is fairly complete (see e.g. Arnold and Wihstutz (1986), Arnold and 
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Kliemann (19876». (Note that for linear systems all trajectories are 'compared' 

with the unique steady state 0, and hence the theory of stochastic flows is not 

really needed.) For nonlinear stochastic systems· basic properties have been 

proved e.g. by Carverhill (19854 , 19856), Kifer (1986), Carverhill et al. (1986) 

(see also Arnold et al. (1991», connections with stability, the existence of Lya­

punov functions and invariant measures are discussed in Baxendale and Stroock 

(1988), and Baxendale (1990), and the relation to fiber entropy is analyzed e.g. 

in Ledrappier and Young (1985,1988) and Crauel (1991). Based on the concept 

of Lyapunov exponents, Arnold and Boxler (1989, 1990) have defined a concept 

of stochastic bifurcations. Similar developments for control flows can be found 

e.g. for linear systems in Colonius and Kliemann (1990C , 19916), and some basic 

properties for the nonlinear situation in Colonius and Kliemann (19904 ). Con­

nections between the stochastic and the controlled situation are given in Arnold 

and Kliemann (19876), Colonius and Kliemann (1990"), see also Baxendale and 

Stroock (1988). These connections lead e.g. to a common (deterministic and 

stochastic) concept for the analysis and stabilization of uncertain linear systems 

(see e.g. Willems and Willems (1983), Colonius and Kliemann (1990", 1990e». 
This is, of course, only a very brief review, neglecting in particular the recent 

developments in the theory of dynamical systems, of discrete time systems (like 

products of random matrices, and iterated function systems), and of infinite 

dimensional systems. But it shows, how ideas from these three fields penetrate 

into the other areas, creating a common toolbox, and new applications and 

examples. 

2. SYSTEMS AND ASSOCIATED FLOWS 

The unifying point of view, which enables us to use common concepts and 

techniques for dynamical systems, stochastic systems and control systems, is 

the concept of topological flows: 

Let S be a complete metric space, T a time set (e.g. T = JR, JR+, Z, N), and 

W: T x S -+ S a continuous map, then (S, W) is a flow (or continuous dynamical 

system) if WH .. = Wt 0 W .. , where Wt: S -+ S denotes the map Wt(x) = W(t,x) 
for all t E T. 

The most prominent examples of flows are those generated by (ordinary) 

differential equations: Let M be a smooth manifold and X a smooth complete 

vectomeld on M. Denote by tf;(t, x) the solution of x = X(x) at time t with 

tf;(O, x) = x, then W: TxM -+ M, w(t,x) = tf;(t, x) is a flow on M (with T = JR). 

In this case, the W t, t E JR are even diffeomorphisms. IT X is not complete, then 

one obtains a local flow onM, and local flows are in 1-1 correspondence with 
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the vectorfields on M, see e.g. Boothby (1975), Chapter IVA. If M is compact, 

then all vector fields are complete. If the vectorfleld is time dependent, then 

the solutions of x = X(t,z) will, in general, not generate a flow on M, because 

tjJ(t+S,X,X(T,.» = f/1(t,f/1(S,X,X(T,.»,X(T+S,·», where f/1(t,X,X(T,.» 
denotes the solution of x = X(T,X) at time t with f/1(O,Z,X(T,.» = x. For 

time dependent differential equations one therefore has to take the time shift 

into account, when formulating an associated flow. This will become important, 

when we discuss control systems and stochastic systems. 

Next consider the nonlinear control system on a smooth manifold M 

m 

(1) X = Xo(x) + L Ui(t)Xi(X) 
;=1 

where Xo, ... ,Xm are given smooth vectorflelds on M, and (Ui)i=1. .. m =: u E 

U:= {u: R _ U C Rm, locally integrable}. Typical questions asked in control 

theory are e.g.: Given x, y E M, does there exist a time t ~  0 and a control 

U E U such that rp(t,x, u) = y (controllability); here rp(t, x, u) is the solution of 

(1) at time t using the control function U such that rp(O, x, u) = x. Or given 

a rest point ZO EM of x = Xo(x), does there exist a control function u such 

that zO becomes stable for (1), etc. (see e.g. Wonham (1979), Isidori (1989) 

or Nijmeijer and van der Schaft (1990) for a discussion of control theoretic 

problems). 

H we want to formulate control systems as flows, we have to take the depen­

dence of the solutions of (1) on the functions u E U into account: 
Denote by 9: R xU -t U, 9t u(.) = u(t + .) the usual time shift, and define 

(2) cP:RxUxM-tUxM, cP(t,u,x) = (9t u,rp(t,z,u». 

Then 9H • = 9t 09", rp(t + s,z,u) = rp(t,rp(s,x,u),9.u), and therefore cPH. = 
cPtocP". In particular we obtain (compare Colonius and Kliemann (1990a , Lemma 

3.3»: If U C Rm is compact and convex, equip U with the weak *-topology 

of Loo(R,Rm) = (Ll(R,Rm»)*. Then (2) is a continuous dynamical system on 

the separable, complete metric space U X M, called the control flow associated 

with (1). 

Now the typical objects of control theory for (1), like reachable sets etc., are 

projections of similar objects for (2), e.g. denote by O+(z) = {y E M; there 

exist t ~  0 and u E U with rp(t,z,u) = y} the reachable set (or forward orbit) 

of z E M for (1), then O+(x) = U 1rMcP(t ~  O,x,u), where 1rM: U X M - M 
tJEU 

is the projection onto the second component, and similarly for O-(x), the set 

of points, from which x can be reached. In Section 3. we will discuss in more 
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detail several connections between CQlltrol theoretic concepts for (1 laud notions 

from the theory of dynamical systems for (2). 

Stochastic flows are abstractly defined in the following way: Let (n,:F, P) 
be a probability space aud (It: n --. n, t E T, a family of measurable maps such 

that (It+. = (It 0 (I. aud (ltP = P for all t E T, i.e. P is a 8-invariant probability 

measure. Let M be a Polish space (separable, complete, metric) and B its Borel 

u-algebra. A stochastic flow is then a measurable map 

(3) 4>: T X n X M --. n X M, 4>(t,w,z) = «(ltW,If>(t,w,z» 

such that If>(t,.,w): M --. M is a homeomorphism for all (t,w), 
and If>(t + s, z, w) = If> (t, If>(s, z, w), 8tw) for all s, t E T. 

Again, this implies 4>t+. = 4>t 0 4> •. 
In the present context, two types of stochastic flows are of particular interest: 

Random differential equations: Let {e" t E R} be a stationary (ergodic) 

stochastic process taking values in some Polish space (N, N), where N denotes 

the Borel u-algebra of N. Let n be the trajectory space of {et, t E R}, and 

construct the measure P from the finite dimensional distributions of {e" t E R} 

via the Kolmogorov construction. Denote by (: R X n --. N the evaluation map 

(t,w) = w(t), then { ( " ~  t E R} is a stationary (ergodic) stochastic process with 

the same finite dimensional distributions as {et, t E R}, and the probability 

measure P is 8-invariant, where 8 is the shift on n (compare e.g. Rozanov 

(1967, Chapter 4.». Now let X be a measurable map from N into the smooth 

vectomelds on a smooth manifold M, and consider the random differential 

equation x = X(z,(t(w» on M, and assume that all its solutions If>(t,x,w) do 

not explode in finite time (this holds e.g. if M is compact). Then 4> = (8, If» 

defines a stochastic flow. 

Stochastic differential equations: Let M be a smooth manifold and Xo ... Xm 
smooth vector fields on M. Consider the stochastic differential equation dz = 

m 
Xo(z)dt+ E X;(z)odW;, where the W; are independent standard Wiener pro-

;=1 
cesses and "0" denotes the symmetric or Stratonovic stochastic integral. Denote 

by (n,:F,p) the Wiener space of continuous functions into am, vanishing at 

zero, with the Wiener measure P. P is invariant (and ergodic) with respect to 

the Wiener shift on n, defined by 8tw(·) = w( t + .) - w( t). Under certain regu­

larity conditions on the vector fields Xo .. ,Xm' 4> = (8,1f» defines a stochastic 

flow (of diffeomorphislnB on M) for t ~  0, where c,o( t, z, w) denote the (path­

wise) solution of the stochastic differential equation (see e.g. Kunita (1984, 

Chapter II». If we extend the Wiener process backwards in time for t :::; 0 with 

an independent copy, we obtain with the same construction a stochastic flow 

fortER. 



