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This paper is concerned with optimal periodic control problems for 
retarded Li@nard equations of the form 

x(t) + f(x(t))x(t) + g(x(t-r)) : u(t), (I.i) 

where r > 0 denotes the length of the retardation. We are looking for 
periodic controls u and corresponding trajectories x of the same 
period length minimizing a certain (average) performance criterion. The 
aim of this paper is (i) to show and illustrate the applicability of the 
general methods developed in [2], and (ii) this case study uncovers a 
severe problem in optimal periodic control of retarded equations 
concerning the determination of the optimal period length. For large 
retardations, the problem apparently becomes very sensitive with respect 
to the optimal period length • and no useful information about T can 
be drawn out of the I-Criterion 

More specifically, we consider the following problem: 

M i n i m i z e  - 1 / ~  I x ( s ) d s  + ~/ (2~)  u ( s ) 2 d s  (1 .2  
0 0 

subject to (1.1) and 

x(t) = x(~+t), x(t) = x(~+t), 

T 
f u ( s ) d s  -- O .  
0 

Here e • • will be chosen later. 

t • [-r,0] (1.3 

(1.4 

*) This research was performed during a visit to the Institut f~r 
Mathematik der Universit~t Graz supported by a grant from Deutsche 
Forschungsgemeinschaft. 
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The periodicity condition for x is incorporated into (1.3): This 
condition guarantees tl]at the periodic extensions to the positive reals 
of x and u satisfy the system equation (l.i). 

Though we do not have any specific application in mind, the first term 
in the performance criteria (1.2) is typical for chemical engineering 
applications where the average output has to be maximized. The second 
term relates to the "control energy". 

A discussion of previous work on optimal periodic control theory and 
applications can be found in [2]. Work on time optimal control of the 
(unretarded) Li@nard equation to equilibrium is summarized in [i]. 

Section 2, below, gives a short account of optimality conditions for 
periodic control of general functional differential systems. Along with 
the optimal periodic control problem an optimal steady state problem is 
considered where constant controls u are sought yielding steady states 
x such that the performance criterion is minimized. Then the so-called 
I-Criterion allows to discern optimal steady states around which 
performance can be improved by allowing proper periodic solutions. In this 
case the steady state is called locally proper. 

In Section 3, this result is applied to optimal periodic control of 
retarded Li6nard equations while Section 4 discusses numerical findings. 

2. The n-Criterion for Functional Differential Systems. 

In this section, a general optin~al periodic control problem under 
constraints is formulated and, based on [2], a I-Criterion for properness 
is given. 

Minimize I/~ f f0(x(t),u(t))dt 
0 

(2.1) 

such that 

x(t) : fl(xt,u(t)) a.a. t e [0,T] (2.2) 

(2.3) X 0 : X 
T 

0 : f f2(x(t),u(t))dt; (2.4) 
0 

here • > 0 is fixed, xt(s) := x(t+s), s e [-r,0], u(t) e ]R m, and 
r > 0 is the length of the delay. The maps f0 : ]Rn ~ ]Rm ÷IR' 
fl : C(-r,0; ]R n) x IR m +JR n, f2 : IR n x ]R m ÷IR k are assumed to be twice 
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continuously Fr~chet-differentiable, and the controls u are taken in 
L (0,~m). Furthermore, we assume that for every initial function 
x 0 = % • C(-r,0;~ n) and every control u • L (0,~m), equation (2.2) 
has a unique absolutely continuous solution x. 

The corresponding optimal steady state problem has the following form: 

Minimize f0(x,u) (2.5) 
x e ]Rn,ue ]R m 

such that 

0 : fl(X,U) (2.6) 

0 = f2(x,u) (2.7) 

where x • C(-r,0~R n) is the constant function x(s) := x. Let 
(x0,u 0) e]~n x]Rm satisfy (2.6) and (2.7). Linearization of (2.2) and 
(2.4) gives 

x(t) = Plfl(x0,u0)xt + ~)2fl(x0,u0)u(t), t • [0,~] (2.8) 

0 = i [Cif2(xO, uO)x(t) + ~2f2 (X0,u0)u(t)]dt" (2.9) 
0 

The characteristic function of (2.8) is 

g(z) = zl - 1)lf1(x0,u0)eZ" 

where e z" denotes the function exp(ze), 8 • I-r,0], and I is the 
n×n identity matrix 

Introduce the function H : C(-r,0~ n) x ~m x ]R n x ~k ~]R by 

T T (~(0),u). (2.10) H(9,u~IjX 2) := f0(O(0)~u) + ~ fl(O,u) + 12f 2 

Then consider for ~ e ]R the following expressions (here j := /---i): 

P(~) :: PlDIH(X0,U0,AI,~2)(eJ~',e -j~') 

q(~) := P2PlH(X0,U0,~1,12)(eJw') (2.11) 

R :: P2P2H(~O,uC,~I,~2). 

