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Summary

This paper considers asymptotic properties of optimal
control systems defined on the positive cone of R",

A result is proven which connects persistence of opti-
mal solutions to properties of the induced control
system on the boundary of this cone. This generalizes
recent results for uncontrolled ordinary differential
systems.

1. Introduction

This paper studies asymptotic properties of solutions
of the following optimal control system (F):

Minimize

(x_,0) = f eBg (x)e. 2, ug (x)}d
(1) v Xgou) = g e " {g (x)+ L, u;g;(x)}dt s.t.
(2) &j = xj{fo(x)+i£1 uifi(x)}, j=1, ...n

(3) x(0) = (xj(O)) =x, € R:

(4) ue Ujg = (us R - Q, measurable};
here gi’fi’ i =0,1,... m are continuous functions,
locally Lipschitzean with respect to x and Q =« R™ is
convex and compact.

We assume, that for every X, € R: , U € uad the corres-
ponding (unique) trajectory w(-,xo,u) of (2), (3)
exists oan+ and is bounded.

A pair (xo,u) € R: x uad is called optimal, if for all
v € Ua

n : . .
every x € R there is u € Uad with (xo,u) optimal. For

4 one has V(xo,u) > V(xo,v). We assume that for

optimal (xo,u) we write V(xo) = V(xo,u).

Asymptotic properties of optimal control systems as the
one described above have found some interest in the
literature, mainly motivated by economic and bioeco-
nomic problems [3,4,6,9]. In particular, it turned out
that the assumption, often made in applications, that
an optimal trajectory converges to an equilibrium is
not in general feasible (e.g. [1]). The paper {51, in
particular,sheds some light on the asymptotic behaviour
of optimal trajectories for two dimensional systems by
deriving a certain analogue of classical Poincargé-Ben-
dixson theory. At the other hand, there has recently
been reported considerable progress in the analysis of
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Definition 1

the asymptotic behaviour of ordinary differential sys~
tems [2,7,8]. It is the purpose of this note to

show that some of these results (and hopefully more in
the future) can also be proven for optimal control prob-
lems (or 'optimal harvesting problems', in the termino-
logy of bioceconomics). More precisely, the following
property, which is of great interest for bioeconomic
applications {cp. [3,4]) will be studied here:

The optimal control system (F) is called

persistent if for all optimal pairs (x,u) € int R: xuad

lim inf dlo(t,x,u),? IR:) > 0.

Other questions related to persistence (or 'extinction'),
which are specific for optimal control systems {e.g.
dependence on & ) will not be considered here.

We introduce some additional notation:

Uad(IR):= {u: R » Q, measurable}. The restriction of
(F) to the boundary aIR: is denoted by (3F). Note that
on the faces of 3 R: one obtains an optimal control

probiem of the same form as (F).

2. Results

Before the main result can be stated, some preparations
are required.

Definition 2 For (x,u) € R: x U , define the omega

limit set AT(x,u) by

At(x,u) = {y EIR: there exists t, € R+ such that
£ > and w(tk,x,u) -y}

clfo(t,x,u): t = n}

n
nE iN
We call (x,u) € R: x Uad(|R) an optimal R-solution if

the corresponding trajectory o(+,x,u) exists on R and
for all t € R

Vie(t,x,u),ult+:)) = Vie(t,x,u)).
For an optimal R-solution (x,u) define the alpha limit
set A (x,u) by

A (x,u) := 0 ¢l {o(t,x,u): t £ -n}

nE IN
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Furthermore

Ax) = v A+(x,u) where the union is taken over
u
all u € uad with (x,u) optimal; similarly for A (x,u).

By the definitions if is clear that limit sets of opti-
ma} contro! systems may be at least as complicated as
those of ordinary differential systems (take
f,.=0,i0i=1,...m.

Definition 3 A nonvoid subset L ofIR: is called inva-
riant if for all y € L there exists v € Uad(IR) such
that (y,v) is an optimal R-solution and o(t,y,v) € L
for all t € RR.

The following resuit is proven in [5].

Proposition 1 Let (x,u) € m: x U 4 be optimal. Then
A+(x,u) is nonvoid, connected and compact. For every

y = lim o{t, ,x,u) € A+(x,u) there exists v € U_ (R)
ty ® k ad

such that (y,v) is an optimal R-solution,oft,y,v)eA(x,u)
for all t € IR and for a subsequence (tk )

L

w(tk2+.,x,u) - ¢(+,y,v) locally uniformly as £ » = ;
in particular, A*(x,u) is invariant. Analogous state-
ments hold for A (x,u) if (x,u) is an optimal R-solu-

tion.

The following definitions are adapted - with appropri-

ate changes - from [2].

Definition 4 The optimal control system (F) is dissi-

pative if Q(F) := *(

(g 0 optima? x,u) has compact
1

closure.