                                   211 

We have seen that stochastic flows and control flows are flows of homeomor­

phisms (or even diffeomorphisms) over a shift space of trajectories (the trajec­
tories of an underlying stochastic process, or the admissible control functions, 

respectively) i.e. skew product flows. H they are defined over the same function 

space (and with the same dynamics on M), then the difference is basically that 

for stochastic flows the trajectory space carries an additional shift invariant 

probability measure. In this sense one can talk of the control system associated 

with a random or stochastic differential equation (in the latter case one has to 

consider admissible controls, which vanish at zero), and vice versa each control 

system has associated with it a class of stochastic flows, determined by all 8-

invariant probability measures on (U,8). The goal of this paper is to discuss 

ergodic properties of such stochastic flows, using control theoretic concepts and 

aspects of the theory of dynamical systems, applied to control flows. This point 

of view will be discussed in the next section. 

3. DYNAMICAL PROPERTIES OF CONTROL FLOWS 

In this section we will characterize several properties of control systems using 

concepts from the theory of dynamical systems. This will enable us to analyze 

invariant measures and their supports in Section 4. While most of the theory 

developed here also works for the discrete time case (i.e. T = Z or N), we will 

restrict ourselves to T = R. 

We will need the following concepts (see e.g. Mane (1987) and Conley 

(1978»: 

Definition 3.1. Let (5,"ili') be a continuous dynamical system. For:r: E 5 

the limit &et w(:r:) is defined as w(:r:) = {y E 5j there exists t,. _ 00 with 

"ili'(t,.,:r:) - y}. (5,"ili') is topologically tnnuitive, if there exists:r: E 5 withw(:r:) = 

5, and topologically mixing, if for any two open sets Vi, 112 c 5 there exist 

To E R, Tl > 0 such that for all n E N "ili'(-nT1 + To, Vi) n 112-:/: 4>. 
A closed "ili'-invariant subset W C 5 is called a maximal topologically mizing 

&et if (W, "ili'lw) is topologically mixing and every closed "ili'-invariant set W' ::> W, 
for which (W', "ili'lw') is topologically mixing, satisfies W' = W. Analogously 

maximal topologically transitive sets are defined. 

Consider the nonlinear control system on a paracompact, COO Riemannian 

manifold M 
m 

(1) Z = Xo(X) + LUi(t)Xi(X) 
i=l 

whereXo, ..• ,Xm are Coo vector fields, (Ui) = U E {u: R _ U, locally integrable}, 

U C Rm is compact and convex. We define for such a control system: 
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Definition 3.2. The po"itive orbit of (1) from z E M is given by 

O+(z) = {y E M; there is t;::: 0 and u E U such that y = ~ ( t , z , u ) } .  

DC M is called a control "et of (1) if (i) D ~  O+(z) for all zED, (ii) for all 

zED there exists u E U such that ~ ( t , z , u )  E D for all t;::: 0, and (iii) D is 

maximal with respect to these properties. 

The system (1) is completely controllable if O+(z) = M for all z E M. 

In order to avoid degenerate situations we will assume that 0+ ( z) (and 

also the negative orbit 0- (z) = {y EM; there is t ;::: 0 and u E U such 

that z = r,o(t,y,u)}) have nonvoid interior in M. To ensure this property, it is 

convenient to assume 

(H) dimCA{Xo + L UiXi, (Ui) E U}(z) = dimM for all z E M, 

where for a set X of vector fields CA{X} denotes the Lie algebra generated by 

X, and CA{X}(z) is the linear subspace of TzM, the tangent space at z, which 

is spanned by CA{X}, compare Isidori (1989) and Nijmeijer and van der Schaft 

(1990) for a detailed discussion of (H). Here it suffices to note the following 

consequences: 

- If V C U is a dense subset, then the control sets defined via V are 

the same as those defined via U. This applies in particular. to the 

continuous, piecewise constant, or periodic control functions in U. 

(2) 

- If D C M is a control set with int D =I- tP, then for all zED, all 

y E int D there exist t;::: 0 and U E U with ~ ( t , z , u )  = y, i.e. we have 

precise controllability in int D. In particular O+(z) = M for all x E M 

implies O+(x) = M for all x E M, i.e. complete controllability. 

Consider now the control flow induced by (1) on U x M 

tP:RxUxM-+UxM, t P = ( f ) , ~ ) .  

We lift the control sets D C M with nonvoid interior to tP-invariant sets on 

UxMvia 

(3) V = d{(u, x) E U x M; ~ ( t , x , u )  E int D for all t E R}, 

where the closure is taken with respect to the weak* -topology on U and the 

manifold topology on M. If we are looking for properties of tP that are related to 

the control structure of (1), then these must be properties of V. And, since the 

shift f) is not affected by the dynamics of (1), f) has to enjoy these properties as 

well. It turns out that topological mixing (and transitivity) are the appropriate 

concepts: 
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Theorem 3.3. (i) The shift (U,8) is topologically transitive and mixing. 

(ii) Let D C M be a control set with int D :f. </J. Then V, defined by (3), 
is a maximal topologically mixing (and a maximal topologically transitive) set 

with 

(4) int D = int 7rMV, and D = 7rMV. 

(iii) If V c U X M is a maximal topologically mixing (or transitive) set of 

(U X M, </J) with int 7rM V :f. </J, then there exists a control set D C M, which 

satisfies (4). 

The proof is given in Colonius and Kliemann (1990", Proposition 2.6, The­

orem 3.8, and Corollary 3.9). Note, in particular, that the lifted control sets 

V C U X M are topologically mixing and transitive. This leads to the following 

characterization of complete controllability: 

Corollary 3.4. Under the assumptions above, the following statements are 

equivalent: 

(i) The control system (1) is completely controllable on M. 

(ii) The dynamical system (U x M, </J) is topologically mixing. 

(iii) The dynamical system (U x M, </J) is topologically transitive. 

The ergodic theory of stochastic flows and control flows deals with invariant 

measures of (U x M,</J) and their properties. In particular, the supports of 

invariant measures and therefore the w-limit sets have to be characterized. It 

was shown in Colonius and Kliemann (1989, Proposition 3.6) that 7rMW(U,X) C 

M always has nonvoid intersection with some control set D. But it does not 

follow that 7r MW( U, x) CD, nor that D is unique. This leads to the concept of 

chain control sets E C M and their lifts to £ c U x M, which always contain 

entire w-limit sets. (For the connection of chain control sets with subbundle 

decompositions of linear flows on vector bundles see Colonius and Kliemann 

(19906).) 

Definition 3.5. Let (S, w) be a continuous dynamical system on a metric space 

(S,d). For e: > 0 and T > 0 an (e:,T)-chain from xES to yES consists of 

a sequence xo, . .. , Xn E S and a sequence to, ... , tn-l in lit such that Xo = x, 

Xn = y, tj ~  T and d(w(tj,xj),Xj+t):5 e: for j = O, ... ,k-l. 

For A C S define the chain limit set by 

O(A) = {y E S; for all e: > 0, T > 0 there exists x E A such that there is an 

(e:,T) - chain from x to y}, 



214                             

and the chain recurrent 6et as C'R = {x E S; x E flex)}. 

The system (S, \If) is called chain recurrent, if S = C'R, and chain tran6itifle, 

ify E flex) for all X,y E S. 

Recall that (S, \If) is chain transitive iff it is chain recurrent and S is con­

nected, and for A closed, neAl is closed, invariant and contains w(x) for all 

x E A, compare Conley (1978). 

For the control system (1) we define the corresponding concept using chain 

control sets: 

Definition 3.6. A set E eM is called a chain control 6et of (1), if 

(i) for all X,y E E and all e > 0, T> 0 there are n E N, Xo, ••• ,X .. E M, 

Uo, ..• , U .. -1 E U, and to, ..• , t"-l ;::: T with Xo = x, x .. = y and 

d(<p(tj,xj,Uj),xHI) < e for j = 0, ... ,n -1, 

(ii) for all x E E there exists u E U such that <p(t,x,u) E E for all t E R, 

and 

(iii) E is maximal with respect to these properties. 

The system (1) is completely chain controllable, if M is the chain control set. 

For the control flow (U X M, t/J) we again lift the chain control sets E C M 

toUxMvia 

(5) e = ((u,x) E U x M; <p(t,x,u) E E for all t E R}. 

The analogue of Theorem 3.3 for chain control sets reads: 

Theorem 3.7. (i) The shift (U,8) is chain transitive. 