We identify P(w), Q(~J), and R with elements in ~n×n, ~n×m and ]Rm×m, 
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respectively. Observe that R is symmetric, P(~) 
Q(~)T : 01D2H(~Q u0 Xl,~2)(ejm.). 

Define the complex m×m matrix ~(~) by 

is Hermitian and 

H(w) :: BTA-I(-j~)TP(~)A-I(j~)B 

+ Q(-m)TA-I(jm)B + BTA-I(-j~)TQ(~) + R. 
(2.12) 

The matrix I(w) is Hermitian. We get the following result. 

Theorem 1. Let (x0,u 0) be an optimal solution of the steady state 
problem (2.5) - (2.7) and assume 
(a) with ~ :: 2~/~ the matrix A(jpe) is invertible for all p e ~; 
(b) ~n x ~k : {(~fl([0,u0)(~,u), ~f2(x0 u0)(x,u)): x e~ n, u e~m}; 
(c) C(_r,O~R n) ~k : {(xT-$,z): there exist u e L (0,~;~m), ¢ e 

~0 e C(-r,0~ n) with (2.8), x 0 = ¢, and z = ~ Df2(x ,u0)(x(t),u(t))dt}. 
0 

Then the following assertions hold: 
(i) There exist Lagrange multipliers ~1 e~n ~2 e ~k satisfying 

0 = DIH(~0,u0,klT,~ 2) 

0 = D2H(~0,U0,~IT,~2 ). 

(ii) Let ~1' ~2 satisfy (i) and suppose that there is n • ~m with 

~tE(~)n < 0. 

Then (x0,u 0) is locally proper, i.e., for every ~ > 0 there exist 
x and u satisfying (2.2) - (2.4) with llx - x011 ~ < E, flu - u011~ < ~ 
and 

T 
I/~ J f0(x(t),u(t))dt < f0(x0,u0). 

0 
The proof of this theorem follows the same lines as that of [2, Theorem 
6.1]. The additional isoperimetric oontraint (2.4) can be treated in a 
standard manner. 

3. Periodic Control of Retarded LiSnard Equations. 
First we want to assure ourselves that indeed for every x-periodic 

forcing function u satisfying (1.4) there exists a corresponding 
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T-periodic solution x of (i.i). Formally, this is not necessary for 
an application of the results in the previous section, in particular, for 
an analysis of local properness. It suffices that in every neighborhood 

--0 --0 of an optimal steady state solution x , u there exist periodic 
solutions x, u (yielding better performance). 

Nevertheless the following result can be found in the literature [4, 
Theorem 4]. 

Theorem 2. Let f and g : ~ + ~ be continuous and assume that one of 
the following conditions is satisfied 

(i) there exists m > 0 such that for IYl ! m one has yg(y) ~ 0 
and lim inf g(y)/y > -i; ly1~- 

(ii) there exists m > 0 such that for IYl > m one has yg(y) > 0 
and lim inf g(y)/y < I. lyl+" 

Then for every r e [0,2~[~ the retarded Li6nard equation (I.i) has at 
2~ 

least one 2~-periodic solution for u • LI(0,2~R) with / u(t)dt : 0. 
0 

Remark. I do not know if this result remains valid if the length r of 
the delay exceeds the length of the period. 

The control problem (i.I) - (1.4) formalized in Section I fits into 
the general framework of Section 2 if we define 

x1(t) :: x(t) x2(t) :: ~(t). 

Then equation (1.1) becomes 

~l(t) : x2(t) 

x2(t) -f(xl(t))x2(t) - g(xl(t-r)) + u(t) 
(3.1) 

and the boundary conditions are 

(Xl) 0 : (Xl) ~ (x2) 0 : (x2) r (3.2) 

while we have to minimize 

T T 
--1/~ 5 Xl(S)ds + ~I(2~) f u(s)2ds. 

0 0 
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The corresponding steady state problem is 

Minimize + ~/2 u 2 
~ X 1 

s.t. 0 : x 2 

0 : -f(xl)x 2 - g(x i) * u 

0 : u. 

(3.3) 

Clearly, the optimal steady state satisfies 

0 0 = 0~ x2 = 0 

and x~ is the solution of 

min -x I s.t. g(x 1) = 0. 

