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Summary

The paper presents a global maximum principle for opti-
mal periodic control of retarded functional differen-
tial systems. The proof is based on Ekeland's Varia-
tional Principle, and a structural theory of linear
functional differential equations.

1. Introduction

Consider the following optimal periodic control problem:

t
Minimize (1.1) 1/(t2-t1) fz g(x(t),u(t),t)dt s.t.
t
1

(1.2) x(t) = f(x_,u(t),t) a.a. t € T:= [t1,t

2
(1.3) xtl = x

(1.4) u € uad := {u: T - Q, measurable}

where xt(s):= x(t+s) €R", s € [-r,0], r > 0, 0x < R",

n -
Ou c R™ , O@ c C(-r,0; R') are open sets, g:OxxOu >R,

f:0=0 x0 xT->R" and Q<0 , closed.
© u u

Optimal control problems for retarded equations have
been studied sincea long time, initially with targets

in R", Problems with fixed targets xt] =y €c{-r,0; RM

were studied when it became clear, that an appropriate
notion of state is the function segment X However,

for this latter problem, a maximum principle is valid
only under very restrictive assumptions. In contrast,
the periodic boundary condition (1.3) allows to develop
a theory of necessary optimality conditions under simi-

larly weak conditions as in the finite dimensional case.

The present paper gives a global maximum principle for
this problem.
Our hypotheses are:

(1.5} The functions g{x,u,t) and f(p,u,t) are measur-
able in t and jointly continuous in (x,u) and
(@,u), resp., and continuously Fréchet differen-
tiable in x and ¢, resp.

(1.6) There exists a monotonically increasing function
q: IR >Ry such that for all x € Ox’ ©® € O@’

w€ Q and a.a. t €T

lgbx,w,t) 1+ 1g, (x,w,t) | < q(lx])
| f(p,w,t)] + Ile(w,w,t)l < q(lel)

(1.7) For every (u,0) € uad x Ow the initial value prob-
Tem

xt1 =@, x(t) = f(xt,u(t),t), a.a. t €T

has a solution x(u,p), and x(u,co)t € O@ is uni-

formly bounded for u € Uaé= {u:T -» Q,measurable}.

Under these assumptions we can reformulate problem
(1.1) = (1.4) as

t
2
Minimize J(u,p) = 1/(t2-t1) [ alx(t,u,@),u(t))dt
u,o t1
s.t. © = x(u,0)
t2
u € Uad.

One can show that for fixed u the map

1 1
® - x{u,o0): Wz (-r,0; R > w. (T; R

2

is continuously Fréchet differentiable.

2. Structure Theory of Linear Retarded Equations

Linearizing the system equation (1.2) one obtains a re-
tarded equation of the form
(2.1) x(t) = L{t)x,,
where L(t): € := C(-r,0; R") » R" is linear and bounded
and for'all @ € C, @ -» L{t)p is measurable, with IL{t)}|
essentially bounded. For the formulation of the maximum
principle an adjoint equation is employed. As is well-
known, the functional-analytic adjoint and the so-called
transposed equation do not coincide. This section sketch-
es the required structural theory developed in [2]cp.
also [6].
First observe that L(-) can be represented bya measur-
able nxn-matrix valued function n(t,T) in the form

<
Ltle = [ ldn(t,)]o(m), @€C,

-r
where n(t,-) € NBV(-r,0; R™™), i.e. n{t,) is of bound-
ed variation and left continuous for -r < T < 0 and
n(t,T) = 0 for T =2 0. The evolution of the state x, € o

(2.2)

is given by a family of strongly continuous evolution
operators ®(t,s) with ®(t,s) compact for t = s+r.
Associated with (2.1) are the structural operators
F(t): C(-r,0; R") > c(0,r; R")
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o)+ [°J

o [-r,-o]

(2.3) [F(t)ol(s) [drn(t+c,r)]w(c+r)do

and  G{t) : C(O,r;an) - ¢(-r,0; RM given by

f [drn(t+o,r)]w(o+r-r)

S
(2.4) [6(0) o (s)=p(s-r)-]
o [-0,0]

The operator F(t1) maps the initial function x ] =0
into the corresponding ''forcing term" F*1 of the inte-
grated version of (2.1); and the operator G{t{) maps
this forcing term into the corresponding solution

segment x The system (2.1) can also be described

t1+l‘.
by the evoluticn of the forcing terms £t = F(t)xt. The
corresponding cperators are denoted by W(t,s). Then

for t 2 s

(2.5) ®(t+r,t)=G{t)F(t), Wlt+r,t)=F(t+r)G(t)

(2.6) F{t)o(t,s)=¥(t,s)F(s),®(t+r,s+r)G{s)=G(t)¥(s,t).

The adjoints of F(t), G(t) are given by

[F*(t)ul(T)= (o)~ Ir[nT(t+s,r-s)-nT(t+s,-S)}w(S)ds,
o]

]
[G*<t)_]w]tﬁ=¢(r+r)+ { N (t+ro, T-0)d(o+r) do,

<

-r £ T<0, Y€ NBV(O,r; RT).