(ii) E C M is a chain control set of (1) iff e is a maximal invariant chain 

transitive set of(U x M,t/J). 

(iii) (1) is completely chain controllable iff(U x M, t/J) is chain transitive iff 

(U X M, t/J) is chain recurrent. 

For a proof of (i) and (ii) see Colonius and Kliemann (1990", Lemma 4.6 and 

Theorem 4.9), (iii) is an easy consequence of (ii). 

We now have two control structures on M that are related to ergodic prop­

erties of (U x M, t/J). For the remainder of this section we discuss these control 

structures and their relations in some more detail. 

Lemma 3.S. (i) Chain control sets are pairwise disjoint, closed, and connected. 

(ii) Control sets are pairwise disjoint and connected. They are closed if 

they are invariant, i.e. D = O+(x) for all xED. 

(iii) Invariant control sets have nonvoid interior. 
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(iv) Hint D :f= 4> for some control set D, then 0+ (x) :::> int D for all xeD, 
i.e. we have precise controllability in int D. 

Remark 9.9. (i) For each control set D there exists a (unique) chain control set 

E C M with DeE. 

(ii) Several control sets may be contained in one chain control set. 

(iii) There may be points in a chain control set that are in no control set. 

While (i) is obvious from the definitions, (ii) and (iii) can be seen from the 

following example. 

Example 3.10. Consider the control system on the circle Sl 

x=-sin2 x+acos2 x-ucos2 x, x e Rmod 211", a>O, 

with U = [A, a] C R. There are four controi sets D1 = [0, arctan( a - A)1/2J, 

D2 = (11" - arctan( a - A )1/2,11"), D3 = D1 + 11", D.1, = D2 + 11", compare Arnold 

and Kliemann (1983,- Theorem 4.8) for a general technique to compute control 

sets for systems with one-dimensional state space. There exists, however, only 
4 

one chain control set E = Sl. Furthermore, the points in Sl \ U Di are in no 
i=l 

control set, but in E. It is true in general that two control sets D1 and D2 with 

Dl n D2 :f= 4> are in one chain control set. Control sets are chain control sets, if 

they have a certain isolation property, compare Colonius and Kliemann (1990", 

Section 4). 

Control sets and chain control sets are ordered in the following way: Let D1 
and D2 be control sets, then we define 

(6) D1 -< D2 if there exist x e Dl and Y e D2 with Y e O+(x). 

Lemma 3.11. (i) -< defined by (6) is an order on the control sets of (1). 

(ii) The closed (i.e. invariant) control sets are maximal elements of -<, the 

open control sets are minimal elements. 

(iii) H M is compact, then (1) has at least one closed and one open control 

set. In this case the maximal (minimal) elements are exactly the closed 

(open) control sets. 

Proof. (i) For a control set D, D -< D is obvious from the definition. D1 -< D2 

and D2 -< D1 means that there exist Xl E D1, X2 E D2 with X2 E O+(x), and 

also Y2 E D2, Yl E D1 with Y1 E 0+(Y2). Since X;, Yi E Di for i = 1,2, we have 

Xi E O+(Yi) and Yi E O+(x;). Therefore Y2 E 0+(X1) and Xl E 0+(Y2), and 

hence Xl and Y2 are in the same control set by maximality. Finally, if D1 -< D2 
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and D2 --< D3, then there are x E Dlo Yl E D2 with Yl E O+(x), and Y2 E D2, 
Z E D3 with Z E O+(Y2)' Since Yl,Y2 E D2, we know that Y2 E O+(Yl), and 

hence, using continuous dependence on initial values Z E O+(x), i.e. Dl -< D3. 
(ii) For all xED, an invariant control set, we have O+(x) C D, and hence 

invariant control sets are maximal elements. Now consider the time reversed 

system associated with (1): 

m 

(7) x* = -Xo(x*) - E u;(t)X;(x*). 
;=1 

The positive orbits O*+(x) of (7) are exactly the negative orbits O-(x) of (1). 
Hence the interior of the closed (i.e. invariant) control sets of (7) are the open 

control sets of (1), and this proves the second assertion of (ii). 

(iii) It was proved in Colonius and IGiemann (1989) that under our assump­

tions the control system (1) on a compact manifold M has at least one invariant 

control set D with int D I- </>. Furthermore for each x E Mthere exists an in­

variant control set D C O+(x). Hence in this case the invariant control sets are 

exactly the maximal elements of -<. Using time reversal, one sees that the open 

control sets are exactly the minimal elements of -<. 0 

The next example shows that for noncompact M there need not exist invari­

ant control sets, and maximal elements of -< need not be closed. 

Example 3.12. Consider the control system in Rl 

(8) x = Xo(x) + uX1(x) = 2 + u(x2 - 1) 

with U = [A,B] C [0,00). H B < 2, then (8) has no control set and lim c,o(t,x,u) = 
t-+oo 

00 for all x E R, all u E U. 

H A < 2, B ~  2, then (8) has a unique control set D = [-VI - j-, VI - j-), 
which is neither open nor closed. 

H A ~  2, then (8) has two control sets Dl = (Vl- i, V1- j-), and D2 = 

[-VI - j-, -VI - i]· We have Dl -< D2, and Dl is open, D2 is closed. 

For chain control sets it is convenient to define the order via the lifts to U x M: 

Let £1 and £2 be two maximal invariant chain transitive sets of (UxM, </», define 

(9) £1 -< £2 if there exists (u, x) E U x M sucht that 

w*(u,x) C £1 and w(u,x) C £2. 

wherew*(u,x) = ((v,y) E U X Mj thereexiststr. -+ -00 with </>(tr.,u,x) -+ (v,y)} 

is the a-limit set of (u, x). 
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Lemma 3.13. (i) ~  defined in (9) is an order on the chain recurrent compo­

nents of 

(U x M,<{J), and hence on the chain control sets of (1). 
(ii) Any finite collection {£I' ... , £n} of chain recurrent components with the 

order ~  defines a Morse decomposition of(U x M,<{J). 

Proof. (i) According to Conley (1978, Section 1I.6.2), the chain recurrent set 

C'R can be written as C'R = n {A U A", A is an attractor of (U x M, <p) and A· 

its complementary repeller}, and hence (9) defines an order on the components 

of the chain recurrent set. 

(ii) Again using Conley (1978, Section 11.7), any finite decomposition into 

disjoint invariant sets with the order ~  defines a Morse decomposition. 0 

At this moment, we have primarily two areas of application in mind for 

the ergodic theory of stochastic and control flows: the theory of Lyapunov 

exponents and stochastic bifurcation theory. We will now characterize more 

precisely the control sets and chain control sets that come up in these areas. 

Lyapunov exponents are the exponential growth rates of the linearized sys­

tem. We consider here only the simple case, where the control system (1) has 

a rest point xO E M, i.e. Xj(XO) = 0 for j = 0, ... , m. Linearization around xO 

yields locally in a neighborhood of XO 

m 

(10) y = Ao(xO)y + E u;(t)A;(xO)y in Rd (d = dim M) 
;=1 

with Aj{xO) := Xj.(xO), the linearization of X j at xo for j = 0, ... , m. The 

Lyapunov exponents of (1) at xo are then defined by 

where ",(t,yo,u) denotes the solution of (10). Since ,x(ayo,u) = ,x(yo,u) for all 

a E R, a i- 0, it suffices to consider (10) on the projective space pd-I in Rd: 

m 

(11) S = ho(s) + E u;(t)h;(s) 
;=1 

with hj(s) := (Aj(xO) + sT Aj(xO)s . Id) s, the projected vector field on pd-I 

for j = 0, ... ,m. We will assume again the nondegeneracy condition for (11) 

on pd-I, i.e. 

dimCA{ho + ~ U ; h ; ,  (U;)EU}(S)=d-1 for all s Epd-I. 
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The system (10) is a bilinear control system in Rd , its associated semi group is 

given by 

S = {exptnBn· ... ·exptIBI , Bi E N, ti ~  0, i = 1, ... ,n E N} C Gl(d,R), 

with N := {Ao(xO) + ~  UiAi(XO), (Ui) E U}, the possible right hand sides 

of (10) for piecewise constant controls. S acts on pd-I in a natural way via 

8 t-+ Ji;rg8 for 8 E pd-I, g E S, and the differential equation (11) corresponds 

to this action. (Compare Colonius and Kliemann (1990 b ) for details of the entire 

set up.) For the control sets of (11) under the assumption (H) we obtain: 

Theorem 3.14. (i) There are k control sets Di with int Di =1= t/J, i = 1, ... , k, 
1 S k S d, called the main control sets. 