Definition 5 A nonvoid subset M ofIR: is an isolated
invariant set for (F) if it has the following proper-
ties:

(i) it is the maximal invariant set in some neigh-
bourhood V of itself,

(ii)

suppose that (y,v) € M x uad is an optimal IR-so-

lution and there exist optimal (x,u) with x € M
such that for a sequence t e

lim w(tk+-,x,u) = @(+,y,v) locally uniformly.
Then ¢(t,y,v) € M for all t € R.

The neighbourhood V is called an isolating neighbour-
hood. |f such a set is compact, a compact isclating
neighbourhood exists.

Given that (F) is dissipative, c% Q(3F) is a compact
isolated invariant set for (3F).

Definition 6 The stable set W (M) of an isolated in-

variant set M is defined to be

{x € R: : there exists u € U_, with (x,u) optimal and

AT (x,u) = M)

and the unstable set W (M) is defined to be
{x EIR:: there exists u € UadGR) such that (x,u) is

an optimal R-solution and A (x,u) = M}

Definition 7 The weakly stable set V;(M) of an isola-

ted invariant set M is defined to be

{x € R" : there exists u € U_, with {x,u) optimal
+ ad P

and AT(x,u) N M+ B 3;

analogously for W;(M).

Definition 8 Let M,N be isolated invariant sets. M is
chained to N, written M > N, if there exists x ¢ M UN
such that x € W (M) N W (N).

Definition 9 A finite sequence M1,M2,... Mk of isola-
ted invariant sets will be called a chain, if

M1 S M, s oM

2
Mk = Ml'

K The chain will be called a cycle if

Definition 10 The optimal control system (3F) on BIR:
is called isolated if there exists a covering M of
Q(aF) = (XU

3

u) At(x,u) where the union is taken over
all optimal (x,u) € BIR: x uad’ by pairwise disjoint,
compact, isolated, invariant sets MI’MZ""’Mk for (3F)
such that each Mi is also isolated invariant for F.

M is then called an isolated covering.

Definition 11 (3F) will be called acyclic if there
exists some isolated covering M = Y M of Q(3F) such

that no subset of the {Mi} forms a cycle.

The next theorem presents the main result of this paper.
It generalizes [2, Theorem 3.1] to optimal control sys-
tems (defined oan:). The proof is very similar to the
one given in [2]. However, there are some significant
changes mainly due to the fact that optimal solutions
need not be unique.

Theorem Assume that the optimal control system (F) is
dissipative and the boundary 3 R: is isolated ad has an
acyclic covering M. Then F is persistent if and only if

(H)  for each M; € M: W*(M;) N int R = B.

The proof of this theorem is based on the following two
anxiliary results, generalizing [2, Lemma 2.1 and Theo-

rem 4.1, resp.].

Proposition 2 Let M be a compact isolated invariant
set. Suppose that W;(M)\M + 0. Then W (M)<M # 8.

Proof: Let x € W (M)\M. 1f x € W(M) we are done. Other-
wise there exists u € U_, such that (x,u) is optimal
and

p o+ AT (x,u) N M, but At (x,u) & M.
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Hence we may choose a compact isolating neighbourhood
V of M which o{:,x,u) enters and leaves infinitely many
often as t » «. We may also choose a sequence (sk) of
positive times with s, > and a sequence (tk) of nega-
tive times such that st ve and for xk:=w(sk,x,u)

Tim d(x

k-0

k)M) =0,

w([sk+tk,sk],x,u) c Vv, co(sk+tk,x,u) € 3v.

Suppose without loss of generality that x, =y € M. If

k
t. Since M is

(tk) is bounded, we may assume that t, -
isolated invariant, Proposition 1 implies that there is
v € Uad(R) such that (y,v) is R-optimal, o(t,y,v) € M
for all t € R and for a subsequence (tkl)

W3 ols, +t ,xu) = olt,y,v),
kg kg

and hence @(t,y,v) € 3V. Contradiction!
Hence (tk) is unbounded and we may assume b, > . We
may assume that (p(sk + tk,x,u) converges to
z € 3V N A*(x,u). By Proposition 1 there is w € UadﬂR)
such that (z,w) is an optimal IR-solution and for all
t €R

o(t,z,w) = lim w(sk ot t,x,u)

K=o
Choose k large enough such that b+t < 0. Then
w(sk+(tk+t),x,u) € V and so @(t,z,w) € V for all t > 0.
Thus A*(z,w) is an invariant subset of V. But the iso-
lating property of V implies A*(z,w) = M i.e.
wHMINM g,

Proposition 3 Let M be a compact isolated invariant
set for F. Then for every x € w:(m)\w+(m) it follows

that there exists u € uad
AT u) NWE (MM 8 and AT(x,u) NWTMINM# B (a

similar statement holds for A ).

with (x,u) optimal,

Proof: Let x € w;(m)\w*(m).

with (x,u) optimal and a compact isolating neighbour-

Then there exist u € Uad

hood V of M such that @(-,x,u) enters and leaves V in-
finitely many often as t - . Without loss of generali-
ty we may assume that x € V. Choose s, * such that
d(xk,M) > 0 as k > @, where x, := @(sk,x,u) and

t, <0 so that's, + t =, w([sk+tk,sk],x,u) <V,

w(5k+tk,x,p) € 3V. Since M is invariant and compact, it

- - a5 k = o,

follows that tk

Since w:(m)\m # p, Proposition 2 shows that

WH(MINHM £ 8. Clearly WY(M) n v # 2 and WH(M) & V other-
wise the isolating property of V is violated by the in=
variant set w+(M) U M.