Under the assumption 

g(x) * 0 for x > 0 and g(0) = 0, 

N it follows that x i = 0. 

Linearization of the constraints (3.3) yields 

o ° I - fx (Xl)X2-gy (x I ) -f(x I ) 1 
0 0 i 

0 0 and, evaluated at (xl,x2,u0) = (0,0,0) 

0 1 0 
-g  (0) - f ( O )  1 

o 1 

We assume 

(3.4) 

(3.5) 

gy(O) # o. 

The function H : C(-r,0~R 2) ~R xIR 3 +~R is given by 

( 3 . 6 )  



H(9,u,Z) = -¢1(0 
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+ ~/2u 2 + (AIA2A 3) ~2(o) 

-f(@l(0))@2 
U 

(0) - g(91(-r)) + u I. 

For notational convenlencej we prefer to write H in the form 

H: ~2 x ~2 × ~ × ~3 ÷ 

H(x,y,u,Z) = -x I + e/2u 2 + (~1~2~ 3) x2 1 -f(xl)x 2 - g(yl ) + u 
U 

(here y : (yl,Y2)T corresponds to the delayed term). 
Then there are Lagrange multipliers (~1,~2,~3)T • ~3 satisfying 

(-1 0 O) + (Zl 
-gy(0) -f(0) : 0 
[ o o 

ioe. 

-1 - ~2gy(0) = 0 
~i - ~2f(0) = 0 
~2 + ~3 : 0 . 

Thus 

Zl : -gy (0)-If(0) 
A2 : -gy (0)-1 
Z3 = gy (0)-1 

Linearizing the system equation (3.1) around 
fi nd 

0 0 0 (x~,x2,u ) : 

(3.?) 

(0,0,0) we 

~(t) : A0x(t) + Al×(t-r) + Bu(t) (3.8) 

with 
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A 0 :: , A 1 :: , B := 
-f(0) -gy(0) 

Next we analyse the characteristic equation for the homogeneous equation 
(3.8): 

d(x) 
:: det A(X) 

: det[Xl - A 0 - A 1 exp(-~r)] 

gy(0)exp(-~r) X+f(0) 

= X 2 + Xf(0) + gy(0)exp(-~r) . 

Let w • ~. Then d(jw) vanishes iff 

Re d(j~) : -w 2 + gy(0)cos(-~r) : 0 

i.e°, 
2 w = gy(0)cos (~r) (3.9) 

and 

Im d(j~) = f(0)m + gy(0)sin(-wr) : 0 

i.e., 

w : gy(0)/f(0)sin(~r). (3.10) 

Conditions (3.9) and (3.10) are satisfied only at finitely many points, 
excluding in some cases - for fixed values of gy(0), f(0), and r - 
certain frequencies ~. Then assumption (a) of Theorem i is satisfied. 
Furthermore, assumptions (b) and (c) hold because of condition (3.6). In 
the following Hx, Hxx , H , etc. denote first and second derivatives of xy 
H(x,y,u,X), evaluated at (x0,y0,u0,~), with ×0 = 0, y0 = 0, u 0 = 0 and 
x given by (3.7). 

We find (cp. [3]) 

P(~) = Hxx + 2Hexp(-j~r) + H 
~Y YY 

Q(~) : H + H exp(-j~r) ux uy 
R : Huu . 



One easily sees 

H = 0, H = 0, xy ux 

Hence (cp. (2.12)) 
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H -- 0, H uy uu 

]](w) : BT~-I(-jw)TP(~)A-I(jw)B + 

= Oto  

( 3 . 1 ] )  

and 

P(~) : P : H + H xx yy 

We compute, taking into account (3.6) 

0 gy(0)-ifx(O)] 

Hxx = [gy(O)- l fx(O) 0 

gy(O) gyy(O) 
Hyy 

Thus 

gyy(0) fx(0) 1 p : gy(0) -1 
[fx(0) 0 

For the transfer function of (3.8) we obtain 

-1 A (A)B 

d_I(A)IA + f(O) 
t -gy(O )exp (-~r) 

: d-l(,~)I1),l. 

Jill] 
Since 

d(-j~)d(jw) : (Re d(jw) 2 + (Ira d(j~)) 2 

we find 
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e(~) :: d(-j~)d(jm) : ( 2 _ gy(0)cos(~r))2 + (~f(0) 

- gy(0)sin(~r)) 2. 

All this in 3.11) yields 

I(~) = gy(0)-Igyy(0)/[(~ 2 - gy(0)cos(~r)) 2 + (~f(0) 

- gy(0)sin(wr)) 2] + ~. 