(ii) The order, defined by (6) on the main control sets, is linear. We enu­

merate these sets by DI -< D2 -< ... -< D". 

(iii) D" is closed and D" = n 0+(8), DI is open and DI = n 0-(8) . 
• EP .EP 

(iv) For every g E int S and every A E spec g there is a main control set 

Di such that the corresponding generalized eigenspace E(g, A) satisfies 

PE(g, A) C int Di, where PE is the projection of E C Rd onto pd-I. 

Vice versa, the interior of the main control sets consists exactly of those 

elements 8 E P, which are eigenvectors for a (real) eigenvalue of some 

g E int S. 
(v) For every g E S and every A E spec g there is a main control set Di 

with PE(g, A) n Di =1= t/J, and vice versa for every main control set Di 
and every g E S there exists a A E spec g with PE(g, A) n Di =1= t/J. 

The proof of this result is given in Colonius and Kliemann (1990b , Theorem 

3.10). 

For the chain control sets of (11) the corresponding result is 

Theorem 3.15. (i) There are l chain control sets E;. j = 1, ... ,l, 1 S l S d. 

(ii) Every chain control set contains a main control set, in particular int E j =1= 

t/J for j = 1, ... ,l and 1 S l S k S d. 

(iii) The order defined by (9) on the (lifted) chain control sets is linear, and 

we write EI < ~  < ... < E t . 

(Compare Colonius and Kliemann (1990·, Theorem 5.5) for a proof.) Note 

that the situations, described in Remark 3.9(ii) and (iii) can occur for systems 

of the type (11) as well. This can be seen from Example 3.10, which is the 

projection of the following bilinear system in R2 onto pI: 

x = ( ~ l  _ ~ ) X + U ( t ) ( ~ l  ~ ) x  



                                   

has a projection onto pI in polar coordinates s = ( ~ s  <p ), <p E R mod 1f' 
sm<p 
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For b2 - 1 = a and U E lA, a] this is Example 3.10. In particular we have in 
2 

this case k = 2, i = 1, and there are points s E pI \ U D; that are not in the 
;=1 

(generalized) eigenspace of any 9 E S, but in int E = pl. 

The next class of examples deals with situations arising in (stochastic) codi­

mension one bifurcations, compare Arnold and Boxler (1990) for the general 

set up. Here one considers a family of one-dimensional systems (replacing the 

noise by controls) 

(12) x = Xo'(x) + u(t)YO'(x), 

where X O' , yO' are smooth vector fields on R or Sl and a E I is the bifurcation 

parameter. We will analyze the case with compact U C R, i.e. with bounded 

noise. The problem is to determine the invariant probability measures of (12), 

hence, first of all, the control sets and chain control sets need to be determined 

for each a E I. We will therefore consider the following system 

(13) x = X(x) + u(t)Y(x) 

under the following assumptions: 

(14) (i) X and Y are smooth vector fields on M, 

(ii) u(t) E U C R, U a compact interval, 

(iii) for each u E U there exists at most a finite number of 

zeros of X + uY. 

These assumptions are typical for co dimension one bifurcation diagrams with 

bounded noise, and cover also the case, where the bifurcation parameter a itself 

is noisy and appears linearly in (12), i.e. systems of the form x = X(x)+atY(x), 
with at a stochastic process with values in U C R. 

A general procedure for finding the control sets of one dimensional control 

systems was described in Kliemann (1980, Section II.6). Here we summarize 

these results and extend them to chain control sets. For each u E U define 

S(u) = {x E M; X(x) + uY(x) = O}, the rest points of (13) corresponding to 
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U. Denote S = U S(u) and 
ueu 

SA = {s E Sj X(s) + uY(s) = 0 for all u E U}, 

SB = {s E Sj X(s) + uY(s) ~  0 for all u E U, and there exist Ul>U2 E U 

with X(s) + U1Y(S) = 0 and X(s) + U2Y(S) > O}, 

se = {s E Sj X(s) + uY(s) ::; 0 for all u E U, and there exist Ul>U2 E U 

with X(s) + u1Y(S) = 0 and X(s) + U2Y(S) < O}, 

SD = {s E Sj there exist U1,U2 E U with X(s) + u1Y(S) > 0 

and X(s) + U2Y(S) < O}. 

The control sets of (13) are intervals, possibly consisting of only one point. The 

points in SAuSBuSe are the boundary points of these intervals, the elements 

of S D are the interior points. More precisely, all control sets for M = IR can be 

found as follows: 

Let So E SA, then four cases are possible: 

(a) There exists an interval (so - e, So + e) for some e > 0, such that for 

all p E (so - e, So + e) \ {so} we have p ¢ S, then {so} is a one point 

invariant control set, and no other control set intersects this interval. 

(b) There exists a (maximal) interval ofthe form (so, so+e) (or (so-e, so» 
for some e > 0, such that all points in this interval are in SB (or in 

Se), then each point p in the interval is a one point control set {p} 
(not invariant), and {so} is an invariant control set. 

(c) There exists an interval (so, So + e) for some e > 0, such that for all 

p E (so, So + e) one has p E SD. Take (so, So + e) as the maximal 

interval with: p E (so, So + e) implies p E SD, and define S1 = So + e. 

(Set S1 = +00 if p E SD for all p > so.) Then there exists a control set 

of the form 

(so,st), if S1 E SA, (invariant) , 

(so,st), if S1 E SB, (not invariant), 

(so, S1], if S1 ESe, (invariant ), 

(so, 00), if S1 = 00, (invariant ), 

and {so} is a one point invariant control set. 

(d) There exists an interval (so - e, so) for some e > 0, such that for all 

p E (so - e, so) one has p E SD. Take (so - e, so) as the maximal 

interval with: p E (so - e, so) implies p E SD, and define S1 = So - e. 
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(Set SI = -00 if p E SD for all p < so.) Then there is a control set of 

the form 

(S1> so), if SI E SA, (invariant ), 

[SI,SO), if SI E SB, (invariant ), 

(SI, so), if SI ESe, (not invariant), 

( -oo,so), if SI = -00, (invariant ), 

and {so} is a one point invariant control set. 

(Note that SA = q" if Assumption (H) holds for (13).) 

H So E S B, then the following cases can occur: 

(e) H there exists an interval of the form (so - e, So + e) for some e > 0, 

such that for all p E (so - e, So + e) \ {so} one has p ¢ S, then {so} is 

a one point (not invariant) control set. 

(f) H there exists a (maximal) interval of the form [so, So +e] or [so -e, so] 

for some e > 0, such that all points in the interval are in SB, then each 

point p in the interval is a one point (not invariant) control set {p}. 

(g) H there exists an interval (so, So + e) for some e > 0, such that all 

points p E (so, So + e) are in SD, let SI = So + e with (so, So + e) the 

maximal interval as above. Then there exists a control set of the form 

[So, st}, if SI E SA USE, (invariant if SI E SA, not invariant otherwise), 

[SO,SI], if SI ESe, (invariant), 

[so, 00), if SI = 00, (invariant). 

Similarly, if an interval (so - e, so) exists with points in SD. 

H So ESe, the cases are completely analogous to (e)-(g) above. 

Finally, if SD = M, then M is the (unique, invariant) control set. Using 

Assumption (14(iii» we see, that SA cannot contain infinitely many points. 

Hence after finitely many steps of the type (a)-(g) (and similarly for Se), all 

control sets of (13) in IR are described. The general principle is: points in SA 

and intervals of points in SE and se lead to one-point control sets, which are 

invariant iff the point is in SA. All other control sets are intervals with nonvoid 

interior, where the lower boundary belongs to the set, ifthe point is in SE, and 

similarly for the upper boundary, if this point belongs to se. These intervals 

are invariant, iff the boundary points belong to the control sets or are in SA. 

H M is compact, the same principles as above apply, except that, letting 

M ~  81 , one has to consider the intervals mod 211", when parametrizing SI 

through the angle in [0,211"). 
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For the chain control sets of the control system (13) we obtain the following 

characterization: Define jj = U{D, D is a control set of (13)}, then by (14(iii», 

jj = II U ... UI .. , the finite disjoint union of closed 'intervals', constructed as 

above. 

We call an interval I of jj isolated, if there exists an open neighborhood N 

of I such that for all yEN \ I we have for all u E U: X{y) + uY(y) < 0 for 

y < I, and X(y) + uY(y) > 0 for y > I, (or X(,1) + uY(,1) > 0 for y < I, and 

X(y) + uY(y) < 0 for y > I). 