They are related to the transposed equation
fotr ¢ T

(2.7) 2(t) - z(r,)= -/ [n (o,t-a)n (a,t,-a) ]z(a) dat
t

t <t

2

The evolution of the states zt

{

is described by ¥*(t,s):

€ NBV(O,r; R™)

<

z{(t+s) , 0=s<r

(2.8) zt(s)

0 )

(2.9) 2" = W (e, 009
t
for the solution of (2.8) with final condition z

The restriction of ®(t,s) to w](-r,O;IRn) is bounded

2

do.

and denoted by @W(t,s); note that @w(t+r,t) is compact.

The dual space of w; is in this context appropriately
identified with R” x L, and for ¢ € W,

and
_ 0 1 2 2
b= W50 € (Wy)*

R" x L, the duality is given by

o> = @)U + [ $ U de .

cp. [2]

Note that ¥*(t+r,t) can be continuously extended to a
20,r; RY) (= W;(O,r;IRn)*) into
NBV(O,r;IRn), replacing the final con-

map from R™ x L
co,r; RM)* =
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2

dition z'2 = G by (2(t.),2%2) = (W°,0') e R™ x L2

2
Finally let for a € R"

{

3. The Global Maximum Principle

0

() (s) 1= f

The proof of the following thecrem is based on Eke-
land's Variational Principle,and uses arguments similar
to those in [4,5].

Theorem 3.1 Suppose that (xo,uo) is a strong local

minimum with {1.5) - (1.7) holding. Then there exist
1

Ab >0 and y* € Wz(-r,O;IRn)* such that
: * *
(1) y*(s) := ¢§(t2,s)y +
t
A jz¢*(t s)X g (x°(t),u®(t),t)dt s€T
SR ’ o9x ’ ’
satisfies
(ii) y*(t1) = y*(tz) = y*
and

(1ii) xog(x°(s),u°(s),s) + <y*(s).xof(x§,u°(s),s)>

tA

Xog(xo(S),m,S)

* o
+ <y (s),xof(xs,w,s)>

for a.a. s €[ty,tp-r] and all w € Q.

Here ®(s,t) is the evolution operator associated with

x(t) = v1f(x‘z,u°(t),t)xt, t €T,

Proof: The proof uses strong variations of the optimal

control u® of the following form:

W)

for

t]St<s-p and 5<t$t2

(3.1

w s-p £ t < 53

here p > 0, W € Q and s € (t],t2 -r],

Where no confusion should possibly arise the shorthand

uo for uo

’

is used. Note that for p small enough,

L e uad and let x” be the corresponding trajectory
with initial state x° := x° := wo.

4 B
First two lemmata are cited from [1, Lemma 111.2.2,2.3]

{slightly strengthened here). Let w € @, s € [ty,t2].

Lemma 3.2 There exists a sequence (Oi) tending to zero
t€eT
Vim 1/p, P - x%())

such that for all

x{(t)

exists, vanishes on [tl,s) and coincides on [s,tz]
with the unique solution of
(3.2) x(t) =0, t <s, x(s)

f(x:,w,S)-f(xz,uo(S),S)



(3.3) x(t) = Ulf(xz,uo(t),t)xt, a.a. t € [s,tz].

Furthermore

limix - 1/oi[xpi - x°11 0.

Wi ls,t2]; R) =
Lemma 3.3 For a subsequence (pi)
lim 1/Di[J(upi,m°) - 3(®,09)]
t2
= g(x°(s),w,5)-g(x(s),u%(s) ,s)+f gx(xg»uo(c),c)
s

{¢(o,s)Xo[f°(xZ,w,s) - f(x:,uo(S),S)]} (0)do .

Next we set the stage for an application of Ekeland's
variational principle. Consider uad in the Ekeland
metric

d{u,v) := meas {t: u(t) # v(t)}
Then V:= uad x 06 is a complete metric space where
0$ c 0@ is closed, endowed with the metric induced by
the w;-norm. Take a sequence Gn - 0, 6n > 0, and define
functionals F.: Vo R by
2.1/2

] /

Folus@)i= Ux(u0), = aly + 13(u,0)-(n6)]

where m:= J(uo,wo), and the norm in the first summand
is taken in w;(-r,O;IRn). Then Fn is continuous on V

and Fn(u,w) > 0 for all (u,p) € V. The sequence (En)

with en 1= Fn(uo,wo) converges to zero and

Fo(u0,0%) < inf (F (u,0):(u,0) €V + .

Thus Ekeland's Variational Principle [4, p.456) implies
that there exist (un,wn) € V with the following proper-

ties:

(3.4) o= Fn(un,wn) <e

n
(3.5 d(®u") s€l/?, 16%0"1 < e/
(3.6) F_(u,0) 2 Fn(un,wn)-e;/z[d(u,un)+l¢vonl] for

all (u,0) €V

Let s €T, w € Q and p > 0, small enough. We shall use

the relations above for (u,@) = (uZ’g, ©") and for
,

(u,0) = (un,w°+pw).