The I-Criterion (Theorem 1 above) asserts that (x0,u 0) 
proper if this matrix is partially negative. 

(3.12) 

(3.13) 

is locally 

4. Discussion of ~(~) and Numerical Results. 

Let us first consider the easy linear case where 

g(y) : ay, a ~ 0. 

This comprises in particular the retarded Van der Pol equation 

x(t) + (x(t) 2 - k)x(t) + x(t-r) : u(t). 

The assumptions (3.4) and (3.6) are satisfied and gyy(0) = 0. Hence 

and we have no assertion for ~ > 0, while local properness holds for 
< 0, e.g. for the performance criterion 

minimize 
T T 

-i/~ ~ Xl(S)ds - 1/~ ~ u(s)2ds 
0 0 

for all periods ~ > 0. 
Using this criterion, we maximize the average output plus the control 

energy. Now under the assumptions of Theorem 2, in particular in the case 

a < 1, every periodic control u with i u(s)ds = O generates a periodic 
0 

trajectory. Clearly, every non-constant periodic control has positive 

energy f u(s)2ds. Hence the result above is clear. More interesting is 
0 
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the nonlinear case where gyy(O) ~ O. Let us first consider the 
unretarded equation i.e. r = O. 

Then by (3.12) 

e(~) : ( 2 _ gy(0))2 + (~f(0))2 

: [ 2 _ gy(0) + 1/2f(0)2] 2 + gy(0)f(0) 2 -1/4f(0) ~. 

Thus e(w) = 0 iff 

2 = gy(0) - i/2f(0) 2 ± f(0)/gy(0) - 1/4f(0) 2 

If e.g. gy(0) > 0, f(0) = 0, then the only positive root of e(~) is 
/gy-~ and one has for every ~ that 

~(~) : gy(0) -I gyy(0)e(~) -1 + 

will have a negative pole if gy(0)gyy(0) < 0 (observe that always 
e ( ~ )  > o). 

In the following, we let 

gy(0) : 1, f(0) : 0. (4.1) 

In this case, we can simplify the expression for ~(~) considerably. 
From (3.12) 

e(~) : ( 2 _ cos(wr))2 + sin2(wr) 

4 2w2eos : ~ - (~r) + 1 .  

Hence by (3.13) 

I(~) = gyy(0)/[co 4 - 2m2cos(~r) + 1] + e. (4.2) 

Consider the case ~ = 0 and suppose gyy(0) < 0. Then always n(~) < 0 
and local properness holds. This can easily be explained as ~n the linear 
case above. 

More complicated in the case ~ = 1, where one wants to minimize 

i  (s ds + i u(s  ds. 
0 0 
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Here two effects are working against each other: while the average 
"output" can be increased by allowing for periodic controls, a certain 
price for the necessary "control energy" has to be paid. 

Figures 1 - 8 below show I(~) for the parameter values 

gyy(0) = -1 and ~ : i (4.3) 

and different Values of the retardation r, starting with r = 0. 

For r = O, there is a pole at w 0 = 1 and for low frequencies w 
local properness occurs, i.e., performance can be improved by allowing 
for periodic solutions. A good first guess for the optimal frequency 
would be close to ~0" In fact, chemical engineers use the n-Criterion 
in this way in order to determine suboptimal periodic controls (see e.~. 
[5, P. 1158]). If the retardation r is increased, the pole vanishes; 
however, the behaviour with respect to local properness remains 
qualitatively unchanged. 

If the retardation r is further increased there appear new zones of 
properness, and their number increases as the retardation increases. If 
e.g. r : I00, it appears very hard to draw any reasonable information 
about the location of the optimal period length out of the ~-Criterion. 
Furthermore, the problem apparently becomes very sensitive with respect 
to the period length (at least, forsinusoidal inputs). 

The conjecture is that, with increasing retardation the number of 
local minima increases. These remarks emphasize the need to find efficient 
criteria for the determination of the optimal period length. 
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Appendix. 

The following figures I - 8 show the curves ~(~) for different 
values of the retardation r. Here H(~) is determined by (4.1 and 
(4.3), i.e., the parameter values are 

and 

f(O) : O, gy(O) : I, gyy(O) : -I, ~ : i 

~(w) : 1 - i/[w 4 - 2~2cos(wr) + I]. 

\ f I 1 

\ 

Figure 1: r = 0.00 
L 

1 

Figure 2: r = 1.00 
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Figure 3: r = 3.00 
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Figure 4: r = 4.00 
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Figure 5: r = 5.00 
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Figure 6: r = 9.00 
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Figure 7: r = 31.40 
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Figure 8: r = 100.00 