Theorem 3.16. (i) H M = R, then the Ii, i = 1, ... ,n are exactly the chain 

control sets of (13). 

(ii) H M is compact, then 

(a) if jj = I}, then M is the chain control set, 

(b) if n ~  2, then the Ii, i = 1, ... , n are exactly the chain control sets 

of(13) iff there is at least one isolated interval in h, otherwise M 

is the chain control set. 

(iii) H M = R or if the systenI (13) has more than one chain control set, 

then for a control set D the set D is a chain control set iff there exists 

an open neighborhood N of D, which intersects with no other control 

set. H M is compact and (13) has only one chain control set, then the 

closure of a control set D is a chain control set iff SA consists of at 

most one point and (13) is completely controllable in M \ SA. 

Proof. Note first of all that, by the construction of control sets above jj = S, i.e. 

x E M \jj means for all u E U either X(x) + uY(x) > 0 or X(x) + uY(x) < o. 
Recall also that by Lemma 3.8 chain control sets are pairwise disjoint, connected 

and closed. 

(i) It is clear from the definition of chain control sets and from Lemma 3.8 

that the intervals Ii, i = 1, ... , n are contained in chain control sets. 

Let I be such an interval, and assume that there exists a chain control 

set E ~  I. Then there is a point x E E \ I, say w.l.o.g. x < p for 

all p E I, and x f/. jj. Then, by the renIark above, there is an open 

neighborhood N(x) of x such that N(x) n jj = 4> and for all y E N(x), 

all u E U we have either (a) X(y)+uY(y) > 0 or (b) X(y)+uY(y) < O. 

In case ( a) there cannot exist an (e, T)-chain from I to y for e small 

enough, and T large enough, in case (b) there is no (e, T)-chain from y 

to I for small e and large T. I.e. E = I and this proves (i). 

(ii) If M is compact, then the systenI (13) has at least one closed, invariant 

control set (this part of Lemma 3.11 holds without Assumption (H», 
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i.e. D =f 4>, and there exists at least one chain control set, compare 

Remark 3.9(i). 

(a) H D is one 'interval', then there is again one chain control set 

E :J D. But for all U E U, all Y EM \ D we have either X(y) + 
uY(y) > Oor X(y)+uY(y) < 0, and hence there is Yo E M\D and 

Uo E U with lim 'P(t, Yo, uo) C D, and lim 'P(t, Yo, uo) c D, 
t--oo t-+oo 

where 'P(t, Yo, uo) denotes the solution of (13) corresponding to 

the constant control u(t) == Uo. Thus E = M. 

(b) H all intervals h ... In are not isolated, then it is easy to see that 

there exist Y17 ... ,Yn E M\D, and Uh ... ,Un E U such that Yi lies 

in the gap between Ii and IHI for i = 1, ... ,n, Yn lies in between 

In and h, and lim 'P(t,Yi,Ui) C Ii, lim 'P(t,Yi,Ui) C Ii+1' 
t--oo t-+oo 

lim 'P(t,Yn, un) C In, and lim 'P(t,Yn,un) C II. Hence M is 
t_-oo t-+oo 
the chain control set. 

H one interval I of D is isolated, then there is an open neigh­

borhood N of I such that either for all yEN \ I and all U E U 

lim 'P(t, y, u) C I and lim 'P(t, y, u) c D \ I, odor all such Y 
t--oo t-+oo 

and u lim 'P(t, y, u) c D \ I and lim 'P(t, y, u) C I. FUrther-
t--oo t_+oo 

more, because the right hand side of (13) depends continuously on 

u, it cannot happen that for some z E M \ D there exist UI E U, 

U2 E U with lim 'P(t,z,UI) C I, lim 'P(t,z,U2) C I. Hence, 
t--oo t-+oo 

arguing as in (i), in this case the h ... In are exactly the chain 

control sets of (13). 

(iii) H the II ... In are the chain control sets of (13), then the result follows 

directly from the definition. H this is not the case, then according to (i) 

and (ii), M is compact and the chain control set. Hence for D = M we 

need that (13) is completely controllable with the possible exception of 

one point in SA. 

o 

Remark 9.11. We have not assumed Hypothesis (H) for the system (13), because 

the situation, where z E M is a relit point for all U E U, occurs frequently 

in bifurcation diagrams. H, however, we can assume (H), then the following 

simplifications hold: SA = 4>, and for the determination of the control sets we 

only have to go through the steps (e)-(g) for points in SB and se. Theorem 

3.16(iii) reads in this case: H M is compact and (13) has only one chain control 
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set, then the closure of a control set D is a chain control set iff D = M. 

Remark 3.18. Consider the projected linear system (11) on pI, i.e. d = 2, under 

Assumption (H). There are at most two main control sets, one closed, say C, 

and one open, denoted by C-. In this situation we obtain for the chain control 

sets: pI is the chain control set iff either 

(i) the system is completely controllable, i.e. C n C- =/: q" or 

(ii) C n C- =/: q" or 
m 

(iii) there exists u e U such that ho(s) + E Uihi(S) = 0 for alls e pl. 
i=l 

In all other cases there are exactly two chain control sets, namely, C and C-. 

4. INVARIANT MEASURES OF CONTROL FLOWS AND STOCHASTIC FLOWS 

In this section we discuss existence and supports of invariant probability 

measures of control flows and stochastic flows. The situation for stochastic 

flows is distinguished by the following two facts: first of all, here an invariant 

measure P on the underlying shift space n is given a priori, and we are looking 

for invariant measures of the flow, whose marginal on n is P. Secondly one has 

to take measurability questions into account. We will first study the case of 

control flows, and then specialize the results to stochastic flows. 

Definition 4.1. Let (5, \II) be a dynamical system. A probability measure J.' 
on 5 is called w-invariant, if WtJ.' = J.' for all t e R. We denote this set by Miff. 

Lemma 4.2. Consider the control flow (U x M, q,) defined in (2.2). A prob­

ability measure J.' on U x M is q,-invariant iff J.' is of the form J.'( du, dx) = 

J.'.(dx)p(du), where p is a 8- invariant measure onU, and 'P(t, ·,u)J.' .. = J.",. for 

aU t e R, where '1'( t, x, u) denotes again the solution of the control equation. 

For a proof see Crauel (1986, Lemma 2) or Colonius and Kliemann (1990", 

Proposition 5.2). 

H a measure J.' is w-invariant for t ~  0, then invertibility of Wt implies 

J.' = (Wt)-IWtJ.' = W-tJ.', i.e. J.' is w-invariant for all t e R. 
Invariant measures of the control flow can be constructed via the Krylov­

Bogolyubov device, i.e. for (u, x) e U x M consider the Cesaro limits for 

sequences tlr -+ 00 

t. 

(1) lim .!.jF(9r (u),'P(r,x,u»dr = j F(v,y)dJ.'. s 
t._oo tlr • 

o UxM 

for all F e C(U x M,R), the continuous functions from U x Minto R. Note 

that in general J.' ... s is not unique for (u,x) e U x M. The following properties 



                                   225 

of the probability measures p,u," are well known, see e.g. Mane (1987, Chapter 

11.6): 

(a) Me and M", are nonempty, if U and M are compact. 

(b) Define 

E ~  = {( u, x) E U X M j the measure P,u,., defined in (1) is independent of the 

sequence til: and ergodic} 

E ~  = {(u,x) E E ~ ;  (u,x) E supp P,u,.,}, 

then for M, U compact, E ~  "I 4> and E ~  has total measure with respect 

to M"" i.e. p, ( E ~ )  c = 0 for all p, EM",. (Here supp p, denotes the 

support of p" and A C denotes the complement of the set A.) 

(c) Each p, E M", has an ergodic decomposition: Every F E Ll(U X M, p,) 

is p,u,.,-integrable for p,-almost all (u, x) E E ~  and J (J F dp,u,x) dp, = 
JFdp,. 

Hence, if we want to characterize the possible support of some p, EM"" it 

suffices to characterize the set E ~ .  

Define for a control set D C M 

V+ = d{(u, x) E U X Mj tt'(t,x,u) E D for all t E R}. 

IT int D "I 4>, then V+ :J V, with V as defined in (3) from Section 3. However, 

the lift V+ is nonvoid even if int D = 4>, as can be seen from Assertion (ii) in 

the following theorem. 

Theorem 4.3. 