Consider w(sk+tk,x,u) € 3V. By compactness, we may as-

sume that lim @(sk+tk,x,u) =z €a3VnN A+(x,u). The ar-
k-0

guments used in the proof of Proposition 2 show that
z e W), Thus AT(x,u) n (WE(M)~M) + 8.

Now choose o, > 0 so that w([sk,sk+ck],x,u) < V and
z, = w(sk+ok,x,u) € 3V. Then by the arguments used in

the proof of Proposition 2, 1im o = . We may assume
ko

that 1im z = z € 3V. Again arguing as in the proof of

k=0

Proposition 2, one sees that there is v € Uad such
that (Z,v) is an optimal R-solution and o(t,Z,v) € V
for all t < 0. Hence 7 € W (M)M. Since z € A" (x,u),
it follows that AY(x,u) N W (MM # B.

Proof of Theorem Obviously, (H) is necessary. Now

suppose that (H) holds. If (F) were not persistent,
there would exist x € inth: with AT(x) n 3 R: # 0.
Hence there exists u € U_, with (x,u) optimal such that
A+(x,u) N Q(3F) # P. Therefore we can select i
AT(x,u) N Mi, # 0. By (H), w¥(

1 so that

M. ) <3 R" and so
] 1 +

x € WH(M,
w |

)\N+(Mi ). By Proposition 3 it follows that

1 1

AT (x,u) n w"‘(mi )M, # B Let p, € A+(x,u)nw+(Mi M,
1 1 1 1 1

Since the Mi are pairwise disjoint, we can ensure that

P,

i € Mi for all Mi' By Proposition 1, there exists

1
w. € U_, such that (p, ,w, ) is an optimal R-solution
" ad Py
and (p(t,pi W ) € AT(x,u) N3 R: for all t € R. Hence
1

A (pi "R ) is a nonempty, compact, connected subset of
1 1
At(x,u) n aIR: . Hence A% (A (Pi1,wi }) is a nonempty

subset of Q(3F). It follows that A” pil’wil)n UM; * 8,

since R(3F) is isolated invariant.

There are two cases to consider.

Case (i). Suppose that A-(pi W, ) is not contained in
1 1
, $° that A (pi1,wi1
Then p, € W (M. )W (M. ). By Proposition 3, there
11 w 12 12
exist w € uad such that (pi ,w) is an optimal R-solu-
1

€ A'(pi

any one of the M. Choose i )nMiz* 9.

tion and an element q, W)ON WM, ML
: 1 2 "2

Now q, €3 R: and so A+(qi Y @ Q(3F) < UMi' There

2 2
exists w, € U_, such that (q, ,w., ) is an optimal
iy ad PR Pt

R-solution and (p(t,qi W ) € A-(pi ,w) for all t € R.
2 2 2

Since A+(qi W, ) is connected, there exists i3 so

2 2
that A+(qi R ) < Mo o 1f we had 9, €M, then
_ 2 2 2 3
A (g, ,w, ) €M, by isolated invariance.Hence M= M
iy, i 3 iy
and q; € Mi , a contradiction, Therefore we have
2 2
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9, €W )n WHM, ), g, €M UM, T
2 "2 3 2 2 3
M oM, . Nowgq, € A-(pi ,w) and t.p(t,qi P ) €
2 3 2 1 2 2
A (p, ,w) for all t € R. Hence A+(q. W, ) A (p, W)
i P i
and recall A+(qi M, ) « M, . Hence P; EW-(Mi WM, ).
2 2 '3 1Y '3
Repeating the above argument, we find 9; and Mi such
- 3
that g, €W (M, ) NW(M ), g €M UM, i
3 3 4 3 3 4
we have Mi - Mi - Mi .
2 3 4

Continuing with this argument, we must eventually
arrive at a cycle, since there are only finitely many

M. .
i

W, ) S M,
1N 31
does not ly in any of the Mi’ we have

Case (ii). Suppose that A-(pi for some J,.
Since p.
"

M, =M, . Recall A (p, ,w,
3 " o
x € w;(Mj )\M"'(M_j ). Appealing to the proof of Proposi-
1 1

tion 3, we find |:>_j € A+(x,u) n w"’(M_i

1

) « a*(x,u). So

INM. , where p.
N 31
does not ly in any of the Mj'

, we either
1
find ourselves back in case (i) or we remain in case

(17) and find k, such that M, = M, - M,
1 k1 i "

the preceding arguments, we must eventually achieve

Arguing as before with P, replaced by pj
i
. Repeating

a cycle either by getting into case (i) or by remain-

ing in case (ii).

This contradicts the definition of M. Hence (F) must
be persistent.
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