From (3.6) one obtains for (u,@) * (u",@") the follow-

ing important inequality:

1/2
n

(3.7 )% < (ix{u,0) 0l5 +13 (5,00~ (n-5)1%1"2

2,1/2

SCx(" M) 0" (me8 ) 171
JHld(u,u™ +loo™1].
Let xM:= x(u",0™) and define yn € W;(-r,O;IRn)* =

R" x L2(-r,0; R") and A" € IR, by

(3.8) Yool -o"1% 4 (0" (g 12112

L0Mey) 5] ) = (6(0),8M)]

(3.9) As=lix] "% +1006" - (meg) 1212

", - (m-6_)1.

Let " (t,s), n=1,2,...

operators associated with the linearized equations

be the family of evolution

(3.10) x(t) = D1f(x:,un(t),t)xt, a.a. t €7T.
Finally, define bounded linear operators

™ ) (-r,05 ™) =) (-r,05 ") by

(LH)T%:=QuTHm-¢.

Now take (u,p) = (un,wn + @) in (3.7). The chain rule
implies that Fn is continuously Fréchet differentiable
with respect to @. Thus in the limit for p » 0 one
gets, noting that y is arbitrary in w;,
t2
(3.12) (T™yMu=-2" [7g (<"(s),u"(s),5) La) (s, ¢, W1 (0)ds
ty

for all Y € w; .
Next we consider the limit for n - . By (3.5),
Iwn - wol - 0. Hence by continuity, resp. continuous

Fréchet differentiability we get

Ix"-x°] - 0, IQ;(s,t]) - @w(s,t1)l -0 forall s €T

IT" - 7° = 0 and l¢u(c,s)! is uniformly bounded. Re-
call that A"l < 1 and lynl(w1)* < 1. We have to ex-
2

lude that both sequences (A") and (y") converge to
zere. Suppose first that the Fredholm operator

ow(tz,t1)-|d is surjective, hence an isomorphism on
w;(-r,O;IRn). This implies that for sufficiently large

nalso T" = ¢G(t2,t1) - Id is an isomorphism cp. [3,
Lemma VI1.6.1] and hence also T"F is an isomorphism.
Suppose that there exists a subseguence of (M again

denoted by (A") converging to zero. This yields
Iy Ty = 1o
(Wz)
This implies existence of U" € W)(-r,0; R") with
W o= ¢, and (T™y™" 2 1/2; but from (3.12) one
obtains
x

NG A ISP

here CO,C1 are constants independent of n. This is a

contradiction.
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Let A be a clusterpoint of (A") and y* be a weak clus-

terpoint of (y"). Then (3.12) implies for all

0E€ w;(-r,O;IRn)
(1% ) = (g, (t,,t)% - 1d)y*lo
t2
= =X, J gx(xo(S),uo(S),S) [o(s,t)o] (0)ds.
t

1
Thus (i) and (ii) hold.

The other case can be treated using the Hahn-Banach-
Theorem.

n,e ny . . .
Now take (u,®) = (u '™,@ ) in (3.7) in order to derive
the maximum condition. Again take first the limit for
P - 0 and then for n - «, Then use the adjoint equa-
tion in order to get (iii).

Theorem 3.1 has an abstract form. The structural theory
of retarded equations exposed in section 2 allows to
derive the concrete form of the optimality condition.
The following lemma is crucial.

Lemma 3.4 Suppose that t, 2t + . Then
y* € NBV(0,r; R™) and the equations (i) and (ii) imply

that there exists ¢ € NBV(0,r; R") with y* = F*(tz)w.

Proof: This foliows by an analysis of

y* o= y*(ey) = ek (e, b, )y
t2
J o (t,t,)% g, (x°(£),u(t) ,t)dt
t

and (2.5). Observe that y*(t,) € NBV(O,r; R").

Using (2.5),

maximum principle.

{2.6) one obtains the following global

and suppose that

5 - (1.7)

Corollary 3.5 Let t, 2 et
(xo,uo) is a strong local minimum with (1
holding.

Then there exist AO 2 0 and a solution y of the trans-

posed equation

[nT(a,s-a)-nT(a,tz-a)]y(a)dﬂ

= Kogx(xo(s),uo(s),s), sET
such that
(it) \/t1 = ytz and (Ao,yt2)¢(o,o) in RxNBV(0,r; R").
(111) A,80%(5),°%(s),8) + y(s)T £(x2,6%(s) )
< Kog(xo(S),w,S) +y(s)T f(xz,w,s)
for a.a. s € [t1,ty-r] and all w € @

(2.2))

o}
[ ldn(t,s)le(s), ¢ € C(=r,0; R").
-r

here n is given by the representation (cp.

Dy fxg,uo(s),s)o =

Remark

In the theorems above, the minimum condition
(iii) is obtained only on [t1,t2-r]. Suppose, however,

n
that |® (t2 )x“Rn L2(-r,0RY) N =

formly bounded for all x € C(-r,0;R") with
2 21 (this is e.g.

1,2,..., is uni-

Ixlgny

constant delays, cp. [2]).

the case for systems with

Then one can show that (iii) holds on the whole inter-
val T = [t,,t,]. One has to modify the deflnlt.on of F

by taking tre R" x L -norm instead of the W ~norm and

2
then argue with the continuous extensions of ™ to
RY x L2,
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