(i) For all (u, x) E U x M and all J-Lu,x as in (1) we have supp p,u,x C 

w(u,x) C £, the lift o[ some chain control set E C M o[ (2.1) to 

UxM. 

(ii) For all (u,x) E U X M and all P,u,x as in (1) there exists r C supp p,u,x 

with P,u,xr = 1, such that [or all (v, y) E r there is a control set D C M 

with tt'(t,y,v) E D n 7I"MW(U, x), [or all t E R. 

(iii) If (u,x) E E ~ ,  then there exists a (unique) control set D C M such 

that [or P,u,x-almost all (v,y) we have tt'(t,y,v) E D [or all t E R., i.e. 

supp P,u,x C V+, with V+ defined above. Also, if p, E M", is ergodic, 

then supp p. C V+ [or some control set D. 

(iv) Vice versa, if D C M is a control set with int D "I 4>, then [or each 

x E int D there exists u E U such that (u, x) E E ~ .  

(v) Assume that int D "I 4> [or all control sets D eM. Then 

dU {Dj D is a control set} = 7I"MdU {supp P,u,x; (u,x) E E ~ }  

= 7I"Md U {supp p,; p, EM",}. 
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The proof of this theorem can be found in Colonius and Kliemann (1990·, 

Lemma 5.3, Proof of Theorem 5.5, and Corollary 5.7). 

This theorem says in particular that for all p. E M. one has S1,lPP P. C E, 
where E is some chain control set, and supp p. C {1)+j DeE is a control set}. 

H p. is ergodic, then supp p. C 1)+ for some control set D. Note that an analogue 

of (iv) for chain control sets is not true, compare e.g. Example 3.10. 

We now turn to the existence of invariant probability measures for con­

trol flows. Starting from x EM, we know by Theorem 4.3 that for x ft 
U{Dj D is a control set} there is no Krylov-Bogolyubov measure for x and any 

u E U, (i.e. (u, x) E supp p. ..... cannot hold). On the other hand, for x E int D, 

D some control set, there always exists a u E U such that (u,x) E E ~ :  Just 

take a periodic u, which leads to a periodic trajectory in int D through x. Fur­

thermore, it is easy to construct examples for dim M ~  2, such that for some 

x E aD we have that x ft 1 r M E ~ .  
What is more important, however, by the characterization in Lemma 4.2, is 

to construct the measures p. .. on M for u E U. We proceed in the following 

way: Define for a control set D C M and a control function u E U 

(2) D,! = {x E Dj ~ ( t , x , u )  E D for all t ~  OJ. 

Note that D;t :F q, iff D. = {y E Dj ~ ( t ,  y, u) E D for all t E It} :F q,. 

Theorem 4.4. Assume that M is compact, or more generally that fj 
U{Dj D is a control set} is bounded. Then the fonowing holds: 

(i) Let u E U, and let D C M be some control set. Then there exists an 

invariant measure P •• " of the form (1) with supp P •• " C 1'+ iff D;t :F q,. 
(ii) Let p be a ~ - i n v a r i a n t  measure with decomposition p = P.P according 

to Lemma 4.2. Then for all control sets D with supp p n 1)+ :F q, there 

exists u E U such that D;t :F q,. Conversely, if p E M, and D is a 

control set with D;t :F q, for p-almost all u E U, then there is p E M. 
with p = p.P and supp p C 1'+ . 

(iii) H p E M. in (ii) is ergodic, then the control set D with supp p.n1)+ :F q, 
is unique and D;t :F q, for p-almost all u E U. H p E M, in (ii) is ergodic, 

and if D;t :F q, for p-almost all u E U, then p EM •. 

(iv) Suppose p E M, is ergodic and p E M. can be desintegrated as p = 

P .. p. Then for any control set D with p(1'+) > 0 we have that D;t :F q, 
for p-almost all u E U. 

Proof. 

(i) One direction is obvious, the other one follows from Theorem 4.3(i), 

because 1)+ is q,..invariant. 
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(ii) Let p E M ~  with p = P .. P, and let supp p n 1)+ =f </J. Then there exists 

(u,x) E V+ and hence x E D;t =f </J. 

Conversely, let p E M, and D;t =f </J for p-almost all u E U. The 

map u 1-+ D;t from U into M is a set valued map with compact values. 

It is measurable, because the set {u E Uj D;t n A =f </J} is closed for 

every closed set A. Hence by a selection theorem due to von Neumann­

Aumann-Castaing (see e.g. Warga (1972, Theorems 1.7.4 and 1.7.7)) 

there exists a measurable selection u 1-+ x( U ) E D;t. Consider the 

measure p, = Ii.,( .. )p on U x M, where Ii.,(_) denotes the Dirac measure 

at the point x(u). Apply the Krylov-Bogolyubov construction to this 

measure p, (instead of Ii .. ,., as in (1) above) in order to obtain a </J­

invariant measure p as 
t. 

lim ~  f f F(8 .. (u),<p(r, x, u)) P, (d(u, x)) dr 
t ...... oo tA: 

o UxM 

= f F(v,u)dp 

UxM 

for all F E C(U x M, 1R). Clearly supp p C V+ and p = PuP, because 

the U- component of it coincides with the 8-invariant measure p. 

(iii) If p is ergodic, then supp p C V+ for some control set D by Colonius 

and Kliemann (1990", Theorem 5.5(iii». Hence D is unique and Dt =f 
</J for p-almost all u E U. 

If p EM, is ergodic, and if D;t =f </J for p-almost all u E U, then (ii) 

yields a </J-invariant measure p. with supp P. C V+. Now any measure 
P .. ,., appearing in an ergodic decomposition of p. (see e.g. Maile (1987, 

Theorem 11.6.4)) is </J-invariant and ergodic with supp pu,., C V+. 

(iv) Suppose p(V+) > O. Then the set {u E Uj Dt =f </J} is 8-invariant and 

has positive p-measure. By ergodicity of p, this set has p- measure 1. 

o 
Remark. If p E Mq, is ergodic, then the proof of (iii) shows in particular that 

supp p C V+ for some control set D, compare Theorem 4.3(iii). 

The crucial question for the existence of </J-invariant measures is therefore: 

Is Dt =f </J. We will next present a general result for this problem and then 

analyze the systems (3.11) and (3.13) in more detail. 

Proposition 4.5. Consider the control Bow (2.2) under Assumption (H). Then 

a control set C C M is invariant iff ct = C for all u E U. 

Proof. This result follows directly from the definitions, because for invariant 

control sets C we have O+(x) = C for all x E C, and under (H) invariant 
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control sets are closed. 

o 
For variant control sets D C M the situation is different: We may have 

Dt '" </> for all u E U, or Dt = </> for an open subset of U, as the following 

analysis shows. 

Consider the projected bilinear control system (3.11) on pd-I, always under 

the Assumption (H). 

Proposition 4.6. 

(i) Let D c pd-l be a main control set, i.e. int D '" </>, and let 9 E int S. 

Denote by u(g) a control corresponding to g. Then 

D .. (g):= {x E Dj c,o(t,x,u) E D for all t E R.} = pEB E(g, A), 
.x 

where the sum is taken over all A E spec 9 with PE(g, A) c int D. (Re­

call that E(g, A) is the (generalized) eigenspace of 9 for the eigenvalue 

A, and P E(g; A) denotes its projection onto pd-l .) 

(ii) Fora chain control set E C pd-l of(3.11) denote bye its lift toUxR.d• 

Then 

£ = ce ((u(g),x) C U X R.dj 9 E int S and Px E $D .. (g), where the sum is 

taken over all main control sets DeE} . 

(iii) Let D be a main control set, then for all x E D there exists u E U with 

c,o(t,x,u) E D for all t ~  o. 
(iv) Let D be a main control set, then Dt '" </> for all u E U. 

Proof· 

(i) Theorem 3.13 in Colonius and Kliemann (19906). 

(ii) Theorem 5.6 in Colonius and Kliemann (19906). 

(iii) The assertion is valid for all x E int D, and hence for all x E D by 

compactness of U. 

(iv) By (i) this result is true for all u(g) with 9 E int S. But these controls 

are dense in U (see Colonius and Kliemann (1990", Lemma 2.2», and 

the result follows from the compactness of D. 

o 
Corollary 4.7. Given a 8-invariant measure p on U, then for each main control 

set D of (3.11) there exists a </>-invariant measure p = P .. P with supp P c 1)+. 

Proof. This follows from Proposition 4.6(iv) and Theorem 4.4(ii). 

o 
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The situation for the general one-dimensional nonlinear system (3.13) is more 

complicated. We will discuss this case again without Assumption (H). 

Proposition 4.8. Asswne that the system (3.13) satisfies the hypothesis (3.14) 

and that U{ Dj D is a control set} is bounded. Then 

(i) C is an invariant control set of (3.13) iff ct = C for all u E U. 

(ii) Let D be a variant control set with int D f. 4>. Assume: For all u E U 

there exists x E D with X(x)+uY(x) = O. Then Dt f. 4> for all u E U. 

(iii) For all other control sets D C M there exists an open set V C U such 

that Dt = 4> for all u E V. 

Proof. We will use again the notations introduced in Section 3 following (14). 

(i) By definition of invariant control sets C we have O+(x) = C for all 

x E C. Without Assumption (H) C need not be closed and need not 

have nonvoid interior. If C = {x} is a one point set, then x E SA and 

the result is obvious. If int C f. 4>, then the boundary points are either 

in SA, or in SB (for the lower boundary), or in SC (for the upper 

boundary). Hence by inspection of the vector fields on the boundary, 

one sees that the assertion holds. 

(ii) We will prove only the case, where for each u E. U there exists a unique 

Xu E D such that X(xu)+uY(xu) = 0, and Xu is an unstable rest point 

for this vector field. All other cases are similar, because each variant 

control set with nonvoid interior contains an interval of unstable rest 

points and by Assumption 14(iii) the construction below can be carried 

out in this interval. 

Let u E U be constant, then using the assumptions Au(t) := 

{<,o(-t,y,u), y E D} C D is, for all t > 0, a closed interval in 

D containing xu. Consider now u E U, piecewise constant and pe­

riodic, i.e. there exists a time interval [0, T] and a partition 0 = 

to < tl < ... < tn = T such that u(r) = Ui if r E [ti-l,ti). For 

i = 1, ... , n consider the solution map <,0 ( -ti,·, Ui): D ---+ D, and note 

that im <,o(-ti,·,Ui) = Au;(ti) C D. Then the map <,o(-T,·,u) = 

<,0 ( -tll ·, UI) 0···0 <,0 ( -tn ,·, un) is continuous (even a diffeomorphism) 

and maps the compact interval D into itself. Therefore <,o( -T,·, u) has 

a fixed point xp E D. By construction the solution cp(t,xp,u) is peri­

odic and contained in D for all t ~  0, hence xp E D-:. To complete the 

proof, note that the set of piecewise constant, periodic controls is dense 

in U (Colonius and Kliemann (1990a , Lemma 2.2), and compactness 
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yields Dt I- q, for all u E U. 

(iii) By assumption there exists u E U such that Dt = q" i.e. for all x E D 
there is Tz > 0 with <p(Tz, x, u) rt D. Using compactness of D, one sees 

that there is a universal T > 0 such that <p(T,x,u) rt D for all x E D. 
Now continuity of the map v t-+ <p(t,x,v) from U into M implies the 

assertion. 

o 

Corollary 4.9. Suppose that system (3.13) satisJies(3.14) and that U {Dj D is a 

control set} is bounded. Then: 

(i) Given as-invariant measure p onU and a control set DC M of the kind 

described in Proposition 4.8(i) or (ii). Then there exists a q,-invariant 

measure fI = fI.P with supp fI C 1)+. 

(ii) Let D C M be a control set of the kind described in Proposition 4.8(iii). 

Proof· 

Then there exists an ergodic 8-invariant measure p, such that there is 

no q,-invariant measure fI with marginal p on U and supp fI C 1)+ . 

(i) Follows directly from Proposition 4.8(i) and (ii). 

(ii) By the proof of Proposition 4.8(iii), for this kind of control sets D 

there exists a Uo E U such that X(x) + uY(x) > 0, or < 0, for all 

x E D. Consider the constant control function uo(t) == uo, then the 

Dirac measure 6.0 is 8-invariant and ergodic. But Dto = q" and no 

tP-invariant measure with the desired properties can exist. 

o 
The remainder of this paper is devoted to the study of invariant measures of 

stochastic flows, as described in Section 2. In order to use the results above di­

rectly, we will restrict ourselves here to flows associated with random differential 

equations of the following form: 

Let {e" tEa or t E a+} be a stationary, ergodic process taking values in 

U C am, where U is compact and convex, and let 8 be the Bord (1'- algebra of 

U. Denote by (n,8) the trajectory space of measurable functions with values in 

U, with the shift 8 (for tEa or for t E a+). Then there is a 8-invariant, ergodic 

measure P on n. Let (: ax n - U be the evaluation map (t,w) = w(t), then 

{(" tEa or t E a+} is a stationary, ergodic process over (n,.r, P, 8) where.r 
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is generated by the cylinder sets. Consider the random differential equation 
m 

(3) X = Xo( x) + E (i( t)Xi( x) on a smooth manifold M, 
;=1 

where Xo, ... , Xm are smooth vectorfields on M. Then (3) defines a stochastic 

flow (n X M, ,p), as described in Section 2. We continue to assume condition 

(H). 

Remark .. pO. (One and two-sided stochastic flows, compare Crauel (1990» 

A flow, defined for t E R, is called two-sided, if t E R+, it is called one­

sided. A two-sided flow can always be restricted to a one-sided: E.g. let 

F' = u{ ,pt, t ~  O} be the u-algebra generated by ,p for positive time, then 

the restriction to (n x M,F',P) and t ~  0 is a one sided flow, where P is 

the measure induced by ,p on n x M. Vice versa, if ,p = (9, cp) is a one-sided 

flow, and if 9 is invertible, then cp(-t,x,w) = cp-l(t,x,9_t w) is a two-sided 

extension. Note that in our situation 9 is always invertible. 

For stochastic flows we are interested in ,p-invariant measures p., whose mar­

ginal on n is the given measure P, i.e. p. = p.wP. For au-algebra P c F we 

denote by E{p.1 PH w) the desintegration of p. restricted to P ® B with respect 

to PIF . The measure p. is,p- invariant iffE{cp(t,.,w)p.wI9;-IFHw) = P.8.w, 
which for 9t invertible (i.e. in particular for the two-sided situation) reduces 

to cp(t,·,w)p.w = P.8.w, see Lemma 4.2. We denote by M",(P) the two-sided 

,p-invariant measures with marginal P on n, and by Mt(P) the one-sided ones 

with marginal PI:F1. Note that measures in M",(P) can always be restricted 

to measures in M;j(P), while one-sided invariant measures can be extended 

if 9 is invertible: Let p.+ E Mt(P) with desintegration p.+ = p.t,P, then 

cp-l( -t, w)p.t.w converges P-almost surely for t --+ 00 to a measure P.w, such 

that P.wP is </>-invariant for all t E R, compare e.g. Crauel (1990, Remark 2.3). 

We have the following general result about the support of </>- invariant mea-

sures: 

Theorem 4.11. Consider the two-sided stochastic Bow induced by the ran­

dom differential equation (3). Let p. E M",(P) or p. E Mt(P) be given. Then 

supp p. C cl U {1>+j D is a control set}, and for every control set D with 

p.(1)+) > 0 it holds that Dt =F ,p P-almost surely. 

Proof. This follows from ergodicity of P and Theorem 4.4(iv). 

o 

For the existence of invariant measures for a two-sided stochastic flow the 

results given before still hold, compare Theorem 4.4, Proposition 4.5, Corollary 

4.7, and Corollary 4.9(i). From Theorem 4.4(iv) one obtains in this context: 
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Corollary 4.12. Let D C M be a control set of the kind described in Proposi­

tion 4.8(iii). Denote V:= {u e Uj there is no z e D with X(z) + uY(z) = OJ, 

and by V the corresponding trajectory space. If P{supp pnV} > 0, then there 

exists no I' e Mt(P) (or I' e M.(P» with supp I' c V+. 

For the existence of tP-invariant measures the sets D;!; play a crucial role. In 

general, these sets can only be determined, if the entire trajectory {w(t), t 2: O} 

is known. (An exception are the invariant control sets C, for which we have 

C;!; = C for all wen.) This fact reduces the possible invariant measures, if we 

require certain measurability conditions, as in the case of Markov processes. We 

will discuss the Markovian case next, and use the following set up, see Crauel 

(1990): 

IT the stochastic process {(" t e It or t e R+} in (3) is a (time homogeneous) 

Markov process, then we call {4>" t e R or t e R+} a Markovian stochastic flow. 

In order that the pair process {«("",,), t 2: O} becomes a Markov process, we 

need a condition for the initial variable of ",,: For a random variable 1'/: n - M 

the process {«("",(t,1'/,w», t 2: O} is a Markov process iff {(" t 2: O} is 

a Markov process with respect to the enlarged family of u-algebras ~ ,  := 

u{1'/,.r9} for t 2: 0, compare Arnold and Kliemann (1983, Lemma 2.1) and 

Crauel (1990, Lemma 3.4). Here .rs., := u{(n 0 :5 T :5 t} is the u- algebra 
generated by the Markov process {Cr, T ~  O} between 0 and t. 

The problem of a stationary (and ergodic) Markov solution «("",,) of (3) 

can be formulated in this context as follows: Let 4> be a Markovian stochastic 

flow, then Q (t, (p, z), A) := P{( (t('),,,,( t, z, .» e A 1(0 = p} defines a family of 
Markov transition probabilities on U x M for t 2: 0, where A e 8u x 8M, com­

pare Bunke (1972, Satz 6.1). A probability measure I' on n x M (with marginal 

P on n) is called a Markov measure, ifthe pair process {«(t(,),,,,(t,·,·» , t 2: O} 

is a (time homogeneous) Markov process with transition probabilities Q, and 

initial distribution '1rMI' on M. The relation between this approach for Mar­

kovian stochastic flows and the usual definition of initial distributions via the 

Markov semigroup {Qt, t 2: OJ, defined by the Markov transition probabilities 

Q, is as follows: For a Markov measure I' on n x M satisfying 1'. = E{I'.I.r<oo} 
define a family of probability measures on U by v .. = v(o(w) = I'w, which gives 

(the desintegration of) an initial distribution v on U x M for {Q" t 2: OJ. 

Vice versa, given such a v, define I'w = v(o(w), yielding a Markov measure I' 

on n x M. Hence this correspondence is one-to-one, see again Crauel (1990, 

Section 5.2.1). 

The following result characterizes the Markov measures of (3) among all 

probability measures on n x M with marginal P on n: 



                                   

Proposition 4.13. 

(i) HI' = I'.P satisfies 1'. = E{I'.I F ~ o } ,  then I' is a Markov measure. 

(ii) HI' is a Markov measure, then E { I ' . I F ~ o o }  = E { I ' . I F ~ o }  P-a.s. 

For a proof see Crauel (1990, Theorem 4.4). 
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In this paper we are primarily interested in <p-invariant measures and their 

support. From the discussion above we obtain immediately for invariant Markov 

measures of (3): 

(a) Every invariant measure of the Markov semigroup {Q" t ~  O} corre­

sponds to a (unique) invariant Markov measure of (3) for t ~  0, with 

1'. = E{I'·IF<oo}' 
If {e" t ~  O} is a diffusion process with generator C, then {(et,<pt), 

t ~  O} is a diffusion process with generator C + Y, where Y is the 

right hand side of (3). In this case, the Qt invariant measures I' are 

the solutions of the Fokker-Planck equation (C + Y)* I' = 0, where * 
denotes the adjoint operator. 

(b) If M is compact, then an invariant Markov measure exists. 

(c) The invariant Markov measures form a convex, {4>" t ~  O} invariant 

subset of M",(P) (see Crauel (1990, Lemma 5.1». 

For invariant Markov measures of product type we obtain from our previous 

results: 

Proposition 4.14. 

(i) Let I' = P x A be an invariant Markov measure for the one-sided flow 

{4>h t ~  O} of a 'colored noise system', i.e. the ((i, i = 1, ... , m) are 

the solution of a (Stratonovic type) stochastic differential equation in 

am. Assume that supp P = U. Then supp A = C for some invariant 

control set C of the associated control system. 

(ii) Suppose that either (H) holds and C C M is compact, or for the system 

(3.13) that the assumptions of Proposition 4.8 are met. Then for every 

stationary Markov process {(to t ~  O} there exists an invariant Markov 

measure I' of(3) with supp I' C C+, the lift ofC to n x M. 

Proof· 

(i) By the discussion after Remark 4.10, I' = P x A is invariant iff P ~  

a.s. for all t ~  0 E{<p(t,·, W)A 18,1 F ~ o }  = A. Now <p(t,·,·) and 

8,1 F ~ o  = O'{(t+s - (t I s ~  O} are independent for t ~  0, and hence 

I' is invariant iff A = E{<p(t"")A} = J<P(t,.,w)dP for all t ~  O. IT 
D is a variant control set, then there exist u E U and xED such 
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that rp(t,z,u) f. D for some t > O. Hence there are open neigh­

borhoods N(u) and N(z) such that rp(t,lI,v) f. D for all v E N(u), 

all II E N(z) n D. Since, by assumption supp P = U, we have that 

D n supp oX = q" which proves (i). 

(ii) follows directly from Proposition 4.5, and from Proposition 4.8(i) for 

systems of the type (3.13) (without Assumption (H». 

o 
Remark ,1.15. 

(i) The assumption "supp P = U" applies e.g. to stochastic processes 

{ (" t ~  O} with continuous or cadlag trajectories, if supp P covers all 

these functions. Hence Proposition 4.14 applies in particular to noise 

processes {(to t ~  OJ, which are stationary, nondegenerate diffusion 

processes, compare Kunita (1978). Hence this proposition generalizes 

results from Arnold, Kliemann and Oeljeklaus (1986) and Kliemann 

(1987). 

(ii) IT "supp P = U" does not hold, then the conclusion (i) need not be 

true, as Example 4.16 below shows. In other words, if {(" t ~  O} 

takes values in V C U, one should use n = V, the trajectory space 

over V, and the corresponding control system to check for supports of 

invariant Markov measures of product type. 

(iii) At this moment we do not know, whether the result of Proposition 

4.14(i) holds for Markov measures, which are not of product type, nor 

whether in (ii) a product type measure always exists. 

The next example shows that a stochastic flow, defined by (3), can have 

4>-invariant measures, which are not Markov measures, and that without the 

assumption "supp P = U" Proposition 4.14(i) need not hold. 

Example 4.16. Consider again the system from Example 3.10 

(4) z E R mod 211", a > 0, 

with U = [A, a] C R, A < a. IT {(to t ~  O} is a stationary process in the set up 

as above, then there exist q,-invariant measures 1'1 and 1'2 with supp I'i c vt, 
i = 1,2 by Corollary 4.7. (Here Di are the main control sets as in Example 

3.10.) 

By Proposition 4.14(i) the measure 1'2 cannot be an invariant Markov mea­

sure of product type. Furthermore, Remark 4.2 in Arnold and Kliemann (1983) 

shows that there need not be any invariant Markov measure for a Markovian 

stochastic system, which, nevertheless, may possess a 4>-invariant probability. 
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Now fix b E (A, a), and consider the Markov process (t == b. Then the system 

(4) has invariant Markov measures I'i = P X 6"'0 i = 1, ... ,4, where Xi are 

the four rest points corresponding to - sin2 X + acos2 x - bcos2 X = o. More 

generally, if (t has values in V C U, then the invariant control sets of the control 

system corresponding to V determine the possible supports of invariant Markov 

measures of product type. 

Remark 4.17. (On uniqueness of invariant measures) In general the invariant 

measures in V+, the lift of some control set, need not be unique - this is also 

true for Markov measures and measures over invariant control sets. Consider 

e.g. the class of systems given by (3.11), with more than one main control 

set. Then, according to Corollary 4.7, for each 8-invariant measure P and over 

each main control set there exists a <p-invariant measure. In particular, for each 

u E U there exist invariant Krylov-Bogolyubov measures in each V+. On the 

other hand, for each Xo E int D, D a main control set, there exist different 

periodic functions u E U and different periodic solutions cp( t, Xo, u) of (3.11) in 

int D. Hence there are different <p- invariant measures, all of which have Xo in 

their support projected onto pd-l. 

Consider now the Markov situation of Proposition 4.14(i), i.e. supp P = 

U and I' = P x ~  is an invariant Markov measure for (3). Then supp ~  = 

C for some invariant control set C, and ~  is unique on C, if ~  has a lower 

semi continuous density with respect to the Lebesgue measure on M, compare 

Arnold and Kliemann (1987a ). This is true, in particular, if {«(t,cpt), t ~  O} 
is a hypoelliptic diffusion process, compare Kliemann (1987) and Arnold and 
Kliemann (1987a ). 
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